ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A SURVEY ON TASK SCHEDULING IN CLOUD COMPUTING USING METAHEURISTIC BASED METHODS

¹Mr. K. Prem Kumar, ²Mekala Teja Sree, ³Krithika Chukkala, ⁴Pusa Swapna, ⁵Narsinga Bhargavi

¹Associate Professor, Department of Computer Science and Engineering ^{2,3,4,5}IV BTech Students, Department of Computer Science and Engineering ACE Engineering College, Hyderabad, Telangana, India

Abstract: The information technology (IT) services are now provided outside of the workplace thanks to cloud computing. Unfortunately, there have been some difficulties with cloud computing. In order to decrease the execution time of users' activities (i.e., minimize make-span), and to maximize resource usage, a good mapping between the resources available and users' tasks is required. This is why the task scheduling problem is one of the major challenges. The purpose of this research is to present and put into practice an improved task scheduling method to distribute tasks from users among various computer resources. The proposed algorithm's goal is to enhance resource utilization while reducing execution time and cost. The suggested technique is thought to combine Tabu-Search, Particle Swarm Optimization (PSO), and Best-Fit (BF) and improvised Grey Wolf Optimization Technique using Cloud Sim Tool.

Index Terms - Cloud Computing, Task Scheduling, Tabu-Search, Particle Swarm Optimization(PSO), Best-Fit(BF), Grey Wolf Optimization, Cloud Sim Tool.

I. INTRODUCTION

A cloud computing is the collection of interconnected computed that are provided one or more computing resources. Task scheduling has an impact on the performances of cloud computing [1]. The increased complexity of solving the task scheduling problem. Therefore, it becomes more challenging to develop an efficient algorithm for solving the task scheduling in a cloud computing. In this study the main focus area is using the appropriate algorithm, we have implemented the task schedule algorithm which is based on heuristic and metaheuristic algorithm [2]. Task scheduling plays a significant role in cloud computing for maximum resource utilization by providing adequate performance under the different task such as execution. The idea of cloud computing provided many advantages in terms of reduced infrastructure cost, execution time, maintenance and many more. Np hard problems like task scheduling problems in cloud computing can be solved by using the enumeration method of heuristic-based methods [3]. Many metaheuristic approaches in recent years have considered task scheduling problem with multiple obtain as a single objective. A few researches have focused on applying a metaheuristic algorithm to find near-optimal solutions and provide trade-off to the cloud service providers by considering multiple objectives simultaneously. Cloud computing has brought a revolutionary change in business by offering efficient sharing of computing resources[4]. The paper consists of 4 sections. section [1] Introduction: we have introduced about the cloud computing and its implementation. Section[2] Literature :In literature we have presented about the technology /Algorithms used. section[3] Conclusion: The paper ends with demonstration and its result in the conclusion part.

II. LITERATURE REVIEW

In many studies, different types of techniques and algorithms were used in scheduling tasks in cloud computing.

DeafallahAlsadie [1] In order to identify near-optimal task scheduling solutions while handling competing objectives, this paper proposes a metaheuristic approach called Task Schedule utilising a Multi-objective Grey Wolf Optimizer (TSMGWO).

N. Bacanin, TimeaBezdan, Eva Tuba, I. Strumberger, M. Tuba, M. Zivkovic [2] In this study, we suggest a metaheuristic task scheduling technique. The algorithm used in the suggested scheduler, the grey wolf optimizer, was inspired by nature. The quality and reliability of the suggested procedure are demonstrated by the experimental findings.

Kun Li, Lewei Jia, Xiaoming Shi [3] Proposed a membrane computing and particle swarm optimization combined scheduling approach for cloud computing tasks. First, a paradigm for task scheduling that uses time and cost functions as its targets is suggested. Next, chaotic operation is employed in population initialization on the foundation of the particle swarm method to increase the

www.ijcrt.org

зC

diversity of rich knowledge. To prevent the algorithm from reaching a local optimum, adaptive weighting based on sinusoidal function is applied. We compare the performance of the PSOMC method with six benchmark test functions.

Farouk A. Emara, Ahmed. A. A. Gad-Elrab, Ahmed Sobhi, K. R. Raslan [4] A new job scheduling method is suggested by the study based on these goals for effective resource management. This proposed solution employs a modified genetic algorithm to identify the best servers to deploy these VMs on and the best VMs to use for completing tasks that have been received (GA). The genome of GAS is represented by this proposed method using a matrix structure that combines the ids of jobs, VMs, and servers.

Raj Kumar Kalimuthu, Brindha Thomas [5] A multi-objective parallel machine scheduling method was proposed in this study using the oppositional grey wolf's optimization (OGWO). We proposed an unique method that combines the GWO with opposition-based learning (OBL), where OBL improves the performance of the GWO algorithm while optimising the task and resources, in order to achieve the multi-objective function.

