ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

COMPARISON OF LUMBO PELVIC HIP STRENGTHENING VERSUS KNEE STRENGTHENING EXERCISE TRAINING IN THE MANAGEMENT OF PATELLOFEMORAL PAIN SYNDROME

Dr Ankita Patel¹ (M.P.T in Ortho &Sports), Dr D Sathiyavani² (M.P.T ORTHO)

1. Assista<mark>nt Prof</mark>essor At S<mark>SCP Coll</mark>ege <mark>Bhandu, Mehsana,gujrat</mark> ,india

2. Associate professor at srivijayvidhalaya college of physiotherapy ,Dharmapuri,TN state ,india

ABSTRACT

Background: Patellofemoral pain syndrome (PFPS) is one of the most common musculoskeletal disorders and reported to affect 21%-45% of adolescent.

Objective: The main objective of interventional study was in comparing the effectiveness Of Lumbopelvic Hip Strengthening verses knee strengthening with conventional therapy in reducing pain and improve functional outcome of knee in women with PFPS. 36 patients with PFPS are included in the study.

Method: The subjects were divided in to three groups with use of Simple Random sampling: Control Group, Lumbo Pelvic Hip Strengthening exercise and knee Strengthening exercise Group. All three groups were assessed for pain with 11- NPRS, lower limb muscle (hip flexor, hip extensor, hip abductor, hip external rotators, knee extensor ,trunk lateral flexors) strength with Hand Held Dynamometer and Functional assessment with KQFAS Questionnaire, before and after 8 weeks of intervention.

Result: There was a significant decrease in pain and improvement in the strength and functional ability of knee (p<0.001) in patients with PFPS who received Lumbo Pelvic Hip Strengthening exercise and knee strengthening.

Conclusion: When two interventions Lumbo Pelvic Hip Strengthening and Knee strengthening were compared Lumbo Pelvic Hip Strengthening Exs Group was found superior than Knee Strengthening Exs group in the management of patello femoral pain syndrome.

Key Words: patello femoral pain syndrome, Lumbo Pelvic Hip Strengthening ,Knee strengthening ex, Hand Held Dynamometer, KQFAS

INTRODUCTION

Patellofemoral pain syndrome (PFPS) is a descriptive diagnosis characterized by long-term Anterior knee pain. The pain is not constant, instead varying with the type and level of Activity. Naslund have been used to denote the syndrome, including chronic anterior Knee pain, idiopathic anterior knee pain, patellalgia, patellofemoral malalignment, patella Compression syndrome and chondromalacia patella¹

Patellofemoral pain is a pattern of insidious onset diffused pain in knee usually aggravated by walking, stairs, deep squatting, kneeling, prolonged sitting (movie sign) and standing from sitting. PFPS is one of the most common musculoskeletal conditions in adolescents and young adultsand reported as occurring in 25% of general population². The symptoms most frequently reported are diffuse peri-patellar (around knee cap) and retro `patellar (behind knee cap) localized pain, typically provoked by ascending or descending stairs, squatting and sitting with flexed knees for prolonged periods of time. Other common symptoms are crepitus and sensation of giving-way³.

Anterior knee pain or patellofemoral pain syndrome (PFPS) is one of the most common disorders affecting the lower extremities. It frequently occurs among the physically active population, and its incidence is higher among women⁴

The proposed theories as cause of PFPS are multifactorial which includes malalignment of patella and lower extremity, excessive foot pronation, muscle imbalance, quadriceps insufficiency, patellar incongruence, excessive exercise, overtraining, training errors, poor equipment, and ignorance of the condition^{5,6}.

The AIMS OF THE STUDY was to compare effectiveness between Lumbo pelvic hip strengthening and knee strengthening exercise training program in Study Participants with Patello femoral pain syndrome.

MATERIAL AND METHODOLOGY

RESEARCH DESIGN	: Interventional study (comparative)
SAMPLE DESIGN	: Simple Random Sampling Method
STUDY POPULATION:Stu	dy participants with Unilateral PFPS in local population
SAMPLE SIZE :36 Study P	articipants. (Group A=12, Group B=12, Groups C=12).

STUDY SETTING :Out Patient Department of CUSPC

STUDY DURATION : 1 year (December 2011 to November 2012).

