
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a547

REVIEW AND ANALYSIS ON VARIOUS

APPLICATIONS OF SOPHISTICATED LINUX

OPERATING SYSTEM (LOS)

Atif Ali Mohammed, Information technology, Charles Sturt University, aliphd59@gmail.com.

ABSTRACT

Linux is an advanced artificial system and has

become one of the most popular OSes in the

world. However, from a networking perspective,

nothing is known about how LOS structures and

functions have changed over time. This paper

delves into the history of the LOS system and how

it has developed. Focusing on the similarities and

differences across IOS, Android, Mac, Windows,

and Linux, this study examines the visual

operating system in detail. The latest versions of

Linux, Android, and Windows 10 are the most

dependable, compatible, and stable options. While

other operating systems struggle to gain

popularity, Linux, Android, and Windows have

enough users to encourage them to improve their

user interfaces and create more useful

applications. This study presents the reviews on

various studies and their various applications of

Linux under various applications.With its capacity

to facilitate continuous development and boost the

effectiveness and dependability of runtime

environments, container-based virtualization is

gaining traction across a variety of industries. In

addition, several methods are offered for keeping

tabs on containers' safety, and they are also

discussed. However, there are no rules to follow

while picking the best methods for the task.

1. INTRODUCTION

Nowadays, the scale of HPCs can reach thousands

of nodes, and practically all of the world's top

supercomputers use Linux on every single node.

An OS may be responsible for distributing the

application among the available hardware

resources to provide concurrency with

asynchronous parallelization of workloads. Thus,

the OS is responsible for things like

thread/process management, data synchronisation,

and inter-process communication [1]. Therefore,

the OS uses some of the available computing

power to coordinate the allocation and

management of hardware resources. Meanwhile,

time lags between fast processes and slow ones

began to affect system performance in large-scale

applications utilising hundreds to thousands of

nodes.

1.1 What do you mean by Linux? Explain its

features.

Linux, an open-source OS modelled after Unix,

controls the hardware and resources of a

computer, including the central processing unit

(CPU), memory, and storage, and the way in

which software and hardware interact. First

published on 5 October 1991, Linux is a

computer operating system developed by Linus

Torvalds. It is widely regarded as being safer and

swifter than Microsoft's Windows. It is open

source and commonly based on the Linux

Kernel, and its distribution is unrestricted (low-

level system software that is used to manage

hardware resources for users). Additionally, it is

compatible with a wide variety of mobile

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a548

devices, computer systems, notebooks, etc.

Ubuntu, Debian, SUSE Linux, Gentoo, etc. are

all flavours of the Linux operating system [2].

Fig 1: Linux Operating System.

Linux's OS has many useful features,

including:

 It is available to anyone without

cost or restriction, thanks to its

"free and open source" status.

 Linux is known for its stability

and versatility, as it can run for

long periods of time without

crashing and is hardly ever

compromised by malicious

software.

 It's safer since it has authentication

features like password protection,

audits of security, and restricted

access to files.

 Multiple tasks or programmes can

be executed on a single computer

at the same time on a

multiprogramming system.

 To help its users find and install

the programmes they need, the

platform includes a software

repository, or central database.

 Allows for user-defined keyboard

shortcuts Linux recognises the

wide variety of languages spoken

throughout the world and allows

users to install keyboards for a

wide variety of languages.

 The Graphical User Interface

(GUI) allows users to interact with

the system and run graphical

programmes like VLC, Firefox,

and others.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a549

Figure 2. The architecture of a traditional OS.

As can be seen in Figure 2, an OS provides

system calls and human-computer interfaces for

applications and end-users, as well as resource

management capabilities on processors, storage,

and peripheral device components. When we

examine an operating system from several vantage

points, we see different viewpoints:

• An operating system can be thought of as a

resource manager from the point of view of a

computer system. An operating system (OS)

coordinates and manages the use of all of a

computer's low-level hardware and software

resources, allowing for their most effective and

efficient deployment. Furthermore, an OS

facilitates greater system-wide interoperability by

bridging differences in hardware resources via

hardware drivers.

• Users of the system can think of an operating

system as a computer simulation. A layer of

abstraction provided by an OS hides the

granularity of the hardware resources underlying

the software. However, it also provides user-

friendly interfaces. An operating system also sets

the standard for how applications built on top of it

are programmed.

• An operating system (OS) can be thought of as a

platform for creating and running applications. All

other application software can be created and run

successfully with the help of the infrastructure it

provides. For instance, an OS typically consists of

a software development and maintenance tool set,

an execution environment for application

software, and runtime resource management and

scheduling.