Gobalakrishnan Natesan, Arun Chokkalingam [6] A multi-objective parallel machine scheduling method was proposed in this study using the oppositional grey wolf's optimization (OGWO). We proposed an unique method that combines the GWO with opposition-based learning (OBL), where OBL improves the performance of the GWO algorithm while optimising the task and resources, in order to achieve the multi-objective function.

K. Lalitha Devi, S. Valli [7] The primary contribution of the study is a developed scheduling algorithm that plans cloud jobs by figuring out how many virtual machines will be required in the near future, together with their anticipated CPU and memory needs. The K-means algorithm groups the tasks depending on criteria like CPU and memory utilisation.

Yefeng Yang, Bo Yang, Shilong Wang, TianguoJin, Shi Li [8] The multi-objective service composition and optimal selection (MO-SCOS) problem in cloud manufacturing is addressed in this paper using an improved multi-objective grey wolf optimizer (EMOGWO), where both service quality and energy consumption are taken into account from the standpoints of sustainable manufacturing. Given that the original multi-objective grey wolf optimizer still has issues with local optimum and variety (MOGWO).

Sudheer Mangalampalli, SangaramKeshari Swain, Vamshi Krishna Mangalampalli [9] In this research, a task scheduling algorithm is proposed that, while limiting datacenter energy usage and power costs, arranges tasks on the suitable VMS based on the determination of task and virtual machine priority.

SeyedaliMirjalali, Seyed Mohammad Mirjalili, Andrew Lewis [10] The Grey Wolf Optimizer (GWO), a new meta-heuristic proposed in this study and inspired by grey wolves (Canis lupus). The leadership structure and hunting strategy of grey wolves in nature are modelled by the GWO algorithm. For the purpose of mimicking the leadership hierarchy, four different varieties of grey wolves, including alpha, beta, delta, and omega, are used.

Year of					Disadvantages
Publication	Authors	Title	Technigue / Algorithm	Advantages	
	Deafallah Alsadie	Optimizing	Meta-heuristic algorithm,	Flexibility,	Evaluating the
		Task Schedule	multi-objective grey wolf	Simplicity and	job scheduling
		Using Multi-	optimizer	ergodicity over	strategy
2021		Objectives		conventional	utilising Aerial
		Grey Wolf		methods. Easier to	Cloud
		Optimizer for		apply.	Workload is a
		Cloud Data			very difficult
		Centers			process.
2019	N. Bacanin,	Task	Metaheuristic approach. Grey	Schedules a given	Different tasks
	TimeaBezdan,	Scheduling In	wolf optimizer nature inspired	task on time, better	require various
	Eva Tuba, I.	Cloud	algorithm.	utilise resources	resources,
	Strumberger, M.	Computing By		already in use.	some tasks
	Tuba, M. Zivkovic	Grey Wolf			require more
-		Optimizer			storage.
	Kun Li, Liwei Jia,	Research On	Particle Swarm Optimization	Reduce the task	Virtualization
2022	Xiaoming Shi	Cloud	and Membrane Computing	scheduling time	effects PSO
		Computing	Algorithm, Chaos Operation.	consumption cost.	algorithm in
		Task			cloud
		Scheduling			computing.
		Based On			
		PSOMC		G	
2021	Farouk A. Emara,	Genetic –	Optimized Genetic Algorithm.	System with fewest	No VM
	Anmed.A.A. Gad-	Based Multi –		no. of servers, Least	assigned to
	Elrad, Anmed	Schoduling		L consuming energy,	nost.
	Sooni, K.K Kasian	Scheduling		Least wasting	
		Algorithm in		resources.	
		Cioud			
		Environment			
		Environment			

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 12 December 2022 | ISSN: 2320-2882

