INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT) An International Dpen Access, Peer-reviewed, Refereed Journal

Solution And Sensitivity Analysis Of Diet Problem Of Indian Teenage Girls Using Python Programming

Pratibha Lakhani : Associate Professor, Department of Statistics, Government Vidarbha Institute of Science and Humanities, Amravati (MS), India.

Pooja Wadodkar : Assistant Professor, Kaveri college of Arts, Science and Commerce, Pune (MS), India.

Abstract

: The Linear Programming Problem (LPP) is a problem of finding the optimal value of the given linear function. The optimal value can be either maximum value or minimum value. Python (Spider) is a widely used programming language and freely available software for statistical computing. This paper is the study of determining the optimum solution for the diet problem of the teenage girls in India. We solved this problem by using Python programming.

The various nutrients like carbohydrates, proteins, fats, vitamins and minerals in different food items of various food groups like cereals and millets, grain legumes, green leafy vegetables, othervegetables, fruits, roots and tubers, condiments and spices-fresh, nuts and oil seeds, sugars, milk and milk products, are helpful for maintenance, growth, reproduction and health of human beings.

In this paper the various food items are taken as decision variables and constraints are designed corresponding to different nutrients. In the construction of constraints we have assumed that any intake of more than the minimum requirement of nutrients is not harmful to the human body. Here the objective is to find the optimum solution that is to find the quantity of food items that should be consumed to minimize the cost of diet which will fulfill the minimum requirement of nutrients for teenage girls.

Keywords: Nutrients, Diet, pulp, Lp_prob.solve(), Lp_prob,objective, pandas, Dataframe.

1. INTRODUCTION

Indian teenage girls in the age group 10-18 years, need a wide range of nutrients to perform various functions in their body and to lead a healthy life. Since girls derive all the nutrients they need through the diet they eat, their diet must be well balanced to provide all the vital nutrients in proper proportion [2]. Since teenage girls are in the high need of protein, fats, carbohydrates, vitamin A and C, iron, calcium, folate and also magnesium to have a good nutritional status which will keep them free from diseases like anemia, underweight, PCOS, etc. Hence their diet must have good accessibility to these nutrients through their regular diet which must be easily available to them. To find optimum nutritional benefits in low cost here we formulate the LPP (Diet Problem) in which we have to specify first, the four things which are,

1.1. Decision Variables:

The variables used to decide the output as decision variables. We have taken 49 vegetarian food items as decision variables (as shown in table 2) which Indian girls commonly use in their daily diet as a sustaining food. In this diet problem using LPP we have to find out how many grams of these food items are necessary for the daily requirement of nutrients for girls at minimum cost.

1.2. Objective Function:

The linear function which is to be optimized is called the objective function. In this problem, our main objective is to minimize the total cost of the daily diet of girls which will fulfill the minimum requirement of nutrients. Here we want the cost of food items purchased (as shown in table 2) to be as little as possible and at the same time, we also emphasize on the fact that these food items provide all the necessary nutrients required for the healthy life of girls. Some food items can be common for different nutrients. It is beneficial for cost cutting of diet.

1.3. Constraints:

These are the restrictions on the decision variables, i.e., food items should provide minimum nutritional requirements necessary for healthy life. There are many nutrients which are available in various food items, but for convenience, for teenage girls, we considered 10 nutrients which are commonly available in all types of food items and their minimum amounts which are required for sustaining a healthy life recommended by Indian Council of Medical Research (ICMR) are as shown in table 1[1].

Table 1. ICMR Recommended dietary allowances per day for Indians

Nutrients (gm/day)	Protein	Fats	Carbo- hydrates	Vit. A	Folate	Vit. C	Vit. D	Iron	Calcium	Magnes ium
Girls (Body wt. 36.4 kg to $55.7 \mathrm{~kg})$	43.2	67.7	130							

1.4 Non Negative Restrictions:

All the decision variables are restricted to be non negative.
Mathematically, the diet problem can be stated as follows,

Subject to the constraints,

$$
\begin{equation*}
=\sum_{\square=1} \square_{\square} \square_{\square} \tag{l}
\end{equation*}
$$

Where x_{j} 's are the quantities of food items, c_{j} 's are the costs of food items per $100 \mathrm{gm}, a_{\mathrm{ij}}$'s are amounts of nutrients per 100 gm of food items and b_{i} 's are daily minimum nutritional requirements.