TREATMENT DURATION :8 weeks

The included subjects were of Age:20-40years,Experience of anterior or Retro patellar knee pain, Presence of pain for more than one month,BMI: 18.5 -24.9 KG/M²·In addition, participants had to exhibit at least two of the following positive signs of anterior knee pain during the initial physical examination-Patellar crepitus,Clarke^{*}ssign,PatellarGlind Test ,Positive Zohlersign^{7,8}. They were excluded if Any trauma, inflammatory or infectious pathology in the knee joint, extremity malalignment (such as foot pronation)Received NSAIDS, injections or physical therapy in preceding 3 months.Systemic disease such as diabetes and rheumatism,⁸ Any trauma and operation on trunk region⁹·Faulty posture in lower extremity or trunk⁷,

OUTCOME MEASURES

The primary outcome measure of this study was NPRS¹⁰, Kujala questionnaire of Functional ability scale¹¹, and Hand held dynamometer¹² for strength measurement were used as an outcome measures to assess baseline values and progression.

Common Treatment for Three Groups (A & B & C)

Warm up exercises:

Duration - 5 minutes (LLM stretching such as Hamstrings, Quadriceps, Iliotibial bands, Calf muscle,)¹³ Stretching – 30 Second hold, 5 second rest, repeat 3 times¹⁴.

Exercise phase:

Group A: conventional physiotherapy

Group B: Lumbo Pelvic Hip Strengthening Ex & Conventional Physiotherapy

Group C: Knee Strengthening Ex & Conventional Physiotherapy

Cool down phase:

Duration -7-9 minutes (Stretching of Hamstring, PF, Quadriceps, Calf and ITB, Trunk lateral flexors.)¹³Stretching -30 second hold, 5 second rest, repeat 3 times

Group A (control) was received Ultrasound therapy and ask them to continue routine regular Activities.(conventional physiotherapy), thrice a week for 8 weeks.

Ultrasound therapy¹⁵parameters: Frequency = 1 MHz Intensity=1.5 W/cm2 Duration = 5minutes,Site=Anterior knee

Group B (experimental I)

Lumbo Pelvic Hip Strengthening exercises and Conventional Physiotherapy FOR FIRST 2 WEEKS Non–weight-bearing exercises with the spine maintained in a neutral position 16

Sr.No	Exercise Protocol (Repetition/Sets)	Position
1.	Alternate hip and knee flexion/extension motions.	Supine
2.	Gluteus medius exercises involving hip abduction/external rotation.	Sidelying (Short lever)
3.	Progression of gluteus medius exercise- Placing the uppermost knee in extension increases the lever arm. The hip should be held in less than 25° external rotation and slight extension.	
4.	Gluteusmaximusstrengtheningwillfacilitated by extending the hip with the knee held in greater than 90° of knee flexion.	Prone
5.	Hip abductor and external rotator strengthening will be progressed by assuming quadruped starting position and performing an external rotation/abduction/extension motion of the lower extremity against gravity.	

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

.No	Exercise Protocol(Repetition/sets) FOR 3 rd TO 8 th WEEKS ⁷	Position
1.	All above exercises plus Hip abduction strengthening with sandbag, 3×10	side lying
2.	Hip abduction strengthening with Theraband band ,3×10	Standing
3.	Hip external rotation against Theraband , 3×10	Sitting
4.	Side-stepping against Therabandband, 3×10	Standing
5.	Hip extension against Therabandband, 3×10	Standing
6.	Trunk lateral flexors, 3×10.	standing

GROUP C: Knee Strengthening exercise training and Conventional Physiotherapy FOR FIRST 2 WEEKS

No	Exercise Protocol (Repetition/sets)	Position
1.	Short-arc quadriceps sets, Isometric quadriceps sets, 3×10	supine
2.	Straight-leg raises with the leg externally rotated.(30degree,45	supine
	degrees), 3×10	

]	No	Exercise Protocol (Repetition/sets)(3 to 8 th weeks) ¹⁷	Position
1.		Iliopsoas strengthening in non-weight bearing, 3×10 repetitions	Sitting
2.		Seated knee extension 90°-45°, 3× 10 repetitions (70% load)	Sitting
3.	~	Leg press 0°-4 <mark>5°, 3×</mark> 10 repetitions (70% load)	Long sitting
4.	-	Squatting 0°-4 <mark>5°, 3×10 repetitions</mark>	Standing

ISOMETRIC RULES OF 10's Protocol ¹⁸Contraction = 2sec ,forcebuildMaximal hold = 6sec Force release = Relaxation = 10sec. Repetitions = 30 - 40. Set 3-4 sets

At the end of each strengthening exercises session (Group B & C) Ice packs was applied to their knee joint for 10 minutes¹⁹. After Clinical intervention at end of 8th week outcome measures were recorded and tabulated.

