ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

GENERALIZED SEMI-PRE CLOSED SETS IN WEAK STRUCTURES

¹T. VEILADEVI, ²K.M. DHARMALINGAM, ³V. SANGEETHASUBHA

¹Research Scholar, PG and Research Department of Mathematics, The Madura College (Autonomous),Madurai, Tamil Nadu, India.

²Associate Professor, PG and Research Department of Mathematics, The Madura College (Autonomous), Madurai, Tamil Nadu, India.

³Assistant Professor, PG and Research Department of Mathematics, The Madura College (Autonomous),Madurai, Tamil Nadu, India.

Abstract. In this paper, we introduce the concepts of generalized semi-pre w- closed sets and generalized semi-pre w-open sets. Further, we study some of their properties.

1. Introduction

Császár [4] introduced a new notion of structures called weak structures. Al-omari and Noiri [1] introduced generalized closed sets in weak structures. In this paper we introduce generalized semi-pre *w*-closed sets and generalized semi-pre *w*-open sets. The relation between semi-pre *w*-closed sets and other *w*-closed sets are given. And the relation between semi-pre *w*-open sets and other *w*-open sets are given. Also we study some of its properties.

2. Preliminaries

Throughout this paper, by a space X, we always mean a topological space (X, τ) with no separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the complement of a subset H by int(H), cl(H) and X H orH^c, respectively.

Definition 2.1. [7] Let X be a space. A subset H of a space X is said to be semi-openif $H \subseteq cl(int(H))$.

The family of all semi-open sets in X is denoted by SO(X).

The complement of a semi-open set is called semi-closed.

Key words and phrases. weak structure, generalized closed set, generalized semi-pre w-closed setand generalized

^o2010 Mathematics Subject Classification: 54A05, 54C10.

semi-pre w-open set.

Definition 2.2. [3] The semi-closure of the subset H of a space X is the intersection of all semiclosed subsets of X containing H and it is denoted by scl(H).

Definition 2.3. [2] A subset H of a space X is called a semi-generalized closed set (briefly sgclosed) if $scl(H) \subseteq U$ whenever $H \subseteq U$ and U is semi-open in (X, τ) .

Theorem 2.4. [2] Every semi-closed set is sg-closed but not conversely.

Definition 2.5. [9] A subset H of a space X is said to be preopen if $H \subseteq int(cl(H))$. The family of all preopen sets in X is denoted by PO(X).

The complement of a preopen set is called preclosed.

Definition 2.6. [8] The preclosure of the subset H of a space X is the intersection of all preclosed subsets of X containing H and it is denoted by pcl(H).

Definition 2.7. [8] A subset H of a space X is called a pre-generalized closed set (briefly pgclosed) if $pcl(H) \subseteq U$ whenever $H \subseteq U$ and U is preopen in (X, τ) .

Definition 2.8. [4, 10] Let X be a nonempty set and $w \subseteq P(X)$ where P(X) is the power set of X. Then w is called a weak structure (WS in short) on X if $\emptyset \in w$.

A non-empty set X with a weak structure w is called a weak structure space (WSS in short) and is denoted by (X, w). Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

Definition 2.9. [10] Let (X, w) be a WSS. Let $H \subseteq X$. Then the interior of H (briefly $i_w(H)$) is the union of all w-open sets contained in H and the closure of A (briefly $c_w(H)$) is the intersection of all w-closed sets containing H.

Remark 2.10. [1] If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

Theorem 2.11. [4] If w is a WS on X and $A, B \in w$ then

- (1) $i_w(A) \subseteq A \subseteq c_w(A)$,
- (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$,
- (3) $i_w(i_w(A))=i_w(A)$ and $c_w(c_w(A))=c_w(A)$,

(4) $i_w(X - A) = X - c_w(A)$ and $c_w(X - A) = X - i_w(A)$.