Our diet problem is to minimize the function (1) subject to the constraints (2) and non negative restrictions (3).
Here the diet problem is of minimization and constraints are of greater than or equal to type.We solved it using a computer-based method i.e., Python programming for planning an optimal menu with respect to the daily nutritional requirements of Indian tee nage girls [6].
Following the formulation of LPP and attainment of an optimum solution of it, it is often desired to study the effect of changes in the different parameters of the problem on the current optimum solution. If slight changes are made in the parameters or the structure of a given LPP after its optimum solution has been attained then the analysis of such post-optimal problems can thus be termed as postoptimality analysis or sensitivity analysis [5].

2. FORMULATION OF DIET PROBLEM

Table 2 provides us the input data for a LPP with 49 decision variables indicating the amount of various food items to be consumed and 10 constraints determining minimum nutritional requirement [3][4].

Table 2. Amount of various nutrients contained in different vegetarian food groups-items with costs

	Potato	$\left\lvert\, \begin{aligned} & \text { x2 } \\ & 0\end{aligned}\right.$	4	1.6	0.1	22.6	0.01	0.000 48	0.000224	0.000013 85	0.0264 1	0.000000 19	0.0223 4
5	Condiments And Spices												
	Cumin Seeds	x 2 1	32	8.7	15.0	36.6	1.08	$\begin{array}{r} \hline 0.011 \\ 7 \end{array}$	0.000553	0.000027 79	0	0.000012 1	0.442
	Black Papper	x2 2	120	11.5	6.8	49.2	0.46	0.012 4	0.002219	0.000021 89	0	0.000025 68	0.196
	Turmeric	$\times 2$ 3	14	6.3	5.1	69.4	0.15	$\begin{array}{r} \hline 0.067 \\ 8 \\ \hline \end{array}$	0.000427	0.000013 86	0	0.000018 67	0.26
6	Other Vegetables												
	French Beans (Country)	$\begin{aligned} & \mathrm{x} 2 \\ & 4 \end{aligned}$	11.5	1.7	0.1	4.5	0.05	$\begin{array}{r} \hline 0.000 \\ 61 \end{array}$	0.001501	0.000047 45	0.0158 1	0.000001 82	0.0430 1
	Pumpkin Fruit	$\begin{aligned} & \mathrm{x} 2 \\ & 5 \end{aligned}$	6	1.4	0.1	4.6	0.01	$\begin{array}{r} \hline 0.000 \\ 44 \end{array}$	0.001449	0.000024 14	0.0080 4	0.000001 4	0.0104 3
	Brinjal	$\begin{aligned} & \mathrm{x} 2 \\ & 6 \end{aligned}$	8	1.4	0.3	4	0.018	$\begin{array}{r} \hline 0.000 \\ 38 \end{array}$	0.000309	0.000033 93	0.0020 9	0.000001 04	0.021
	Cauliflower	$\begin{aligned} & \hline \mathrm{x} 2 \\ & 7 \end{aligned}$	8	2.6	0.4	4	0.033	$\begin{array}{r} 0.001 \\ 23 \end{array}$	0.000050 48	$\begin{array}{\|r\|} \hline 0.000045 \\ 95 \\ \hline \end{array}$	[0.0471	$\begin{array}{r} \hline 0.000001 \\ 32 \end{array}$	0.0230 8
	Tomato	$\begin{aligned} & \mathrm{x} 2 \\ & 8 \\ & \hline \end{aligned}$	4	1.9	0.1	3.6	0.02	0.001 8	0.000546	0.000012 51	0.0164 1	0.000001 1	0.0135 7 0.0118
	Capsicum	$\begin{aligned} & \mathrm{x} 2 \\ & 9 \end{aligned}$	8	1.3	0.3	4.3	0.01	$\begin{array}{r} 0.000 \\ 567 \\ \hline \end{array}$	0.002511	0.000051 85	0.0012 3	0.00000 7	0.0118 4
	Ladyfingers	$\begin{array}{\|l\|} \hline \mathrm{x} 3 \\ 0 \end{array}$	4	1.9	0.2	6.4	0.066	$\begin{array}{r} \hline 0.000 \\ 35 \end{array}$	0.001223	$\begin{array}{\|l\|} \hline 0.00063 \\ 68 \end{array}$	$\begin{aligned} & 0.022 \\ & 51 \end{aligned}$	$\begin{array}{r} \hline 0.000007 \\ 46 \end{array}$	0.0661
	Cucumber	$\begin{array}{\|l\|} \hline \text { x3 } \\ \hline 1 \end{array}$	21	0.4	0.1	2.5	0.01	$\begin{array}{r} \hline 0.000 \\ 6 \end{array}$	0.000171	$\begin{array}{\|r\|} \hline 0.000014 \\ 67 \\ \hline \end{array}$	$\begin{array}{r} 0.0062 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.000001 \\ 36 \end{array}$	0.0184 8