Result and interpretation:

All Statistical analyses Was done using Statistical Package for Social Science (SPSS16) for windows. Descriptive analysis was obtained by Mean and standard deviation for all parameter. Intergroup comparison of pretreatment score of NPRS, Kujala Questionnaire (KQFAS), Hand held Dynamometer of muscle strength was done using non-Parametric Kruskal Wallis and ANOVA Test.

Intra group comparison of pre & post treatment score of NPRS And KQFAS was done using non parametric wilcoxon Signed Rank Test, Hand held Dynamometer was used for muscle strength of hip flexors, hip abductor, hip external rotators, knee extensor and trunk lateral flexors were done using Parametric Paired t-test of each muscle group. } Intergroup comparison of post treatment score of NPRS, KQFAS was done using non-Parametric Kruskal Wallis test, Hand held Dynamometer of muscle strength was done using parametric one way ANOVA. } One way ANOVA, Post hoc test was done to compare the effectiveness within the group.

Age distribution of Group A, Group B and Group C (TABLE:1)

Groups	Ν	Mean Age	Std.	Std. Error			Р
			Deviation		Min	Max	value
Control (A)	12	32.33	4.271	1.232	24	38	0.002
LPHS(B)	12	32.13	3.44	0.998	24	39	0.902
KS(C)	12	32.50	3.529	1.01	22	39	

BMI distribution of group A, Group B and Group C (TABLE:2)

Groups	Ν	Mean BMI	Std. Deviation	Std. error	Min	Max	P Value
Control (A)	12	20.7	1.57	0.36	18.40	23.50	
LPHS(B)	12	21	1.26	0.42	18.80	23.20	
KS(C)	12	20.6	1.47	0.46	18.40	23.50	

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

TOTAL	36	20.7	1.50	0.41	18.5	23.4	
							0.848

In thirty-six patients, mean age and standard deviation was 32.32 ± 3.74 with standard error 1.08

In thirty-six patients, Mean age and standard deviation was 20.7 ± 1.50 with standard error 0.41.

Inter group pretreatment comparison of NPRS, KQFAS & HHD (Strength) (Kruskal Wallis Test) (TABLE: 3)

Out Come	GROU	P A		GRO	UP B		GROU	РC		Р
Measure	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Value
NPRS	3	6	5	3	6	5.33	3	6	5.25	0.846
KQFAS	36	65	47.25	36	71	50.75	32	56	46	0.987
HIP FLE	14	17	14.91	14	16	15.33	12	16	15.5	0.23
HIP.ET	10	14	12.08	10	14	12.5	10	14	12.1	0.881
HIP.ABD	9	13	11.08	10	12	11.33	8	12	11.08	0.843
HIP.EXT.R OT	8	12	10.33	8	12	10.33	12	16	14.08	0.848
KNEEXT	10	13	11.83	10	12	11.08	9	14	11.25	0.162
TRUNK.L AT.FL	8	10	8.91	8	12	9.58	8	12	10.08	0.316

The above table shows the inter group comparison of pretreatment scores of NPRS hhd& KQFAS. The p value is > 0.05. It shows that there is no Significant difference between the pretreatment scores of NPRS, HHD & KQFAS. Hence it proves that the groups are homogenous.