2. LITERATURE REVIEW

R. Sairam and colleagues (2019) [3] With more

and more smart devices and objects appearing in

everyday life, the IoT is making strides forward.

As a result, our lives have become increasingly

dependent on these technological elements. Small-

scale protective features and weaknesses in these

systems are of great concern to these intelligent

devices because of cyber thieves' advantage in

complexity. Conventional centralised IT security

techniques have limited scalability and expense.

This type of smart gadget would function better if

it could be managed at the edge of an IoT

network, close to where it is located. On the

network edge, various security measures can be

applied to safeguard mobile devices in a smart

home or corporate setting. Introducing network

edge protection features necessitates the use of

NFV, which we discuss in detail in this paper. To

accomplish this, NETRA is developing a new

lightweight, networkbased docking architecture

for IoT security virtualization features. Using the

suggested design, we show how it has advantages

in terms of memory utilisation and latency, as

well as performance, average load and scalability,

over the present NFV system. We evaluate the

proposed NFV-based IoT protection edge

detection and show that threats with more than

95% precision may be estimated in less than one

second.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a550

S. Sultan and colleagues (2019) [4] In order to

better support the design of microservices,

containers were created as a lightweight

replacement for VMs. Containers' market worth is

expected to grow from 762 million dollars in 2016

to 2.7 billion dollars in 2020. Container health is a

major worry for many businesses and a barrier to

adoption, despite their status as a simplified

approach for providing micro applications in

rapidly developing sectors like cloud storage and

application meshes, according to business

research. Our focus in this study is on container

safety and solutions. The threat posed by host

containers prompted us to create four widely used

programmes to solve the security concerns. For

example, one may use it to defend a container

from programmes running inside it, or to protect

the container itself from those apps, or to guard

against containers attacking the host computer

(IV). Our software-based solutions in the first

three situations all rely on Linux kernel

capabilities (e.g.nameplaces, CGroups, and

seccomp), as well as protection modules (e.g.

AppArmor). TPMs and other hardwaredriven

security solutions, such as trusted device support,

are the primary emphasis of the latter framework

(i.e., Intel SGX). We expect that this evaluation

will aid researchers in gaining a better knowledge

of container security vulnerabilities and threats. In

addition, we point out unanswered scientific

questions and potential routes of research that

might lead to greater research in this field.

According to J et al (2020) [5], C Diekmann, J

and others For complicated systems like Docker,

Linux containers are becoming more and more

frequent. However, for distributed microservice

deployment, the primitive safety of network

access control is frequently overlooked or left to

the network operations team. Access control lists

at the network layer aren't granular enough to

enforce the security requirements of individual

applications. Docker and network operators may

work well together, but they still don't provide for

granular control over networking between

containers or in application creation. In this made-

up story, we're following along as DevOp

Engineer Alice builds a website. We show what

Alice is meant to perform and help with the tools

required for it all the way from the design and

software engineering phases to network

operations and automation. Alice, as a DevOps

full stack, deals with issues of superior design and

networking. By focusing on network access

control and building out a tool-based solution, we

have exposed the flaws in today's policy

management. Academic research shows that a full

stack engineer does not link many existing

instruments between the various abstraction

layers. With Isabell / HOL, our tools are open

source and subject to regular evaluation.

3. REVIEWS ON SELECTION OF

TECHNIQUES FOR MONITORING

CONTAINERS SECURITY

To improve the effectiveness of monitoring and

analysis of Linux containerized programmes,

SPEAKER Lei et al. (2017) developed a general-

purpose non-intrusive technique called speaker

analysis. By eliminating unused system calls that

could be used by malicious processes inside the

container, SPEAKER greatly reduces the attack

surface.

This sandbox approach is used to thwart assaults

and threats that include tampering, like malicious

code and unauthorised access to a network.

SystemTap is used in this method to monitor and

record malicious software activity (SystemTap,

2020). SystemTap is an open-source software

framework for efficiently capturing data on Linux

processes. This method can effectively conceal

the environment artefacts from the infection since

it allows changing the values of syscall

parameters. In conclusion, this method ensures

that the containerized solution is able to fool

sandbox evasion through the use of artefact

obfuscation, network reorganisation, and system

call introspection.

 LiCShield is a tool developed by Mattetti et al.