Lemma 2.12. [1] If w is a WS on X, then

(1) $x \in i_w(A)$ if and only if there is a w-open set $G \subseteq A$ such that $x \in G$,

(2) $x \in c_w(A)$ if and only if $G \cap A = \emptyset$ whenever $x \in G \in w$,

(3) If $A \in w$, then $A = i_w(A)$ and if A is w-closed then $A = c_w(A)$.

Definition 2.13. [1] Let w be a WS on a space X. Then $H \subseteq X$ is called a generalized w-closed set (gw-closed in short) if $c_w(H) \subseteq U$ whenever $H \subseteq U \in \tau$.

The complement of a gw-closed set is called gw-open.

Lemma 2.14. [1] For a WS w on a space X, every w-closed set is a gw-closed setbut not conversely.

Definition 2.15. [1] A space X is called a w- T_1 -space if for every gw-closed set H of X, $c_w(H)$ =H.

3. Properties of gsp-w-closed sets

In this section we introduce generalized semi-pre w-closed sets and study some of their properties.

Definition 3.1. Let w be a WS on a topological space (X, τ). Then A \subseteq X is called a generalized semipre w-closed set (gsp-w-closed set in short) if $spc_w(A) \subseteq U$ wheneverA $\subseteq U$ and U is open.

Example 3.2. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{a, b\}$ is gsp-w-closed set.

Example 3.3. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{a\}$ is not gsp-w-closed set.

Remark 3.4. The union and intersection of two gsp-w-closed sets are not gsp-w- closed set in general.

Example 3.5. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a, b\}, \{a, c\}\}$. Then the set $A = \{a\}$ and

 $B = \{b\}$ are gsp-w-closed sets. But their union $A \cup B = \{a, b\}$ is not gsp-w-closed set.

Example 3.6. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{a, b\}$ and $B = \{a, c\}$ are gsp-w-closed sets. But their intersection $A \cap B = \{a\}$ is not gsp-w-closed set.

Theorem 3.7. Let w be a WS on a topological space (X, τ). Then every w-closedset is gsp-wclosed set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be an w-closed set with A \subseteq U and U is open. Since every w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore spc_w(A) = A. Thus we have spc_w(A) \subseteq U whenever A \subseteq U and U is open. Hence A is gsp-w-closed set.

Example 3.8. *gsp-w-closed set* a *w-closed set*

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, d\}$

 $\{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, c\}\}$. Then the set $A = \{c\}$ is gsp-w-closed set but not w-closed set.

Theorem 3.9. Let w be a WS on a topological space (X, τ). Then every α -w-closedset is gsp-w-closed set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be an α -*w*-closed set with A \subseteq U and U is open. Since every α -*w*-closed set is sp-*w*-closed set, we have A is sp-*w*-closed set. Therefore spc_{*w*}(A) = A. Thus we have spc_{*w*}(A) \subseteq U whenever A \subseteq U and U is open. Hence A is gsp-*w*-closed set.

Example 3.10. gsp-w-closed set a α -w-closed set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, X\}$ and $w = \{\varphi, \{a\}, \{c\}\}$. Then the set $A = \{a, c\}$ is gsp-w-closed set but not α -w-closed set.

Theorem 3.11. Let w be a WS on a topological space (X, τ). Then every semi w-closed set is gsp-w-closed set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be a semi *w*-closed setwith A \subseteq U and U is open. Since every semi *w*-closed set is sp-*w*-closed set, we have A is sp-*w*-closed set. Therefore $spc_w(A) = A$. Thus we have $spc_w(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Hence A is gsp-*w*-closed set.

Example 3.12. gsp-w-closed set a semi w-closed set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{b\}, t\}$

 $\{c\}, \{b, c\}, X\}$ and $w = \{\varphi, \{c\}, \{a, c\}, X\}$. Then the set $A = \{a, c\}$ is gsp-w-closed set but not semi w-closed set.

