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Abstract. In this paper, we introduce the concepts of generalized semi-pre w- closed sets and generalized 

semi-pre w-open sets. Further, we study some of their properties. 

 
1. Introduction 

Császár [4] introduced a new notion of structures called weak structures.  Al-omari and Noiri [1] 
introduced generalized closed sets in weak structures. In this paper we introduce generalized semi-pre 
w-closed sets and generalized semi-pre w-open sets. The relation between semi-pre w-closed sets 
and other w-closed sets are given. And the relation between semi-pre w-open sets and other w-open 
sets are given. Also we study some of its properties. 

 

2. Preliminaries 

Throughout this paper, by a space X, we always mean a topological space (X, τ ) with no 
separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the 
complement of a subset H by int(H), cl(H) and X H or Hc, respectively. 

 
Definition 2.1. [7] Let X be a space. A subset H of a space X is said to be semi-open if H⊆cl(int(H)). 

The family of all semi-open sets in X is denoted by SO(X). 

The complement of a semi-open set is called semi-closed. 
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semi-pre w-open set. 

 
 

Definition 2.2. [3] The semi-closure of the subset H of a space X is the intersection of all semi-

closed subsets of X containing H and it is denoted by scl(H). 

Definition 2.3. [2] A subset H of a space X is called a semi-generalized closed set (briefly sg-

closed) if scl(H)⊆U whenever H⊆U and U is semi-open in (X,τ). 

Theorem 2.4. [2] Every semi-closed set is sg-closed but not conversely. 
 

Definition 2.5. [9] A subset H of a space X is said to be preopen if H⊆int(cl(H)). The family of all 

preopen sets in X is denoted by PO(X). 

The complement of a preopen set is called preclosed. 

 
Definition 2.6. [8] The preclosure of the subset H of a space X is the intersection of all preclosed 

subsets of X containing H and it is denoted by pcl(H). 

Definition 2.7. [8] A subset H of a space X is called a pre-generalized closed set (briefly pg-

closed) if pcl(H)⊆U whenever H⊆U and U is preopen in (X,τ). 

Definition 2.8. [4, 10] Let  X be a  nonempty  set and  w⊆P(X)  where  P(X) is  the power set of X. 

Then w is called a weak structure (WS in short) on X if ∅ ∈ w. 

A non-empty set X with a weak structure w is called a weak structure space (WSS in short) and is 

denoted by (X, w). Each member of w is said to be w-open and the complement of a w-open set is 

called w-closed. 

Definition 2.9. [10] Let (X, w) be a WSS. Let H ⊆ X. Then the interior of H (briefly iw(H) ) is the 

union of all w-open sets contained in H and the closure of A (briefly cw(H)) is the intersection of 

all w-closed sets containing H. 

Remark  2.10.  [1]  If  w  is  a  WS  on  X,  then  iw(∅)=∅ and  cw(X)=X. 

Theorem 2.11. [4] If w is a WS on X and A,B ∈ w then 

(1) iw(A)⊆A⊆cw(A), 

(2) A⊆B⇒iw(A)⊆iw(B) and cw(A)⊆cw(B), 

(3) iw(iw(A))=iw(A) and cw(cw(A))=cw(A), 

(4) iw(X − A)=X − cw(A) and cw(X − A)=X − iw(A). 

 

Lemma 2.12. [1] If w is a WS on X, then 

(1) x∈iw(A) if and only if there is a w-open set G⊆A such that x∈G, 

(2) x∈cw(A)  if  and  only  if  G∩A/=∅ whenever  x∈G∈w, 
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(3) If A∈w, then A=iw(A) and if A is w-closed then A=cw(A). 

Definition 2.13. [1] Let w be a WS on a space X. Then H⊆X is called a generalized 

w-closed set (gw-closed in short) if cw(H)⊆U whenever H⊆U∈τ. 

The complement of a gw-closed set is called gw-open. 
 

Lemma 2.14. [1] For a WS w on a space X, every w-closed set is a gw-closed set but not 

conversely. 

Definition 2.15. [1] A space X is called a w-T1 -space if for every gw-closed set H 
2 

of X, cw(H)=H. 
 

3. Properties of gsp-w-closed sets 

In this section we introduce generalized semi-pre w-closed sets and study some of their properties. 
 

Definition 3.1. Let w be a WS on a topological space (X, τ). Then A ⊆ X is called a generalized semi-

pre w-closed set (gsp-w-closed set in short) if spcw(A) ⊆ U whenever A ⊆ U and U is open. 

Example 3.2. Let X ={a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, {b}, 

{a, b}, X} and w = {φ, {a}, {a, b}}. Then the set A = {a, b} is gsp-w-closed set. 

