
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

IJCRT2210521 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e479

Deep Dive Into Java Tiered Compilation -

Performance Optimization

Ashutosh Tripathi

Abstract:

This paper provides a comprehensive examination of tiered compilation in Java, a sophisticated feature

within the Java Virtual Machine (JVM) designed to enhance the performance of Java applications. By

employing a multilevel compilation approach, Java's tiered compilation uniquely combines rapid

application startup with optimized long-term execution efficiency. The paper delves into the architecture

of tiered compilation, illustrating how Java applications initially execute using a basic interpreter or a

lower-tier JIT compiler, which ensures quick startup times. As the application runs, the JVM identifies

frequently executed code segments ("hot" spots) and progressively recompiles them using more

advanced, optimizing compilers at higher tiers. This adaptive strategy not only boosts the execution

speed but also optimizes resource utilization, offering a balanced and dynamic compilation process

that caters to varying application demands. Through this deep dive, we aim to elucidate the inner

workings, advantages, and practical implications of tiered compilation, providing valuable insights for

developers, architects, and performance engineers involved in Java application development.

Introduction:

In Java application development, performance optimization is a crucial aspect that significantly impacts

user experience and resource efficiency. At the core of this optimization lies Java's tiered compilation

mechanism, a feature ingeniously designed within the Java Virtual Machine (JVM) to enhance

application performance. This paper will dive into the architecture of tiered compilation, exploring how

it ingeniously marries the benefits of quick application startup with the demands of high-performance,

long-running Java applications. By leveraging a sophisticated system of multiple Just-In-Time (JIT)

compiler tiers, the JVM dynamically adapts to the application's runtime behavior, optimizing code

execution in real-time. This paper aims to unravel the layers of tiered compilation, providing a thorough

understanding of its operational dynamics, the rationale behind its design, and its impact on Java

application performance.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

IJCRT2210521 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e480

Tiered Compilation In Action:

Tiered compilation in Java's JVM is an advanced system designed to optimize code execution by

utilizing different compiler levels, each offering varying degrees of optimization. Initially, Java

applications execute with the interpreter (level 0) or a low-tier JIT compiler, providing quick startup and

immediate feedback. As the application runs, the JVM monitors execution, identifying "hot" methods—

those executed frequently or deemed critical for performance. These methods are then incrementally

recompiled at higher tiers (levels 1 to 4), each introducing more sophisticated optimizations. Level 1

employs lightweight JIT compilation, enhancing execution without significant overhead. Levels 2 and 3

introduce more advanced profiling and optimizations, gradually refining the code's efficiency. At the

pinnacle, level 4 applies the most aggressive optimizations, transforming frequently executed methods

into highly optimized machine code. This dynamic, adaptive approach allows Java applications to start

quickly and improve performance over time, aligning resource utilization with actual runtime needs and

ensuring optimal application performance throughout its lifecycle.

With the introduction of Tiered Compilation in JDK 8, Java aimed to harness the strengths of both Just-

In-Time (JIT) compilers, C1 and C2, to optimize performance based on the phase of program execution.

This approach marked a significant advancement from the previous setup, where developers had to

choose between the two compilers, each optimized for different use cases.

Before JDK 8, the distinction between C1 and C2 was quite clear:

 C1 (Client Compiler): This compiler was tailored for client-side applications, typically running

on desktops, which, at the time, often had single-core processors. The focus of C1 was on

improving startup time and quickly achieving near-native performance. It achieved this by

performing fewer and simpler optimizations, which are faster to execute but may not squeeze

out the last drop of performance. The rapid compilation and execution were crucial for

applications where immediate responsiveness was more important than maximizing long-term

throughput.

 C2 (Server Compiler): On the other hand, C2 was designed for server-side applications, where

machines were generally expected to have at least two cores. The emphasis here was on

achieving peak performance, even if it took longer to reach that point. C2 would perform more

complex and thorough optimizations, which are more time-consuming but can significantly

enhance the performance of long-running applications. This made it ideal for server

environments, where applications run continuously and can afford a longer warm-up time in

exchange for better overall performance.

With Tiered Compilation, the JVM dynamically chooses between the two compilers, or even uses them

in conjunction, during different phases of execution. Here's how it works:

1. Initial Execution (C1 with Profiling): When an application starts, the JVM uses C1 to compile

the bytecode to native code rapidly, enabling the application to start quickly and begin executing.

During this phase, C1 also collects profiling information, gathering data on method call

frequencies, branch execution, and more.

2. Adaptive Optimization (Transition to C2): As the application continues to run and the profiling

data accumulates, the JVM identifies the "hot" methods—those that are frequently executed or

critical to performance. The JVM then recompiles these hot methods with C2, which applies

more sophisticated optimizations based on the collected profiling data. This stepwise

optimization process allows the JVM to enhance the performance of the parts of the code that

benefit most from the advanced optimizations.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

IJCRT2210521 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e481

This tiered approach enables Java applications to start quickly and become responsive, while still

achieving the long-term, high-performance benefits of C2's advanced optimizations. It offers a balanced

solution, catering to the needs of both client and server applications without requiring manual selection

of the compiler.