Theorem 3.13. Let w be a WS on a topological space (X, τ). Then every pre w-closed set is gspw-closed set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be a pre *w*-closed setwith A \subseteq U and U is open. Since every pre *w*-closed set is sp-*w*-closed set, we have A is sp-*w*-closed set. Therefore $spc_w(A) = A$. Thus we have $spc_w(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Hence A is gsp-*w*-closed set.

Example 3.14. *gsp-w-closed set* a *pre w-closed set*

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, d\}$

{*b*, *c*}, *X*} and $w = \{\varphi, \{b\}, \{a, b\}\}$. Then the set $A = \{b\}$ is gsp-w-closed set but not pre w-closed set.

Theorem 3.15. Let w be a WS on a topological space (X, τ) . Then every regular

w-closed set is gsp-w-closed set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be a regular w-closed set with A \subseteq U and U is open. Since every regular w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore spc_w(A) = A. Thus we have spc_w(A) \subseteq U whenever A \subseteq U and U is open. Hence A is gsp-w-closed set.

Example 3.16. gsp-w-closed set a regular w-closed set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $w = \{\phi, \{b\}, \{c\}, \{a, b\}\}$. Then the set $A = \{a\}$ is gsp-w-closed set but not regular w-closed set.

Theorem 3.17. Let w be a WS on a topological space (X, τ). Then every semi-pre losed set is gsp-w-closed set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be a semi-pre *w*-closed set with A \subseteq U and U is open. Since A is sp-*w*-closed set, we have spc_{*w*}(A) = A. Thus we have spc_{*w*}(A) \subseteq U whenever A \subseteq U and U is open. Hence A is gsp-*w*-closed set.

Example 3.18. gsp-w-closed set a semi-pre w-closed set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{b, c\}, X\}$ and $w = \{\varphi, \{b, c\}\}$. Then the set $A = \{b\}$ is gsp-w-closed set but not semi-pre w-closed set.

Theorem 3.19. Let w be a WS on a topological space (X, τ) . Then every gw-closedset is gsp-wclosed set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be a gw-closed set. Then $c_w(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Since $spc_w(A) \subseteq cl_w(A)$, we have $spc_w(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Hence A is gsp-w-closed set.

Example 3.20. gsp-w-closed set a gw-closed set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\}$ and $w = \{\varphi, \{a, b\}, \{a, c\}\}$. Then the set $A = \{a\}$ is gsp-w-closedset but not gw-closed set.

Theorem 3.21. Let w be a WS on a topological space (X, τ). If A is a gsp-w-closed, then spc_w(A)-A does not contain any non empty closed set.

Proof. Let F be a closed subset of X such that $F \subseteq spc_w(A) - A$, where A is gsp-w-closed. Since IJCRT2210493 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e249

X−F is open, A ⊆ X−F and A is gsp-w-closed, $spc_w(A) \subseteq X-F$ and thus F ⊆ X−spc_w(A). Thus F ⊆ (X−spc_w(A)) ∩ spc_w(A) = \emptyset and hence F = \emptyset .

Remark 3.22. If $spc_w(A) - A$ does not contain any non empty closed subset of X, then A need not be gsp-w-closed.

Example 3.23. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{b\}, X\}$ and $w = \{\varphi, \{b\}, \{b, c\}\}$. Let $A = \{b\}$. Then $spc_w(A) - A = \{\phi, \{b\}, \{b, c\}\}$.

 ${b, c}-{b} = {c}, does not contain any nonempty closed subset of X. But A is not gsp-w-closed set.$

Corollary 3.24. Let w be a WS on a topological space (X, τ) and $A \subseteq X$ be a gsp-w-closed set. Then $spc_w(A) = A$ if and only if $spc_w(A) - A$ is closed.

Proof. Let A be a gsp-w-closed set. If $spc_w(A) = A$, then $spc_w(A)-A = \emptyset$, and $spc_w(A)-A$ is a closed set.

Conversely, let $spc_w(A) - A$ be a closed set, where A is gsp-w-closed. Then by Theo- rem 3.14, $spc_w(A) - A$ does not contain any non empty closed set. Since $spc_w(A) - A$ is a closed subset of itself, $spc_w(A) - A = \emptyset$ and hence $spc_w(A) = A$.