Example 3.3. Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, {b}, 

{a, b},  X} and  w  = {φ,  {a}, {a,  b}}.  Then  the  set  A  = {a} is not gsp-w-closed set. 

 

Remark 3.4. The union and intersection of two gsp-w-closed sets are not gsp-w- closed set in 

general. 

Example 3.5. Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where 

τ = {φ, {a}, {b}, {a, b}, X} and w = {φ, {a, b}, {a, c}}. Then the set A = {a} and 
 

B = {b} are gsp-w-closed sets. But their union A ∪ B = {a, b} is not gsp-w-closed set. 

Example 3.6. Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ  = {φ,  {a}, {b}, 

{a,  b},  X} and w  = {φ,  {a}, {a,  b}}.  Then the set A = {a,  b} and B = {a, c} are gsp-w-closed 

sets. But their intersection A ∩ B = {a} is not gsp-w-closed set. 

Theorem 3.7. Let w be a WS on a topological space (X, τ). Then every w-closed set is gsp-w-

closed set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be an w-closed set with A ⊆ U and U is 

open. Since every w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore spcw(A) = 

A. Thus we have spcw(A) ⊆ U whenever A ⊆ U and U is open. Hence A is gsp-w-closed set. 
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Example 3.8. gsp-w-closed set a w-closed set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, 

{a, b}, X} and w = {φ, {a}, {a, c}}.  Then the set A = {c} is gsp-w-closed set but not w-closed set. 

Theorem 3.9. Let w be a WS on a topological space (X, τ). Then every α-w-closed set is gsp-w-

closed set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be an α-w-closed set with A ⊆ U and U is 

open. Since every α-w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore spcw(A) 

= A. Thus we have spcw(A) ⊆ U whenever A ⊆ U and U is open. Hence A is gsp-w-closed set. 

Example 3.10. gsp-w-closed set a α-w-closed set 

Let X = {a, b, c}.  Let w be a WS on a topological space (X, τ) where τ  = {φ, {a}, X} and w = {φ, 

{a}, {c}}. Then the set A = {a, c} is gsp-w-closed set but not α-w-closed set. 
 

Theorem  3.11.  Let w  be a WS on a topological space (X, τ).  Then every semi 

w-closed set is gsp-w-closed set but not conversely. 
 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a semi w-closed set with A ⊆ U and U 

is open.  Since every semi w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore 

spcw(A) = A. Thus we have spcw(A) ⊆ U whenever 

A ⊆ U and U is open. Hence A is gsp-w-closed set. 

Example 3.12. gsp-w-closed set a semi w-closed set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {b}, 

{c}, {b, c}, X} and w = {φ, {c}, {a, c}, X}. Then the set A = {a, c} is gsp-w-closed set but not semi 

w-closed set. 

 

Theorem 3.13. Let w be a WS on a topological space (X, τ). Then every pre w- closed set is gsp-

w-closed set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a pre w-closed set with A ⊆ U and U is 

open.  Since every pre w-closed set is sp-w-closed set, we have A is sp-w-closed set. Therefore 

spcw(A) = A. Thus we have spcw(A) ⊆ U whenever A ⊆ U and U is open. Hence A is gsp-w-closed 

set. 

Example 3.14. gsp-w-closed set a pre w-closed set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, 

{b, c}, X} and w = {φ, {b},  {a,  b}}.  Then the set A = {b} is gsp-w-closed set but not pre w-closed 

set. 

 

Theorem 3.15. Let w be a WS on a topological space (X, τ). Then every regular 
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w-closed set is gsp-w-closed set but not conversely. 

Proof. Let w be a WS on a topological space (X,  τ ).  Let A be a regular w-closed set with A ⊆ U 

and U is open.  Since every regular w-closed set is sp-w-closed set, we have A is sp-w-closed set. 

Therefore spcw(A) = A. Thus we have spcw(A) ⊆ U whenever A ⊆ U and U is open. Hence A is gsp-

w-closed set. 

Example 3.16. gsp-w-closed set a regular w-closed set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, 

{c}, {a, c}, X} and w = {φ, {b}, {c}, {a, b}}. Then the set A = {a} is gsp-w-closed set but not 

regular w-closed set. 

 
 

Theorem 3.17. Let w be a WS on a topological space (X, τ). Then every semi-pre 

 losed set is gsp-w-closed set but not conversely. 

 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a semi-pre w-closed set with A ⊆ U 

and U is open. Since A is sp-w-closed set, we have spcw(A) = A. Thus we have spcw(A) ⊆ U 

whenever A ⊆ U and U is open. Hence A is gsp-w-closed set. 