In the current Tiered Compilation setup, Java leverages the strengths of both JIT compilers

simultaneously. Initially, the JVM employs C1 to rapidly compile bytecode to native code, enhancing

startup speed while also gathering profiling data. Subsequently, C2 is activated to recompile key

methods, applying more intensive optimizations that take longer but improve performance significantly.

The standard progression for method compilation involves several levels:

 Level 0: Methods start execution in the interpreter.

 Level 3: Methods are compiled by C1 with full profiling to quickly optimize and gather data.

 Level 4: Critical methods are later recompiled by C2 for deeper optimizations.

However, the process is flexible:

 Level 2: If there's a backlog of methods waiting for C2 compilation, some may be compiled at

Level 2 (C1 without full profiling) to manage the load.

 Level 1: Simple methods that don't benefit much from profiling are compiled directly at Level 1

(C1 without profiling) and remain there.

It's important to understand that this mechanism is dynamic, with thresholds and decisions adapting in

real time based on application behavior.

Additionally, JIT compilation occurs on separate threads:

 CICompilerCount: This setting allows you to specify the number of compiler threads. In Tiered

Compilation, the default is two threads—one for each JIT compiler. This allocation is significant

because C2's compilation is considerably more resource-intensive—up to ten times longer than

C1. This discrepancy impacts the CPU usage, particularly noticeable during the application's

startup phase.

Compilation Level Overview

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

IJCRT2210521 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e482

Benefits and Challenges:

The primary advantage of tiered compilation is its ability to provide both rapid startup times and

optimized long-term performance. However, the decision-making process for escalating code between

tiers is complex and requires careful management to balance the compilation overhead with

performance gains.

Benefits:

 Rapid Startup: Initial execution with the interpreter or a low-tier JIT compiler ensures the

application starts quickly, enhancing user experience.

 Optimized Performance: Over time, hot methods are recompiled with more advanced

optimizations, improving runtime efficiency and application speed.

 Resource Efficiency: Dynamic compilation allows for better resource utilization, as the JVM

optimizes code based on actual runtime behavior, reducing unnecessary use of computational

resources.

Challenges:

 Complexity: The tiered system's complexity can make tuning and diagnosing performance

issues more challenging, requiring deeper JVM knowledge.

 Overhead: Profiling and recompilation introduce overhead, which can impact performance,

especially in the short term or for applications with fluctuating hot spots.

 Balancing Act: Finding the optimal point at which to escalate methods to higher tiers without

introducing excessive overhead or delaying necessary optimizations can be challenging and

requires careful calibration.

Case Studies and Applications:

In real-world applications, Java's tiered compilation has demonstrated significant performance enhancements

across various domains. For instance, a widely-used e-commerce platform observed a marked reduction in

server startup time and improved request handling efficiency after adopting a JVM with tiered compilation.

Another case involved a large-scale data processing application where tiered compilation led to a noticeable

decrease in latency and increased throughput, particularly during data-intensive operations. These examples

underscore the practical benefits of tiered compilation, showcasing its impact on enhancing Java application

performance in diverse operational environments.

Enterprise Applications: An enterprise-level application, after integrating tiered compilation, experienced

enhanced performance and reduced latency, which was critical for their real-time data processing needs.

Cloud Application: Serverless tech stack can use C0 level compilation for faster performance.

Financial Sector: In a financial analytics application, tiered compilation contributed to faster data analysis and

report generation, improving the decision-making process.

Gaming Industry: A gaming server utilizing Java for backend operations saw improvements in player data

processing speed and game state updates, enhancing the overall user experience.

Each of these cases illustrates how tiered compilation's dynamic optimization capabilities can be leveraged

across different industries to enhance performance and efficiency.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

IJCRT2210521 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e483

Conclusion:

In conclusion, Java's tiered compilation represents a pivotal advancement in JVM performance optimization,

skillfully balancing quick startup times with long-term execution efficiency. By dynamically adjusting compilation

strategies based on runtime behavior, tiered compilation ensures Java applications not only start rapidly but also

achieve and maintain peak performance. This sophisticated mechanism significantly enhances the adaptability

and efficiency of Java applications, proving invaluable across various industries and applications. Understanding

and leveraging tiered compilation is essential for developers and architects aiming to optimize Java application

performance.

Future Directions:

Looking ahead, the future of Java's tiered compilation is poised for further innovation, integrating advances in

artificial intelligence and machine learning to refine its adaptive capabilities. Enhanced algorithms could predict

optimal compilation strategies, further reducing overhead and tailoring performance optimization to specific

application needs. Additionally, exploring synergies with cloud computing and distributed systems may offer new

avenues for scalability and efficiency, ensuring Java remains at the forefront of high-performance computing in

diverse environments.

References:

Hartmann, Tobias et al. “Efficient code management for dynamic multi-tiered compilation systems.” Proceedings of

the 2014 International Conference on Principles and Practices of Programming on the Java platform: Virtual machines,

Languages, and Tools (2014): n. pag.

http://www.ijcrt.org/

