IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Phytochemical Screening of Sesbania Bispinosa.

¹Vaishnavi G. Jadhav, ²Sushant Kokane,

¹M. Pharm 2nd year, ²Assistant Professor in Pharmaceutical Chemistry Department ¹Pharmaceutical Chemistry, ²Pharmaceutical Chemistry

¹Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra, India, 416416.

ABSTRACT:

In gift study, ethanolic extraction, phytochemical investigation of leaves of legume bispinosa was done. consistent with preliminary phytochemical tests; flavonoids, Isoflavonids, alkaloids, glycosides, viscus glycosides, proteins and amino acids, lignin, carbohydrates, cartenoids, phenoplast compounds were gift in ethanolic extracts of leaves of legume Bispinosa.

KEYWORDS: Extraction, Phytochemical Screening of leaves of legume Bispinosa.

1.INTRODUCTION: flavouring drugs is additionally referred to as herbalism. it's the study of healthful plants, their uses, effects and also the role in care system. flavouring plant plays major role in care system worldwide. In Indian history, the healthful fields was principally depends on this ancient flavouring healthful plants. The flavouring drugs is additionally known as phytomedicine or therapy.⁽¹⁾

TB and cancer ar chronic diseases. If artificial medicine utilized in treatment of such diseases could has side-effects on patients, additionally results in several risk factors. however if flavouring medicine utilized in treatment, have minimum aspect effects. (2)

the globe Health Organisation (WHO) estimates that eightieth of the population of some Asian and African countries presently use flavouring drugs for a few facet of primary health care.

2.MATERIALS AND METHODS:

- 2.1Collection, drying, authentication of leaves of legume Bispinosa plant:
- 2.1.1Collection and authentication of plant material: legume bispinosa plant was collected from Kadamwadi, Sangliwadi, Sangli. The plant was known and documented by mister. Vikas B. Awale sir (Associate academic and H.O.D. of Botany) at Patangrao kadam Mahavidyalay, Sangli.
- 2.1.2Drying of leaves of legume Bispinosa: Leaves were separated from collected plant. Leaves were allowed to shade dry at temperature. once finishing the drying method, the leaves were coarsely fine.⁽³⁾

2.2Extraction of leaves of legume Bispinosa:

- **2.2.1 Pet ether extraction:** Pet ether extraction was done by soxhlet equipment. regarding forty weight unit dried powder was extracted by four hundred milliliter of Pet ether. Temperature of heating mantle was set below the boiling purpose of Pet ether. once lightweight inexperienced solvent was ascertained in thimble, extraction method was stopped. Fat was faraway from leaves of legume Bispinosa by exploitation Pet ether as a solvent. The extract was crammed in an exceedingly glass bottle, packed it, tagged it and keep it at temperature. Powder was allowed to dry on paper.
- 2.2.2 Chloroform extraction: Chloroform extraction was done by soxhlet equipment, regarding forty weight unit dried powder was extracted by four hundred milliliter of chloroform. Temperature of heating mantle was set below the boiling purpose of chloroform. once colourless solvent was ascertained in thimble, extraction method was stopped, pigment was faraway from leaves of legume Bispinosa by exploitation chloroform as a solvent. The extract was crammed in an exceedingly glass bottle, packed it, tagged it and keep it at temperature. Powder was allowed to dry on paper.
- **2.2.3 Ethanolic extraction:** once drying the powder that was treated with chloroform was once more treated with ethyl alcohol (40 weight unit powder and four hundred milliliter ethanol). once colourless solvent was ascertained in thimble, the ethyl alcohol extraction method was stopped. All extract was crammed in glass bottle, packed it, tagged it and keep it at temperature. (4,5)

Sr. No.	Tests	Observation	Inference		
Flavonoids	1000	Observation			
1.	Alkaline reagent test	Yellow fluroscene	+ve		
2.	Lead acetate test	A yellow ppt	+ve		
3.	Ferric chloride test	A green ppt	+ve		
4.	Conc. H2SO4	An orange ppt	+ve		
Iso flavonoids		<u> </u>			
1.	Extract + KOH	Yellow colour	+ve		
2.	Extract + conc. H2SO4	Yellow colour	+ve		
Alkal <mark>oid</mark> s					
1.	Dragendroff's test	A reddish brown ppt	+ve		
2.	Hager's test	A creamy white ppt	+ve		
3.	Mayer's test	A creamy white/ yellow ppt	+ve		
4.	Wager's test	A brown /reddish ppt	+ve		
Glycosides					
1.	Modified Borntrager's	A rose pink to blood red colour	+ve		
	test	solution			
2.	10% NaOH test	A brick red ppt	+ve		
3.	Aqueous NaOH test	A yellow colour	+ve		
Cardiac					
glycosides					
1.	Bromine test	A yellow ppt	+ve		
2.	Baljet test	A yellow orange colour	+ve		
Carbohydrates					
1.	Barfoed's test	A red ppt	+ve		
2.	Molish test	A violet ring	+ve		
3.	Seliwanoff's test	A rose red colour	+ve		
4.	Resorcinol test	A rose colour	+ve		
Proteins and					
amino acids					
1.	Millions test	A white ppt	+ve		
2.	Xanthoproteic test	A yellow colour solution	+ve		
Lignin					
1.	Lebal test	A olive green colour	+ve		
2.	Furfuraldehyde test	A red colour	+ve		

vww.	-	Cr	4	n	ra
v vv vv .		u		u	·

Phenolic			
compound			
1.	Iodine test	A transient red colour	+ve
2.	Ferric chloride test	Dark green/ bluish black colour	+ve
3.	Lead acetate test	A white ppt	+ve
Cartenoids	•		
1.	1 gm extract + 10 ml chloroform	A blue colour at the interface	+ve
	Vigorously shaken and filtered.		
	Filtrate + conc.H2SO4		

4. ACKNOWLEDGEMENT: Author is thankful to Guide Mr. Sushant Kokane sir, Dr. M. S. Kondawar Sir (H.O.D. of Pharmaceutical Chemistry Department), Principal Dr. S. A. Tamboli Sir and D. L. Patil Sir, 'Appasaheb Birnale College of Pharmacy, Sangli' for providing necessary facilities to carry out this research work. Also thankful to Local botonist of Sangli for authentication of the plant.

5. REFERENCES:

- 1. https://www.nhp.gov.in/introduction-and-importance-of-medicinal-plants and-herbs mtl (Accessed on 2021).
- 2. https://en.m.wikipedia.org/wiki/Tuberculosis (Accessed on 2021).
- 3. https://www.who.int/health-topics/tuberculosis (Accessed on 2021).
- 4. https://en.m.wikipedia.org/wiki/Cancer (Accessed on 2021).
- 5. https://en.m.wikipedia.org/wiki sesbaniabispinosa(Accessed on 2021).
- 6. Nikhil Mehta, Priyanka Rao, Evaluation of antioxidant and anticancer potential of sesbania aculeata volume 20, page no. 109
- 7. Ganesh D Boddawar, Shafik Shaikh, Alexandia Journal of Medicine 2015
- 8. M Sarwar Jahan, Rawshan Sabina, Research articles