Theorem 3.25. A subset A of a topological space (X, τ) with a WS w on it is gsp-w-closed if and only if $cl(\{x\}) \cap A \neq \emptyset$ for every $x \in spc_w(A)$.

Proof. Let A be a gsp-w-closed set in X and suppose if possible that there exists $x \in spc_w(A)$ such that $cl({x}) \cap A = \emptyset$. Therefore, $A \subseteq X-cl({x})$, and so $spc_w(A) \subseteq X-cl({x})$. Hence $x \neq spc_w(A)$, which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any open set containing A. Let $x \in spc_w(A)$. Then by hypothesis $cl(\{x\}) \cap A /= \emptyset$, so there exists $z \in cl(\{x\}) \cap A$ and so $z \in A \subseteq U$. Thus $\{x\} \cap U /= \emptyset$. Hence $x \in U$, which

implies that $spc_w(A) \subseteq U$. This shows that A is gsp-w-closed.

Theorem 3.26. Let w be a WS on a topological space (X, τ) and $A \subseteq B \subseteq spc_w(A)$, where A is gsp-w-closed. Then B is gsp-w-closed.

Proof. Let $B \subseteq U \in \tau$. Since A is gsp-*w*-closed and $A \subseteq U$, spc_{*w*}(A) $\subseteq U$. Now, $B \subseteq$ spc_{*w*}(A), spc_{*w*}(B) \subseteq spc_{*w*}(A) and hence spc_{*w*}(B) $\subseteq U$.

Theorem 3.27. Let w be a WS on a topological space (X, τ). Then the followingare equivalent:

(1) For every open set U of X, $spc_w(U) \subseteq U$.

(2) Every subset of X is gsp-w-closed.

Proof. (1) \Rightarrow (2). Let A be any subset of X and A \subseteq U $\in \tau$. Then by (1) spc_w(U) \subseteq U and hence spc_w(A) \subseteq spc_w(U) \subseteq U. Thus A is gsp-w-closed. (2) \Rightarrow (1). Let U $\in \tau$. Then by (2), U is gsp-w-closed and hence spc_w(U) \subseteq U.

Theorem 3.28. Let w be a WS on a topological space (X, tau). If A is an open and gsp-w-closed subset of X, then $spc_w(A) = A$.

Proof. Obvious.

Let us introduce wsp-T₁-space.

Definition 3.29. A space (X, τ) is called a wsp- T_1 -space if for every gsp-w-closed set A of X, $spc_w(A) = A$.

Theorem 3.30. Let w be a WS on a topological space (X, τ) . Then the implication

- (1) \Rightarrow (2) holds. If $spi_w(\{x\}) \in w$ for every $x \in X$, then the following statements are equivalent:
 - (1) X is a wsp- T_1 -space.
 - (2) Every singleton is either closed or $\{x\} = spi_w(\{x\})$.

Proof. (1) \Rightarrow (2). Suppose {x} is not a closed subset for some $x \in X$. Then X-{x} is not open and hence X is the only open set containing X-{x}. Therefore X-{x} is gsp-w-closed. Since X is a $wsp-T_1$ -space, $spc_w(X-{x}) = X-spi_w({x}) = \frac{1}{2}X-{x}$ and thus {x} = $spi_w({x})$.

(2) \Rightarrow (1). Let A be a gsp-w-closed subset of X and $x \in spc_w(A)$. We show that $x \in x \in x$

A. If $\{x\}$ is closed and $x \not\in A$, then $x \in (\operatorname{spc}_w(A) - A)$. Then $\{x\} \subseteq X - A$ and hence $A \subseteq X - \{x\}$.

Since A is gsp-w-closed set and $X - \{x\}$ is an open subset of X, $spc_w(A)$

 $\subseteq X - \{x\}$ and hence $\{x\} \subseteq X - spc_w(A)$. Therefore, $x \in A$.