 

Example 3.18. gsp-w-closed set a semi-pre w-closed set 

Let X = {a, b, c}.  Let w  be a WS on a topological space (X, τ) where τ  = {φ, {b, c}, X} and w = 

{φ, {b}, {b, c}}. Then the set A = {b} is gsp-w-closed set but not semi-pre w-closed set. 

 
Theorem 3.19. Let w be a WS on a topological space (X, τ). Then every gw-closed set is gsp-w-

closed set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a gw-closed set. Then cw(A) ⊆ U 

whenever A ⊆ U and U is open. Since spcw(A) ⊆ clw(A), we have spcw(A) 

⊆ U whenever A ⊆ U and U is open. Hence A is gsp-w-closed set. 

Example 3.20. gsp-w-closed set a gw-closed set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, 

{c}, {a, c}, X} and w = {φ, {a, b}, {a, c}}. Then the set A = {a} is gsp-w-closed set but not gw-

closed set. 

 

Theorem 3.21. Let w be a WS on a topological space (X, τ). If A is a gsp-w-closed, then spcw(A)−A 

does not contain any non empty closed set. 

Proof. Let F be a closed subset of X such that F ⊆ spcw(A)−A, where A is gsp-w- closed. Since 
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X−F is open, A ⊆ X−F and A is gsp-w-closed, spcw(A) ⊆ X−F and thus F ⊆ X−spcw(A). Thus F 

⊆ (X−spcw(A)) ∩ spcw(A) = ∅ and hence F = ∅. 

Remark 3.22. If spcw(A)−A does not contain any non empty closed subset of X, then A need not 

be gsp-w-closed. 

 
 

Example 3.23. Let X = {a, b, c}.  Let w be a WS on a topological space (X, τ) where τ = {φ, {b}, 

X} and w = {φ, {b}, {b, c}}. Let A = {b}. Then spcw(A)−A = 

{b, c}−{b} = {c}, does not contain any nonempty closed subset of X. But A is not gsp-w-closed 

set. 

 

Corollary 3.24. Let w be a WS on a topological space (X, τ) and A ⊆ X be a gsp-w-closed set. 

Then spcw(A) = A if and only if spcw(A)−A is closed. 

Proof.  Let  A  be  a  gsp-w-closed  set.    If  spcw(A)  =  A,  then  spcw(A)−A  =  ∅,  and spcw(A)−A is a 

closed set. 

Conversely, let spcw(A)−A be a closed set, where A is gsp-w-closed. Then by Theo- rem 3.14, 

spcw(A)−A does not contain any non empty closed set. Since spcw(A)−A is a closed subset of itself, 

spcw(A)−A = ∅ and hence spcw(A) = A. 

Theorem 3.25. A subset A of a topological space (X, τ) with a WS w on it is gsp-w-closed if and 

only if cl({x}) ∩ A /= ∅ for every x ∈ spcw(A). 

Proof. Let A be a gsp-w-closed set in X and suppose if possible that there exists x ∈ spcw(A)  such  

that  cl({x})  ∩ A  =  ∅.  Therefore,  A  ⊆ X−cl({x}),  and  so  spcw(A)  ⊆ X−cl({x}). Hence x /∈ 

spcw(A), which is a contradiction. 

Conversely, suppose that the condition of the theorem holds and let U be any open set  containing  

A.  Let  x  ∈ spcw(A).  Then  by  hypothesis  cl({x})  ∩ A  /=  ∅,  so  there exists  z  ∈ cl({x})  ∩ A  and  so  z  

∈ A  ⊆ U.  Thus  {x} ∩ U  /=  ∅.  Hence  x  ∈ U,  which 

implies that spcw(A) ⊆ U. This shows that A is gsp-w-closed. 

Theorem 3.26. Let w be a WS on a topological space (X, τ) and A ⊆ B ⊆ spcw(A), where A is gsp-

w-closed. Then B is gsp-w-closed. 

Proof. Let B ⊆ U ∈ τ . Since A is gsp-w-closed and A ⊆ U, spcw(A) ⊆ U. Now, B ⊆ 

spcw(A), spcw(B) ⊆ spcw(A) and hence spcw(B) ⊆ U. 

Theorem 3.27. Let w be a WS on a topological space (X, τ). Then the following are equivalent: 

(1) For every open set U of X, spcw(U) ⊆ U. 
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2 

 
 

(2) Every subset of X is gsp-w-closed. 