(2015) to keep an eye on and protect Linux

containers running in the cloud. LiCShield

protects against tampering, information

disclosure, and privilege elevation. Targeted

attacks include things like kernel exploits, attacks

on shared kernel resources, incorrect

configurations, malicious modules, and data

leakage. With LiCShield, security profiles for a

container's execution on the host and inside the

container are generated automatically. This

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a551

method uses a training environment's execution of

activities and operations to mechanically define

rules outlining the typical behaviour of containers.

When abnormalities are detected, LiCShield can

restrict the capabilities of containers by creating

profiles of kernel security modules based on the

applications' execution. This prevents criminal

schemes from being carried out and spreads.

For real-time monitoring of programmes within

Linux containers deployed locally or in the cloud,

Abed et al. (2015) suggest a non-intrusive

method.

Methods like malware injections, OS

compromise, file system access, and brute force

attacks are used in this strategy to spoof, tamper,

and launch denial of service attacks. Bags of

System Calls (BoSC) analysis is employed, which

is a sliding window and frequency-based analysis

technique that counts how often a given set of

system calls occurs within a given window of size

k, where k is the number of system calls being

monitored at any given time instant. This method

makes use of features available in Linux, such as

strace, which records system calls and displays

details such as the calling process's ID, the

arguments used, and the value returned. The

method learns how the containerized applications

behave by monitoring these system calls, and it

can then identify any abnormalities in the

surrounding ecosystem.

To maintain containerized stateful applications

running in a secure environment, researchers from

Sayed and Azab's (2019) lab developed a general-

purpose container monitoring approach called

Time Machine (TM). The method takes aim at

both tampering and denial-of-service attacks. For

mission-critical infrastructures in particular, this

prevents the triggering of logic bombs. Logic

bombs are intentionally inserted lines of code that,

once triggered by user input, unleash a slew of

harmful behaviours.

4. A MEASUREMENT STUDY ON LINUX

CONTAINER SECURITY

A. Xin Lin, 2018, The Linux container technique

is gaining popularity and is being used more

frequently to deliver business applications.

Despite widespread agreement that the container

mechanism is insecure because of its reliance on a

shared kernel, there has been surprisingly little

effort put into doing a thorough and systematic

analysis of the system's vulnerability to actual

exploits. In this paper, we compile a dataset of

attacks utilising a 2-dimensional attack taxonomy

to categorise 223 exploits that work on the

container platform. Then, after removing common

exploits from the dataset, we assess the safety of

the current Linux container system with the help

of 88 of the most severe ones. Fifty of the exploits

we tested (54.82%) are able to successfully launch

attacks from within the container when the default

settings are used. Due to the fact that privilege

escalation exploits can completely disable the

container protection mechanism, we analyse them

in detail. Although container isolation measures

are useful, we discover that kernel security

mechanisms like Capability, Seccomp, and MAC

are more crucial in preventing privilege escalation

(i.e., Namespace and Cgroup).

There are two main reasons why container

technology is gaining popularity in the business

world. Before anything else, container

orchestration tools like Docker [Docker Inc. 2018]

and Kubernetes make it easier to deploy, scale,

and manage containerized applications. As a

result, containerization is gaining traction in the

manufacturing setting. Also, cloud providers like

Amazon Fargate [2018], Microsoft Azure

Kubernetes Service, etc., are starting to offer

container services. Furthermore, the container

mechanism is a lightweight OS-level

virtualization technology, making it more

appealing to the resource-constrained mobile

platform. Many container-based BYOD solutions

have been proposed and implemented [VMware

Inc. 2018].

However, however, security worries have been the

main obstacle to wider use of the container

technique. Most notably, once the Linux kernel is

compromised, the isolation given by the container

system will be completely nullified, as all

containers running on a single host share the same

kernel. As a result, it's important to provide a

thorough assessment and study of the container

mechanism's safety. The majority of the existing

research evaluates container security at the level

of the system architecture or design principles.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a552

The isolation techniques provided by Docker,

LXD, and Rkt are compared and contrasted in a

2017 paper by M. Ali Babar et al. In a short

discussion focused on system design, Thanh Bui

et al. [2015] contrast the safety of hardware-based

virtualization technology (such as XEN) with that

of operating system-level virtualization

technology (i.e., the container mechanism).

Several OS-level virtualization technologies,

including FreeBSD Jails, Linux-VServer, Solaris

Zones, OpenVZ, LxC, Cells, etc., are theoretically

analysed by Reshetova et al. [2014]. Potential

vulnerabilities against container mechanisms like

Docker are used by certain researchers [Tao Lu

2017, A Mouat. 2015] to assess container security.