If $\{x\} = spi_w(\{x\})$, since $x \in spc_w(A)$, then for every spw-open set U containing x, we have $U \cap A$

 $/= \emptyset$. But {x} = i_w({x}) is spw-open and {x} ∩ A $/= \emptyset$. Hence x∈

A. Therefore, in both cases we have $x \in A$. Therefore, $spc_w(A) = A$ and hence X is a $wsp-T_1^1$ -space.

4. Properties of gsp-w-open sets

In this section we introduce generalized semi-pre w-open sets and study some of their properties.

Definition 4.1. Let w be a WS on a topological space (X, τ). Then $A \subseteq X$ is called a generalized semi-pre w-open set (gsp-w-open set in short) if the complement A^c is gsp-w-closed set.

Example 4.2. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\phi, \{a\}, \{a, b\}\}$. Then the set $A = \{c\}$ is gsp-w-open set.

Example 4.3. Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{b, c\}$ is not gsp-w-closed set.

Theorem 4.4. Let w be a WS on a topological space (X, τ). Then every w-open set is gsp-w-open set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be an w-open set. Then A^c is an w-closed set. By Theorem 3.7, A^c is gsp-w-closed set. Therefore A is gsp-w-openset.

Example 4.5. gsp-w-open set a w-open set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{a, c\}$ is gsp-w-open set but not w-open set.

Theorem 4.6. Let w be a WS on a topological space (X, τ). Then every α -w-open set is gsp-w-open set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be an α -w-open set. Then A^c is an α -w-closed set. By Theorem 3.9, A^c is gsp-w-closed set. Therefore A is gsp-w-open set.

Example 4.7. gsp-w-open set a α-w-open set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, d\}$

X} and $w = \{\varphi, \{a\}, \{c\}\}$. Then the set $A = \{b\}$ is gsp-w-open set but not α -w-open set.

Theorem 4.8. Let w be a WS on a topological space (X, τ). Then every semi w-open set is gsp-w-open set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be a semi *w*-open set. Then A^c is a semi *w*-closed set. By Theorem 3.11, A^c is gsp-*w*-closed set. Therefore A is gsp-*w*-open set.

Example 4.9. gsp-w-open set a semi w-open set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a, b\}, X\}$ and $w = \{\varphi, \{a\}, \{a, b\}\}$. Then the set $A = \{b, c\}$ is gsp-w-open set but not semi w-open set.

Theorem 4.10. Let w be a WS on a topological space (X, τ). Then every pre w-open set is gsp-w-open set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be a pre w-open set. Then A^c is a pre w-closed set. By Theorem 3.13, A^c is gsp-w-closed set. ThereforeA is gsp-w-open set.

Example 4.11. gsp-w-open set a pre w-open set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\}$ and $w = \{\varphi, \{a, b\}\}$. Then the set $A = \{a, c\}$ is gsp-w-open set but not pre w-open set.

Theorem 4.12. Let w be a WS on a topological space (X, τ) . Then every regular w-open set is gsp-w-open set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be a regular w-open set. Then A^c is a regular w-closed set. By Theorem 3.15, A^c is gsp-w-closed set. Therefore A is gsp-w-open set.

Example 4.13. gsp-w-open set **a** regular w-open set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, X\}$ and $w = \{\varphi, \{a\}, \{c\}\}$. Then the set $A = \{b, c\}$ is gsp-w-open set but not regular w-open set.

Theorem 4.14. Let w be a WS on a topological space (X, τ). Then every semi-pre

w-open set is gsp-w-open set but not conversely.

Proof. Let *w* be a WS on a topological space (X, τ). Let A be a semi-pre *w*-openset. Then A^c is a semi-pre *w*-closed set. By Theorem 3.17, A^c is gsp-*w*-closed set. Therefore A is gsp-*w*-open set.