Proof. (1) ⇒ (2). Let A be any subset of X and A ⊆ U ∈ τ . Then by (1) spcw(U) ⊆ U and hence 

spcw(A) ⊆ spcw(U) ⊆ U. Thus A is gsp-w-closed. (2) ⇒ (1).  Let U ∈ τ . Then by (2), U is gsp-w-

closed and hence spcw(U) ⊆ U. 

Theorem 3.28. Let w be a WS on a topological space (X, tau). If A is an open and gsp-w-closed 

subset of X, then spcw(A)= A. 

Proof. Obvious. 
 

 
Let us introduce wsp-T1 -space. 

2 
 

Definition 3.29. A space (X, τ) is called a wsp-T 1 -space if for every gsp-w-closed 
2 

set A of X, spcw(A) = A. 
 

Theorem 3.30. Let w be a WS on a topological space (X, τ). Then the implication 

(1) ⇒ (2) holds. If spiw({x}) ∈ w for every x ∈ X, then the following statements are equivalent: 

(1) X is a wsp-T 1 -space. 
2 

(2) Every singleton is either closed or {x} = spiw({x}). 

Proof. (1) ⇒ (2). Suppose {x} is not a closed subset for some x ∈ X. Then X−{x} is not open and 

hence X is the only open set containing X−{x}. Therefore X−{x} is gsp-w-closed. Since X is a 

wsp-T1 -space, spcw(X−{x}) = X−spiw({x}) = X−{x} 

and thus {x} = spiw({x}). 

(2) ⇒ (1). Let A be a gsp-w-closed subset of X and x ∈ spcw(A). We show that x ∈ 

A. If {x} is closed and x ∈/  A, then x ∈ (spcw(A)−A). Then {x} ⊆ X−A and hence A ⊆ X−{x}. 

Since A is gsp-w-closed set and X−{x} is an open subset of X, spcw(A) 

⊆ X−{x} and hence {x} ⊆ X−spcw(A). Therefore, x ∈ A. 

If {x} = spiw({x}), since x ∈ spcw(A), then for every spw-open set U containing x, we  have  U  ∩ A  

/=  ∅.  But  {x} =  iw({x})  is  spw-open  and  {x} ∩ A  /=  ∅.  Hence  x  ∈ 

A. Therefore, in both cases we have x ∈ A. Therefore, spcw(A) = A and hence X is 

a wsp-T1 -space. 
2 
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4. Properties of gsp-w-open sets 

In this section we introduce generalized semi-pre w-open sets and study some of their properties. 
 

Definition 4.1. Let w be a WS on a topological space (X, τ). Then A ⊆ X is called a generalized 

semi-pre w-open set (gsp-w-open set in short) if the complement Ac is gsp-w-closed set. 

Example 4.2. Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, {b}, 

{a, b}, X} and w = {φ, {a}, {a, b}}. Then the set A = {c} is gsp-w-open set. 

 

Example 4.3. Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, {b}, 

{a, b}, X} and w = {φ, {a}, {a, b}}. Then the set A = {b, c} is not gsp-w-closed set. 

 

Theorem 4.4. Let w be a WS on a topological space (X, τ). Then every w-open set is gsp-w-open 

set but not conversely. 

Proof.  Let w be a WS on a topological space (X, τ ). Let A be an w-open set. Then Ac is an w-closed 

set. By Theorem 3.7, Ac is gsp-w-closed set. Therefore A is gsp-w-open set. 

Example  4.5.  gsp-w-open set a w-open set Let X = {a, b, c}.  Let w  be a WS on a topological 

space (X, τ) where τ = {φ, {a}, {b}, {a, b}, X} and w = {φ, {a}, {a, b}}. Then the set A = {a, c} is 

gsp-w-open set but not w-open set. 

Theorem 4.6. Let w be a WS on a topological space (X, τ). Then every α-w-open set is gsp-w-

open set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be an α-w-open set. Then Ac  is an α-w-

closed set.  By Theorem 3.9, Ac  is gsp-w-closed set.  Therefore A is gsp-w-open set. 

Example 4.7. gsp-w-open set a α-w-open set 

Let X = {a, b, c}. Let w be a WS on a topological space (X, τ) where τ = {φ, {a}, 
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X} and w = {φ, {a}, {c}}. Then the set A = {b} is gsp-w-open set but not α-w-open set. 

 
Theorem 4.8. Let w be a WS on a topological space (X, τ). Then every semi w-open set is gsp-w-open 

set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a semi w-open set. Then Ac is a semi 

w-closed set.  By Theorem 3.11, Ac  is gsp-w-closed set.  Therefore A is gsp-w-open set. 