4.1 Linux Kernel Security Mechanisms

All containers running on the same host share the

same Linux kernel, which poses a serious security

concern. The isolation afforded by the container

technique is rendered useless if a process running

within it affects the Linux kernel. Capability

[Linux Man. 2018], Seccomp, and Mandatory

Access Control (MAC) are just a few of the Linux

kernel security techniques used to restrict the

capabilities of the processes running inside

containers. The Capability method breaks down

the ROOT superuser access into 38 separate

capabilities. The capacity to operate on a

particular set of kernel resources is symbolised by

a particular capability. Capabilities indicate what

kinds of actions a user is allowed to take; for

instance, the CAP NET ADMIN capability

indicates network administration privileges.

Docker containers come equipped with 14

features by default.

By limiting the kind of system calls a process may

make, Seccomp helps ensure that it stays inside its

boundaries. Docker uses a Seccomp profile called

"le" to specify which system calls are exposed to a

container; by default, this list is more than 300

system calls long [Docker Inc. 2018]. Seccomp

and Capability are DAC techniques, while

SELinux and AppArmorare MAC mechanisms

used by containers. CentOS, RHEL, and Fedora

have all incorporated SELinux, and Debian and

Ubuntu have also incorporated AppArmor. To

enforce policies, AppArmor uses a path-based

paradigm, while SELinux uses labels.

4.2 CPU Protection Mechanisms

Linux kernel attacks can also be thwarted with the

help of three CPU-level safeguards: Kernel

Address Space Layout Randomization (KASLR)

[Jake Edge. 2013], Supervisor Mode Access

Prevention (SMAP), and Supervisor Mode

Execution Prevention (SMEP) [Wikimedia

Foundation Inc. 2018.]. Rather than always using

the same base address for the kernel, KASLR will

add a random slide to the base address at boot

time. Supervisor Mode Access Prevention

(SMAP) stops supervisor-mode programmes from

accessing user space memory and Supervisor

Mode Execution Prevention (SMEP) stops

supervisor-mode code from executing user space

code by accident. Turning on SMAP and SMEP

required setting the 21st and 20th bits of the CR4

register.

4.3 Privilege Escalation Procedure through

commit_creds().

Figure 3 depicts the fourth step of the procedure

to gain administrative privileges by using the

commit creds(), which is also depicted in Figure

3.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a553

Figure 3: Kernel Privilege Escalation Attack Model

In Linux kernel, the credential associated with a

process is stored as two "elds inside the

task_struct structure, i.e., cred and real_cred. The

cred "eld represents the current privileges

(including capabilities, GID, UID etc.) of the

process, and could be temporarily modified during

execution of the process. The real_credfield

represents the highest privileges a process could

reach, and normally could not be changed.

The KASLR mechanism has been proclaimed

dead by many researchers, as current

implementations of KASLR have fatal flaws [19].

Overwriting of the specific kernel functions’

pointers is achieved by exploiting the

vulnerabilities in the Linux kernel, such as UAF,

race condition, improper verify, buffer overflow

etc. And it is pretty unlikely to patch all

vulnerabilities considering the large code size of

Linux kernel. The CPU mechanisms

SMAP&SMEP are easy to be disabled if the

attackers compromise the KASLR mechanism and

gain the ability to overwrite the pointers of some

kernel functions. Therefore, we propose a defense

system by forbidding the commit_creds() to be

utilized to elevate the privilege inside the

container.

CONCLUSION

Linux container is increasingly utilized by the

industrial community. Although it is a consensus

that container mechanism is not secure, a concrete

and systematical evaluation is absent.Container-

based virtualization is gaining popularity in

different domains. Different techniques for

monitoring containers security are proposed.

However, there are no guidelines supporting the

selection of suitable container monitoring

techniques for the tasks at hand.We review the

literature to identify relevant techniques for

monitoring container-based virtualization

environments with the goal to provide a

comprehensive overview of these techniques. We

further categorize the identified techniques to help

developers understand their purpose, technical

characteristics, applicability, and effectiveness.

Future work

To enhance the current version of the framework,

we will address the comments that we received

via the evaluation. Moreover, to complement the

conducted evaluation and get further insights, we

plan to evaluate the framework using more

scenarios and involving more participants.

Furthermore, we plan to provide an interactive

presentation of CONSERVE to assist the

exploration and selection process of container

monitoring techniques. We also plan to

continuously maintain and update the framework

to reflect eventual evolution of the considered

monitoring techniques as well as include newly

developed techniques.

REFERENCES

1. A. Silberschatz, P. B. Galvin, and G.

Gagne, Operating system concepts

essentials. John Wiley & Sons, Inc., 2014.