Intra Group Comparison of Pre & Post Treatment Scores (Group A) (TABLE:4)

Outcme measur	re	Pre			Post	Р	
	Mir	n max	Mean	Min	Max	Mean	Value
NPRS	3	6	5.25	2	4	3.66	0.006
KQFAS	43	65	50.66	52	71	60.33	0.002
HIP .FLE	14	17	14.91	15	17	15.83	0.002
HIP EXT	10) 14	12.08	12	15	13.41	0.000
HIP.ABD	9	13	11.08	12	15	12.75	0.000
HIP.EXT.RO	8	12	10.33	10	13	12.08	0.001
KNEE.EXT	10) 13	11.83	12	14		0.000
TRUNK. LAT.FLE	8	10	8.91	9	12	10.66	0.000

Intra Group Comparison Of Pre & Post Treatment Scores(Group B) (TABLE:5)

Outcome	Pre			Post			P value
Measures	Min	max	Mean	Min	Max	Mean	
NPRS	3	6	5.08	0	2	1.5	0.002
KQFAS	43	71	50.75	59	82	73.75	0.003
HIP.FLE	14	16	15.33	18	22	20.17	0.000
HIP.EXT	10	14	12.5	14	19	16.83	0.000
HIP.ABD	10	12	11.33	14	18	15.83	0.000
HIP.EXT.RO T	8	12	10.33	14	18	17.25	0.000
KNEE.EXT	10	12	11.08	14	22	17.5	0.000
TRUNK.LAT .FLE	8	12	9.58	12	15	14.58	0.000

Intra Group Comparison of Pre & Post Treatment Scores (Group C) (TABLE:6)

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

Outcome		Pre	2		Ро		
measures	Min	Max	Mean	Min	Max	Mean	P value
NPRS	3	6	5.25	2	5	3.66	0.010
KQFAS	43	63	50.5	61	72	66.75	0.002
HIP .FLE	12	16	15.5	16	20	18.66	0.000
HIP.EXT	10	14	12.16	13	18	15.33	0.000
HIP.ABD	8	12	11.08	12	16	14	0.000
HIP.EXT.ROT	12	16	14.08	14	18	15.91	0.001
SKNEE.EXT	9	14	11.25	13	18	14.5	0.001
TRUNK.LAT.FL E	8	12	10.08	12	15	13.91	0.000

Inter Group Post Treatment Comparison Of NPRS, HHD& KQFAS (Kruskal Wallis Test)

(TABLE:7)

Out Come Group A			Group	В		Group C			Р	
Measure	Min	Mx	Mean	Min	Max	Mean	Min	Max	Mean	Value
NPRS	2	5	3.66	0	2	1.5	2	4	2.75	0.000
KQFAS	52	71	60.33	59	82	73.75	61	72	66.75	0.001
HipFle	15	17	15.83	18	22	20.16	16	20	18.66	0.000
HipExt	12	15	13.41	14	- 19	16.83	13	18	15.33	0.000
Hip.Abd	12	15	12.83	14	18	15.83	12	16	14	0.000
Hip.Ext.Ro t	10	13	12.08	14	18	16.16	14	18	15.91	0.000
Knee.Ext	12	14	13.41	14	22	17.5	13	18	14.5	0.000
Trunk.Lat. Fle	9	12	10.66	12	15	14.58	12	15	13.91	0.000

This table shows the inter group comparison of post treatment values. The value is <0.05 in NPRS, HHD and KQFAS scores indicating that there is significant difference in the improvement between the groups. The Post Comparison of NPRS & KQFAS has been done For 3groups with kruskal Wallis Test & Post comparison of muscle strength with HHD had been done with one-way ANOVA

Multiple Comparison for mean of difference of NPRS between Groups A, B And C(TABLE:8

Dependent variable	Groups		std erro	0	95% Confidence Interval	
						Upper Bound
	Control	LPHS		0.000	1.3275	3.0058
		KS		0.028	.0.0775	1.7558
Post NPRS	LPHS	Control	0.33	0.000	-3.0058	-1.3275
		KS		0.002	-2.0891	04109
	Knee	Control		0.028	-1.7558	0775
	strengthening	LPHS		0.002	.4109	2.0891

The above shows the comparison of mean of Post NPRS Score between Control group, LPHS group and KS group. It shows that there is significant difference between Control group and LPHS group with p value of 0.000 (i.e.<0.05), and also significant difference between Control Group and KS Group with p value of 0.028 (i.e. <0.05) as well as between LPHS Group and KS Group with p value of 0.002 (p-value <0.05). The mean plot shows the largest significant change in LPH Strengthening Group compared to Control and Knee Strengthening group.