Example 4.15. gsp-w-open set a semi-pre w-open set

Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{b, c\}, X\}$ and $w = \{\varphi, \{b\}, \{b, c\}\}$. Then the set $A = \{b, c\}$ is gsp-w-open set but not semi-pre w-open set.

IJCRT2210493 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e253

Theorem 4.16. Let w be a WS on a topological space (X, τ). Then every gw-open set is gsp-w-open set but not conversely.

Proof. Let w be a WS on a topological space (X, τ). Let A be a gw-open set. ThenA^c is a gw-closed set. By Theorem 3.19, A^c is gsp-w-closed set. Therefore A is gsp-w-open set.

Example 4.17. gsp-w-open set \mathbf{a} gw-open set Let $X = \{a, b, c\}$. Let w be a WS on a topological space (X, τ) where $\tau = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\}$ and $w = \{\varphi, \{a, b\}\}$. Then the set $A = \{a\}$ is gsp-w-open set but not gw-open set.

Theorem 4.18. Let (X, τ) be a topological space and w be a WS on X. Then A is gsp-w-open if and only if $F \subseteq spi_w(A)$ whenever $F \subseteq A$ and F is closed.

Proof. Let A be a gsp-*w*-open set and $F \subseteq A$, where F is closed. Then X-A is gsp-*w*-closed set contained in an open set X-F. Hence $spc_w(X-A) \subseteq X-F$, that is X- $spi_w(A) \subseteq X-F$. So $F \subseteq spi_w(A)$. Conversely, suppose that $F \subseteq spi_w(A)$ for any closed set F whenever $F \subseteq A$. Let X-A

 \subseteq U, where U $\in \tau$. Then X – U \subseteq A and X – U is closed. By assumption, X – U \subseteq spi_w(A) and hence spc_w(X – A) = X – spi_w.(A) \subseteq U. Therefore X – A is gsp-w-closed and hence A is gsp-w-open.

Theorem 4.19. Let w be a WS on a topological space (X, τ) . If a subset A of X is gsp-w-open, then U = X whenever U is open and $spi_w(A) \cup (X-A) \subseteq U$.

Proof. Let $U \in \tau$ and $spi_w(A) \cup (X-A) \subseteq U$ for a gsp-*w*-open set A. Then $X-U \subseteq (X-spi_w(A)) \cap A$. That is $X-U \subseteq spc_w(X-A)-(X-A)$. Since X-A is gsp-*w*-closed, by Theorem 3.21, $X-U = \emptyset$ and hence X = U.

Theorem 4.20. Let *w* be a WS on a topological space (X, τ). If a subset A of X is gsp-w-open and $spi_w(A) \subseteq B \subseteq A$, then B is gsp-w-open.

Proof. We have $X-A \subseteq X-B \subseteq X-\operatorname{spi}_w(A) = \operatorname{spc}_w(X-A)$. Since X-A is gsp-*w*- closed, it follows from Theorem 3.26 that X-B is gsp-*w*-closed and hence B is gsp-*w*-open.

REFERENCES

- A. Al-omari and T. Noiri, A unified theory of generalized closed sets in weak structures, ActaMath. Hungar., 135(1-2)(2012), 174-183, doi: 10.1007/S10474-011-0169-0.
- [2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [4] Á. Császár, Weak structures, Acta Math. Hungar., doi:10.1007/s10474-010-0020-z.
- [5] E. Ekici, On weak structures due to Császár, Acta Math. Hungar., 134(4)(2012), 565-570, doi: 10.1007/S104-011-0145-8.
- [6] E. Ekici, Further New Generalized Topologies Via Mixed Constructions due to Császár, Math- ematica Bohemica, 140(1)(2015), 1-9.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. monthly,70(1963), 36-41.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T₁, Mem. Fac. Sci. Kochi

Univ. Ser. A, Math., 17(1996), 33-42.

- [9] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precon-tinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [10] M. Navaneethakrishnan and S. Thamaraiselvi, On some subsets defined with respect to weakstructures, Acta Math. Hungar.,doi: 10.1007/s10474-012-0240-5.