Example 4.9. gsp-w-open set a semi w-open set Let X = {a, b, c}. Let w be a WS on a topological 

space (X, τ) where τ = {φ, {a, b}, X} and w = {φ, {a}, {a, b}}. Then the set A = {b, c} is gsp-w-

open set but not semi w-open set. 

Theorem 4.10. Let w be a WS on a topological space (X, τ). Then every pre w-open set is gsp-w-open 

set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a pre w-open set. Then Ac is a pre w-

closed set.  By Theorem 3.13,  Ac  is  gsp-w-closed set.  Therefore A is gsp-w-open set. 

Example 4.11. gsp-w-open set a pre w-open set Let X = {a, b, c}. Let w be a WS on a topological 

space (X, τ) where τ = {φ, {a}, {c}, {a, c}, X} and w = {φ, {a, b}}. Then the set A = {a, c} is gsp-

w-open set but not pre w-open set. 

Theorem 4.12. Let w be a WS on a topological space (X, τ). Then every regular 

w-open set is gsp-w-open set but not conversely. 
 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a regular w-open set. Then Ac is a 

regular w-closed set. By Theorem 3.15, Ac is gsp-w-closed set. Therefore A is gsp-w-open set. 

Example 4.13. gsp-w-open set a regular w-open set Let X = {a, b, c}. Let w be a WS on a 

topological space (X, τ) where τ = {φ, {a}, X} and w = {φ, {a}, {c}}. Then the set A = {b, c} is 

gsp-w-open set but not regular w-open set. 

Theorem 4.14. Let w be a WS on a topological space (X, τ). Then every semi-pre 

w-open set is gsp-w-open set but not conversely. 
 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a semi-pre w-open set. Then Ac is a 

semi-pre w-closed set. By Theorem 3.17, Ac is gsp-w-closed set. Therefore A is gsp-w-open set. 

Example 4.15. gsp-w-open set a semi-pre w-open set 

Let X = {a, b, c}.  Let w  be a WS on a topological space (X, τ) where τ  = {φ, {b, c}, X} and w = 

{φ, {b}, {b, c}}. Then the set A = {b, c} is gsp-w-open set but not semi-pre w-open set. 
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Theorem  4.16.  Let w  be a WS on a topological space (X, τ).  Then every gw-open set is gsp-w-open 

set but not conversely. 

Proof. Let w be a WS on a topological space (X, τ ). Let A be a gw-open set. Then Ac is a gw-closed 

set. By Theorem 3.19, Ac is gsp-w-closed set. Therefore A is gsp-w-open set. 

Example 4.17. gsp-w-open set a gw-open set Let X = {a, b, c}. Let w be a WS on a topological 

space (X, τ) where τ = {φ, {a}, {c}, {a, c}, X} and w = {φ, {a, b}}. Then the set A = {a} is gsp-w-

open set but not gw-open set. 

Theorem 4.18. Let (X, τ) be a topological space and w be a WS on X. Then A is gsp-w-open if 

and only if F ⊆ spiw(A) whenever F ⊆ A and F is closed. 

Proof. Let A be a gsp-w-open set and F ⊆ A, where F is closed. Then X−A is gsp-w-closed set 

contained in an open set X−F. Hence spcw(X−A) ⊆ X−F, that is X−spiw(A) ⊆ X−F. So F ⊆ spiw(A). 

Conversely, suppose that F ⊆ spiw(A) for any closed set F whenever F ⊆ A. Let X−A 

⊆ U, where U ∈ τ . Then X−U ⊆ A and X−U is closed. By assumption, X−U ⊆ spiw(A) and hence 

spcw(X−A) = X−spiw.(A) ⊆ U. Therefore X−A is gsp-w-closed and hence A is gsp-w-open. 

 

Theorem 4.19. Let w be a WS on a topological space (X, τ). If a subset A of X is gsp-w-open, then 

U = X whenever U is open and spiw(A) ∪ (X−A) ⊆ U. 

 
 
 

Proof. Let U ∈ τ and spiw(A) ∪ (X−A) ⊆ U for a gsp-w-open set A. Then X−U ⊆ (X−spiw(A)) ∩ 

A. That is X−U ⊆ spcw(X−A)−(X−A). Since X−A is gsp-w-closed, by Theorem 3.21, X−U = ∅ 

and hence X = U. 

Theorem 4.20. Let w be a WS on a topological space (X, τ). If a subset A of X is gsp-w-open and 

spiw(A) ⊆ B ⊆ A, then B is gsp-w-open. 

Proof. We have X−A ⊆ X−B ⊆ X−spiw(A) = spcw(X−A). Since X−A is gsp-w- closed, it follows 

from Theorem 3.26 that X−B is gsp-w-closed and hence B is gsp- w-open. 
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