Multiple Comparison for mean of difference of KQFAS between Groups A, B and C (TABLE:9)

Dependent		std.	Sig.	95% C	onfidence Interval
variable	Groups	error			
				Lower Bound	Upper Bound

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

	Control	LPHS		0.000	-19.9368	-6.8965
Post		KS		0.005	-12.9368	0.1035
KQFAS	LPHS	Control	2.58	0.000	6.8965	19.9368
		KS	2.50	0.032	.4799	13.5201
	KS	Control		0.005	1035	12.9368
		LPHS		0.032	-13.5201	4799

The above table and graph shows the comparison of mean of Post KQFAS Score between Control, LPHS group and KS Group. It shows that there is significant difference between Control group and, LPHS group with p value of 0.000 (i.e.<0.05), and also significant difference between Control Group and KS group with p value of 0.005 as well as between , LPHS group and KS Group with p value of 0.032 (p-value <0.05). The mean plot shows the largest significant change in LPHS Group compared with Control and Knee strengthening group.ultiple Comparison for mean of diff. Hip Flexor Strength (HHD) of between Groups A, B and C(TABLE:10)

Dependen t Variable			std. error	Sig.	95%Confidence Interval	
					Lower Bound	Upper Bound
	Control	LPHS		0.000	-5.4670	-3.1997
Post Hip		KS		0.000	-3.9670	-1.6997
	LPHS	Control	0.44	0.000	3.1997	5.4670
Strengh		KS	-0.44	0.006	.3663	2.6337
	Knee	Control		0.000	1.6997	3.9670
	strengt <mark>hen</mark> ng	ⁱⁱ LPHS		0.006	-2.6337	3663

Multiple Comparison for mean of difference Hip Extensor Strength (HHD) of between Groups A, B and C (TABLE:11)

Dependent			std.	Sig.	95%Co	nfidence
variable		Groups	error		Interval	
					Lower	Upper
	Control	LPHS		0.000	-4.8195	-2.0138
Post Hip		KS		0.005	-3.3195	5138
Extension	LPHS	Control	0.55	0.000	2.0138	4.8195
		KS		0.033	.0972	2.9028
		Control		0.005	.5138	3.3195
	strengthe ning	LPHS		0.033	-2.9028	0972

<u>Multiple Comparison for mean of difference Hip External Rotator Strength (HHD)of between Groups A, B and C(TABLE:12)</u>

Dependent variable		Groups		Sig.	95%Confidence Interv		
					Lower	Upper	
	Control	LPHS		0.000	-6.5483	-3.7850	
PostHip		KS		0.000	-5.0483	-2.2850	
External	LPHS	Control	0.53	0.000	3.7850	6.5483	
Rotator		KS		0.030	0.1183	2.8817	
		Control		0.000	2.2850	5.0483	
	Strengthe ning	LPHS		0.030	-2.8817	1183	

Multiple Comparison for mean of difference Knee Extensors strength (HHD) of between Groups A, B and C(TABLE:13)

Dependent variable	Groups		std. error	Sig.	95%Confidence Interval		
					Lower Bound	Upper Bound	
Post Knee	Control	LPHS		0.000	-5.5785	-2.5881	
Extensors		KS		0.017	-3.2452	-0.2548	
	LPHS	Control KS	0.59		2.5881	5.5785	
		K5		0.001	0.8381	3.8285	
	Knee	Control		0.017	0.2548	3.2452	
	strength ening	LPHS		0.001	-3.8285	-0.8381	

Multiple Comparison For Mean Of Difference Trunk Lateral Flexors Strength (Hhd) Of Between Groups A, B And C(Table:14)

Dependent variable	Group)S	std. error	Sig.	95%Confidence Interval		
						Upper Bound	
	Control	LPHS		0.000	-4.9708	-2.862	
Post Trunk		KS		0.000	-3.8874	-1.779	
Lateral Flexors	LPHS	Control	0.47	0.000	2.8626	4.970	
Flexors		KS	0.17	0.042	0.0292	2.137	
	Knee	Control		0.000	1.7792	3.887	
	strength ening	LPHS		0.042	-2.1374	-0.029	

The above table shows the comparison of mean of HIP FLEXORS, HIP EXTENSORS, HIP EXTENSOR ROTATORS, HIP ABDUCTOR, KNEE EXTENSOR AND TRUNK LATERAL FLEXORS strengthScore between Control, LPHS group and Knee strengthening group. It shows that there is significant difference between Control group and, LPHS group with p value of 0.000 (i.e. <0.05), and significant difference between Control Group and Knee strengthening group with p value of 0.0017 (i.e.>0.05) as well as between , LPHS group and Knee strengthening Group with p value of 0.001 (p-value <0.05). That shows the significant change in LPHS Group compared to Control and Knee strengthening group.