2. https://www.makeuseof.com/practical-

applications-of-linux/

3. R. Sairam, S. S. Bhunia, V. Thangavelu

and M. Gurusamy, "NETRA: Enhancing

IoT Security Using NFV-Based Edge

http://www.ijcrt.org/
https://www.makeuseof.com/practical-applications-of-linux/
https://www.makeuseof.com/practical-applications-of-linux/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

IJCRT2212071 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a554

Traffic Analysis," in IEEE Sensors

Journal, vol. 19, no. 12, pp. 4660-4671, 15

June15, 2019. doi:

10.1109/JSEN.2019.2900097

4. S. Sultan, I. Ahmad and T. Dimitriou,

"Container Security: Issues, Challenges,

and the Road Ahead," in IEEE Access,

vol. 7, pp. 52976- 52996, 2019. doi:

10.1109/ACCESS.2019.2911732

5. C. Diekmann, J. Naab, A. Korsten and G.

Carle, "Agile Network Access Control in

the Container Age," in IEEE Transactions

on Network and Service Management, vol.

16, no. 1, pp. 41-55, March 2019. doi:

10.1109/TNSM.2018.2889009

6. Lei L., Sun J., Sun K., Shenefiel C., Ma R.

, Wang Y., Li Q.SPEAKER: Split-phase

execution of application

containersInternational Conference on

Detection of Intrusions and Malware, and

Vulnerability

Assessment, Springer (2017), pp. 230-251

7. SystemTap S.A free software (GPL)

infrastructure to simplify the gathering of

information about the running linux

systemSystemTap (2020)https://sourcewar

e.org/systemtap. (Accessed December

2020)

8. Abed A.S., Clancy C., Levy D.S.Intrusion

detection system for applications using

linux containers

9. International Workshop on Security and

Trust Management, Springer (2015),

pp. 123-135Sayed M.M., Azab M.The

time machine: Smart operation-resilience

in presence of attacks and failures2019

IEEE 10th Annual Information

Technology, Electronics and Mobile

Communication

Conference, IEMCON, IEEE (2019),

pp. 0127-0132

10. Xin Lin, “A Measurement Study on Linux

Container Security: A!acks and

Countermeasures”, 2018.

11. Docker Inc. 2018. WHAT IS DOCKER.

https://www.docker.com/what-docker

12. Amazon Company. 2018. AWS Fargate.

https://aws.amazon.com/fargate/?nc1=

h_ls

13. VMware Inc. 2018. VMWare Airwatch

BYOD. http://acestandard.org/zh-hans/

solutions/bring-your-own-device-byod

14. M Ali Babar and Ben Ramsey. 2017.

Understanding Container Isolation

Mechanisms for Building Security-

Sensitive Private Cloud. Technical Report,

CREST, University of Adelaide, Adelaide,

Australia (2017)

15. Thanh Bui. 2015. Analysis of Docker

Security. CoRR abs/1501.02967 (2015).

arXiv:1501.02967

http://arxiv.org/abs/1501.02967

16. Elena Reshetova, JanneKarhunen, Thomas

Nyman, and N. Asokan. 2014. Security of

OS-Level Virtualization Technologies. In

Secure IT Systems - 19th Nordic

Conference, NordSec 2014, Tromsø,

Norway, October 15-17, 2014,

Proceedings. 77–93.

https://doi.org/10.1007/978-3-319-11599-

3_5

17. Tao Lu and Jie Chen. 2017. Research of

Penetration Testing Technology in Docker

Environment. (2017)

18. A Mouat. 2015. Docker Security Using

Containers Safely in Production.

19. Linux Man. 2018. Capabilities - overview

of Linux capabilities. http://man7.org/

linux/man-pages/man7/capabilities.7.html

20. Docker Inc. 2018. Docker Seccomp

Pro"le. https://github.com/moby/moby/

blob/master/pro"les/seccomp/default.json

21. Jake Edge. 2013. Kernel address space

layout randomization. https://lwn.net/

Articles/569635/

22. Wikimedia Foundation Inc. 2018.

Supervisor Mode Access Prevention.

https:

//en.wikipedia.org/wiki/Supervisor_Mode

_Access_Prevention

http://www.ijcrt.org/
https://sourceware.org/systemtap
https://sourceware.org/systemtap
https://www.docker.com/what-docker
https://doi.org/10.1007/978-3-319-11599-3_5
https://doi.org/10.1007/978-3-319-11599-3_5