in miljer tiong		© EVEN			5011: 2020 2002
	Raj Kumar	An Effective	Metaheuristic Algorithm,	Less response time	Due to diverse
	Kalimuthu,	Multi –	Hybrid Bio-Inspired	and less waiting	factors that
2022	Brindha Thomas	Objective Task	Algorithm with the hybridized	time.	may cause
		Scheduling and	of improvised Particle Swarm		load and
		Resource	Optimization.		power
		Optimization	-		imbalance
		in Cloud			which effects
		Environment			utilization and
		Using			task
		Metaheuristic			scheduling.
		Algorithm			U
	Gobalakrishnan	Opposition	Oppositional Learning Based	Improvised	Shows the
	Natesan, Arun	Learning –	On Grey Wolf Optimizer on	performance of	performance
2017	Chokkalingam	Based Grev	the bases of proposed cost and	fitness function.	analysis which
	8	Wolf	time model in cloud		occurs runtime
		Optimizer	computing.		of scheduling
		Algorithm for	I B		process only.
		Parallel			F
		Machine			
		Scheduling in			
		Cloud			
		Environment			
	K. Lalitha Devi S	Multi –	Dynamic resource scheduling	Improves the	It has load
	Valli	Objective	can be controlled by a genetic	availability and	balancing
2021	, and	Heuristics	algorithm based on encoded	reliability of cloud	results failure
2021		Algorithm for	chromosomes (GEC-DRP)	computing	task to allocate
		Dynamic	emoniosonies (GEC Diu).	compared to other	task and
		Resource		algorithms	resources
		Scheduling In		uigoritinnis.	resources.
		The Cloud			
		Computing			
		Environment		2	
	Yefeng Yang, Bo	An Enhanced	An Enhanced multi-objective	Easy	Short coming
	Yang Shilong	Multi	grey wolf ontimizer	implementation and	in local
2020	Wang	Objective Grev	(EMOGWO) Technique	fast convergence	trappingand
2020	Tianguo Iin Shi Li	Wolf		hel <mark>ns to develop the</mark>	blind
	Thanguotin, Shi Er	Optimizer for		problem and energy	obedience
		service		consumption.	prone to
		Composition in			stagnate.
		Cloud			StuBiliter
		Manufacturing			
	Sudheer	Prioritized	The Whale Optimization	Dynamic.	Power Cost
	Mangalampalli	Energy	Algorithm is used to model	U J J manne.	and energy
2021	SangaramKeshari	Efficient Task	VMS which is based on the		consumption
2021	Swain Vamshi	Scheduling	determination of task and		depends upon
	Krishna	Algorithm in	virtual machine priorities.		the task.
	Mangalampalli	Cloud			
	Burnipuni	Computing			
		Using Whale			
		Optimization			
		Algorithm			
	SeyedaliMirialali	Grev Wolf	Heuristic Algorithm.	Easy to implement.	There are
	Seved Mohammad	Optimizer	Metaheuristics. Constrained	Meta-heuristics are	abrupt jumps
2014	Mirjalili. Andrew	- r	Optimization.	more adept than	toward the
	Lewis		- r	traditional	promising area
				optimization	of the search
				methods at	space as a
				avoiding local	result of
				optima.	multiple
				F	candidate
					solutions
					sharing
					information
					about the
					search space.

JUCR

III. CONCLUSION

Based on studying various research papers came up with the idea to design an algorithm that is to reduce the execution time, cost, as well as, increase resource utilization. The major purpose of this study is to show the problems such as scheduling issues, cost issues, etc. Some systems already exist by using metaheuristic algorithm to find near -optimal task scheduling solutions while handling conflicting objectives. The limitations and disadvantages of the existing systems are the essence of this paper.

IV. ACKNOWLEDGMENT

We would like to thank our guide **Mr. K. Prem Kumar** for his continuous support and guidance. Also, we are thankful to our project coordinator **Mrs. Soppari Kavitha** and we are extremely grateful to **DR. M. V. VIJAYA SARADHI**, Head of the Department of Computer Science and Engineering, ACE Engineering College for his support and invaluable time.

REFERENCES

[1] Alsadie D. TSMGWO: optimizing task schedule using multi-objectives grey Wolf optimizer for cloud data centers. IEEE Access. 2021 Mar 4;9:37707-25.

[2] Bacanin, Nebojsa, et al. "Task scheduling in cloud computing environment by grey wolf optimizer." 2019 27th Telecommunications Forum (TELFOR). IEEE, 2019.

[3] Li, Kun, Liwei Jia, and Xiaoming Shi. "Research on Cloud Computing Task Scheduling Based on PSOMC." *Journal of Web Engineering* (2022): 1749-1766.

[4] Emara, Farouk A., et al. "Genetic-Based Multi-objective Task Scheduling Algorithm in Cloud Computing Environment." *power* 5 (2021): 8.

[5] Kalimuthu, Raj Kumar, and Brindha Thomas. "An effective multi-objective task scheduling and resource optimization in cloud environment using hybridized metaheuristic algorithm." *Journal of Intelligent & Fuzzy Systems* Preprint (2022): 1-13.

[6] Natesan, Gobalakrishnan, and Arun Chokkalingam. "Opposition learning-based grey wolf optimizer algorithm for parallel machine scheduling in cloud environment." *International Journal of Intelligent Engineering and Systems* 10.1 (2017): 186-195.

[7] Devi, K. Lalitha, and S. Valli. "Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment." *The Journal of Supercomputing* 77.8 (2021): 8252-8280.

[8] Yang, Yefeng, et al. "An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing." *Applied Soft Computing* 87 (2020): 106003.

[9] Mangalampalli, Sudheer, Sangram Keshari Swain, and Vamsi Krishna Mangalampalli. "Prioritized energy efficient task scheduling algorithm in cloud computing using whale optimization algorithm." *Wireless Personal Communications* 126.3 (2022): 2231-2247.

[10] Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis. "Grey wolf optimizer." *Advances in engineering software* 69 (2014): 46-61.