DISCUSSION

Results indicate that there is significant improvement in pain, strength and functional status in patients with patello femoral pain syndrome at the end of 8 weeks in all the three groups after conventional physical therapy alone group A, Lumbo pelvic hip strengthening exercise program with conventional physiotherapy group B & knee strengthening Exs with Conventional physical therapy group C. All the three treatment groups obtained Successful outcomes as measured by significant reductions in NPRS score and significant increase in Strength and KQFAS Scores after 24 session of intervention. There is significant difference in intensity of pain as per NPRS, lower limb muscle Strength as per Hand held Dynamometer and functional ability as per KQFAS between three groups.

After that for finding the inter group comparison of pretreatment scores of Numeric Pain Rating Scale, Hand held dynamometer value & Kujala Questionnaire function ability scale were used. The p value is > 0.05. It shows that there is no Significant difference between the pre treatment scores of NPRS, Hand held dynamometer & KQFAS. Hence it proves that the groups are homogenous.

Intra group comparison of pre & post treatment score of NPRS And KQFAS was done using non parametric wilcoxon Signed Rank Test, Hand held Dynamometer was used for muscle strength of hip flexors, hip abductor, hip external rotators, knee extensor and trunk lateral flexors were done using Parametric Paired t-test of each muscle group. Intergroup comparison of post treatment score of NPRS, KQFAS was done using non-Parametric Kruskal Wallis test, Hand held Dynamometer of muscle strength was done using parametric one way ANOVA. Post hoc test was done to compare the effectiveness within the group.

The objective of this study was to find the comparing the effectiveness Of Lumbopelvic Hip Strengthening verses knee strengthening with conventional therapy in reducing pain and improve functional outcome of knee in women with PFPS. all 3 groups shows overall effectiveness after 8 weeks on NPRS, FQFAS AND Hip Muscle, Knee Flexors And Trunk Lat. Flexors is p<0.005, All treatment protocol was effective significant improvement in pain, muscle strength and functional disability. So, null hypothesis-H01 hypothesis is rejected. And alternative hypothesis-H11 is accepted.

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

JCR

Multiple comparisons were done by Post hoc analysis test to justify the intergroup difference for each outcome measures. The results of post hoc analysis NPRS suggested that after 24 weeks of intervention, demonstrated lumbo pelvic hip strengthening group produced greater improvement in all the three outcome measures (NPRS,HHD, KQFAS) than knee strengthening group and Control group. Post hoc for **NPRS** Score, suggested that lumbo pelvic hip strengthening group (p = 0.000) and knee strengthening (p = 0.028) groups improved better than Control group and significant difference (p = 0.002) between that lumbo pelvic hip strengthening group (p = 0.000) and knee strengthening group (p = 0.000) and knee strengthening group=0.005)and improved better than Control group and a significant difference (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.032) between that lumbo pelvic hip strengthening group (p = 0.000) and knee strengthening group.

When Post hocwasdone for hipflexor, Hipextensors, and uctors, hipext.rotators, knee extensors and trunk lateral rotator's strength Score It shows that there is significant difference between Control group and, LPHS group with p value of 0.000 (i.e. <0.05), and significant difference between Control Group and Knee strengthening group with p value of 0.000 (i.e. <0.05) as well as between , LPHS group and Knee strengthening Group with p value of 0.042 (p-value<0.05).

We can easily get clear idea from the mean plot of individual post NPRS, Strength (HHD) and KQFAS with comparison of group A, B and C with the help of SPSS 16.0 through using post hoc analysis test.

There is a role of neuromuscular training of lumbo-pelvic region and its effect on the lower quarter function.it is currently theorized that the pathogenesis of PFPS starts with a decrease in hip and core neuromuscular control and strength; causing dynamic malalignment of the lower extremity. Ultimately significant weakness of the hip lateral rotators and abductors in women with PFPS. So improvement in hip and core musculature.