7	Fruits												
	Banana	$\begin{aligned} & \hline \text { x3 } \\ & \hline 2 \end{aligned}$	5	1.2	0.3	27.2	0.017	$\begin{array}{r} \hline 0.000 \\ 36 \end{array}$	0.00026	0.000017 93	\| 0.0080	2000000	0.0302 2
	Guava	$\begin{array}{\|l\|} \hline \mathrm{x} 3 \\ 3 \\ \hline \end{array}$	10	0.9	0.3	11.2	0.01	$\begin{array}{r} \hline 0.000 \\ 27 \\ \hline \end{array}$	0.000996	$\begin{array}{\|r\|} \hline 0.000029 \\ 76 \\ \hline \end{array}$	0.214	0.000001 68	$\begin{array}{r} 0.0152 \\ 61 \end{array}$
	Sweet Lemon	$\begin{aligned} & \mathrm{x} 3 \\ & \hline 4 \end{aligned}$	10	0.7	0.3	7.3	0.03	$\begin{array}{r} \hline 0.000 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.000085 \\ 13 \end{array}$	$\begin{array}{\|r\|} \hline 0.000015 \\ 38 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 0.0469 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.000000 \\ 3 \end{array}$	0.0089
	Orange	$\begin{array}{\|l\|} \hline \mathrm{x} 3 \\ 5 \\ \hline \end{array}$	18	0.7	0.2	10.9	0.026	0.000 32	0.000675	$\begin{array}{\|r\|} \hline 0.000019 \\ \hline \end{array}$	$\begin{array}{r} 0.0427 \\ \hline 2 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.000000 \\ 34 \end{array}$	0.0110 5 0.0068
	Grapes	$\begin{aligned} & \mathrm{x} 3 \\ & 6 \end{aligned}$	24	0.5	0.3	16.5	0.02	$\begin{array}{r} \hline 0.000 \\ 52 \end{array}$	0.000208	$\begin{array}{\|r\|} \hline 0.000008 \\ 35 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 0.0171 \\ 0 \end{array}$	0.000003 59	$\begin{array}{r} \hline 0.0068 \\ 7 \end{array}$
8	Nuts And Oil Seeds												
	Sesame Seeds	$\begin{aligned} & \mathrm{x} 3 \\ & 7 \end{aligned}$	25	18.3	43.3	25	1.45	$\begin{array}{r} \hline 0.002 \\ 5 \end{array}$	$\begin{array}{r} \hline 0.000057 \\ 06 \end{array}$	$\begin{aligned} & 0.00013 \\ & 1 \end{aligned}$	0	$\begin{array}{r} \hline 0.000062 \\ 74 \end{array}$	0.372
	Groundnuts	$\begin{array}{\|l\|} \hline \mathrm{x} 3 \\ 8 \end{array}$	13	25.3	40.1	26.1	0.09	$\begin{array}{r} \hline 0.002 \\ 5 \end{array}$	$\begin{array}{r} \hline 0.000082 \\ 8 \end{array}$	$\begin{aligned} & 0.00009 \\ & 087 \end{aligned}$	0	0.000007 1	0.197
	Mustard seeds	$\begin{array}{\|l} \hline \mathrm{x} 3 \\ 9 \end{array}$	20	20	39.7	23.8	0.49	$\begin{array}{r} \hline 0.007 \\ 9 \end{array}$	0.00675	$\begin{aligned} & 0.00009 \\ & 488 \end{aligned}$	0	0.000031 79	0.266
	Dry Coconut	$\begin{array}{\|l\|} \hline \mathrm{x} 4 \\ 0 \end{array}$	24	6.8	62.3	18.4	0.4	$\begin{array}{r} \hline 0.007 \\ 8 \\ \hline \end{array}$	0.000176	$\begin{array}{\|l\|} \hline 0.00002 \\ 427 \\ \hline \end{array}$	0	0	$\begin{array}{r}0.0972 \\ 1 \\ \hline\end{array}$
9	Milk And Milk Products												
	Milk(Buffalo)	$\begin{array}{\|l} \mathrm{x} 4 \\ 1 \end{array}$	6	4.3	6.5	5	0.21	$\begin{array}{r} \hline 0.000 \\ 2 \end{array}$	$\begin{array}{r} \hline 0.000080 \\ 87 \end{array}$	$\begin{aligned} & 0.00000 \\ & 857 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 37 \end{aligned}$	$\begin{array}{r} \hline 0.000001 \\ 63 \end{array}$	$\begin{array}{r} \hline 0.0100 \\ 5 \end{array}$
	Paneer	$\begin{aligned} & \mathrm{x} 4 \\ & 2 \end{aligned}$	49	13.4	23	7.9	0.48	0	0.000194	$\begin{array}{\|r\|} \hline 0.000093 \\ 31 \end{array}$	0	0.000000 13	$\begin{array}{r} \hline 0.0266 \\ 2 \end{array}$
	curd	4 3	15	3.1	4	3	0.149	$\begin{array}{r} \hline 0.000 \\ 2 \\ \hline \end{array}$	0	0	0	0	0