CONCLUSION

In our study, we found that that humbo pelvic hip strengthening ex"s group and knee strengthening exs both were effective in reducing pain and disability and in improving Strength in patients with patellofemoral pain syndrome, Butlumbo pelvic hip strengthening exs was more effective than knee strengthening exs in reducing pain and disability and in improving Strength in patients with patellofemoral pain syndrome.

LIMITATION OF THE STUDY

- The study consists of a small quantity of subjects.
- No long term follow up was done.And No Blinding Was Done SCOPE FOR FUTURE RESEARCH
- 1.Further study can be done with larger sample size
- 2.Study can be done with long term follow up.
- 3. The same study can be done with using EMG as a one of the outcome measures
- 4.Future study can be done on Male And Athletes population in PFPS.

ACKNOWLEDGEMENT

All our best wishes to those valuable subjects & supporter of this study.

CONFLICT OF INTEREST:

We declare that there were no conflicts of interest in the entire journey of the study.

REFERENCE

- 1. Naslund JE, Odenbring S, Naslund UB, Lundeberg T. Diffusely increased bone scintigraphic uptake in patellofemoral pain syndrome. Br J Sports Med 2005;39:162-165.
- 2. Brosseau L, Casimiro L, Robinson V, Milne S, Shea B, Judd M et al. Therapeutic ultrasound for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2001 ;(4):CD003375.
- Heintjes E, Berger MY, Bierma-Zeinstra SM, Bernsen RM, Verhaar JA, Koes BW. Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst Rev. 2003 ;(4):CD003472 Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2008;38:12-18 NezarTumia and Nicola Maffulli.
- 4. Patellofemoral Pain in Female Athletes, Sports Medicine and Arthroscopy Review, 2002; 10: 1.
- 5. LaBella C. Patellofemoral pain syndrome: evaluation and treatment. Prim Care. 2004 Dec; 31(4):977-1003.
- 6. Thiago yukiofukuda, pt, msc1 short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome. J Orthop Sports Phys Ther, Nov. 2010; 40(11)736-742.
- 7. Chen-yisongetal .surplus value of hip adduction in leg-press exercise in patients with Patellofemoral pain syndrome: a randomized controlled trial.
- Physical therapy; 89(5)409-418. May 2009 Lee Herrington, A Controlled Trial of Weight- Bearing Versus Non–Weight-Bearing Exercises for Patellofemoral Pain journal of orthopaedic& sports physical therapy april 2007, 37 (4) Sara R. Piva : responsiveness of the activities of daily living scale of the knee outcome

- i. survey and numeric pain rating scale in patients with patellofMed 2009; 41: 12
- 9. Kim bennell: outcome measures in patellofemoral pain syndrome: test retest reliability and interelationship, may 2000 1(2). 32-41.
- Catherine, Mascal CL, Landel R, Powers C. Management of patellofemoral pain targeting hip, pelvis, and trunk muscle function: 2 case reports. J Orthopedic and SportPhysical Therapy 2003;33(11):647-60.23) Michael j. callaghan, electric muscle stimulation of the quadriceps in the treatment of patellofemoral pain. arch phys med rehabil; Jun. 2004(85) Carolyn Kisner, Lynn Allen Colby: Therapeutic exercise.
- 11. 5thedition Kujala um, jaakkolalh, koskinensk, taimela s, hurme m, nelimarkka o: scoring of patellofemoral disorders. arthroscopy 1993, 9:159-163 Al-Sherhi: A controlled trial of weight-bearing versus non-weight-bearing exercises for patellofemoral pain. J of Orthop& Sports Physical Therapy, Apr. 2007; 37 (4): 15560.
- 12. Balci P, Tunay Vb, Baltaci G, AtayAo: The effects of two different closed kinetic chain exercises on muscle strength and proprioception in patients with patellofemoral pain syndrome. Acta OrthopTraumatolTurc, Nov.-Dec. 2009; 43(5): 419-25 De fysiotherapeut.KNGF guidelines for physical therapy patients with osteoarthritis of hip and knee.supplement to ducthjounal of physical therapr volume120 isssue 1.2010 Angela Forster. Clayton''s Electrotherapy; theory and practice.