	Cheese	x 4 4	57	24.1	25.1	6.3	0.79	0.002	0	0	0	0	0
10	Fats And Edible Oils												
	Cooking Oil	4 5	21	0	100	0	0	0	0	0	0	0	0
	Ghee	x 4 6	53	0	100	0	0	0	0	0	0	0	0
	Butter	x 4 7	54	0	81	0	0	0	0	0		0	0
11	Sugars												
	Jaggery	x4 8	6	0.4	0.1	95	0.08	$\begin{array}{r} \hline 0.002 \\ 64 \end{array}$	$\begin{array}{r} \hline 0.000018 \\ 49 \end{array}$	$\begin{array}{r} \hline 0.000014 \\ 4 \end{array}$	0	0.000000 47	0.115
	Honey	14 9	38	0.3	0	79.5	0.005	$\begin{array}{r} \hline 0.000 \\ 696 \end{array}$	0	0	0	0	0

*The prices of food items are found from the grocery shop of Pune (MS, India) in the month of September 2022 i.e. in the end of rainy season and starting of winter season. Here we have taken seasonal leafy vegetable-spinach and fruits - Orange, Lime Sweet and Guava, etc.

3. DEFINING DIET PROBLEM OF INDIAN GIRLS USING PYTHON PROGRAMMING

One of the easiest and one of the most used tools to code up a linear optimization problem in Python is using the PuLP library. PuLP is a free open source software written in Python. It is used to describe optimization problems as mathematical models. PuLP can then call any of numerous external LP solvers (CBC, GLPK, CPLEX, Gurobi etc) to solve this model and then use python commands to manipulate and display the solution. We install the library PuLP required for solver in our Python environment. [7][8] The Python program for diet problem of indian girls is as given below:

```
# import the library pulp as p
import pulp as p
# Create a LP Minimization problem
Lp_prob = p.LpProblem('Problem', p.LpMinimize)
# Create problem Variables
x1 = p.LpVariable("x1", lowBound = 0)
x2 = p.LpVariable("x2", lowBound = 0)
x3 = p.LpVariable("x3", lowBound = 0)
x4 = p.LpVariable("x4", lowBound = 0)
x5 = p.LpVariable("x5", lowBound = 0)
x6 = p.LpVariable("x6", lowBound = 0)
x7 = p.LpVariable("x7", lowBound = 0)
x8 = p.LpVariable("x8", lowBound = 0)
x9 = p.LpVariable("x9", lowBound = 0)
x10 = p.LpVariable("x10", lowBound = 0)
x11 = p.LpVariable("x11", lowBound = 0)
x12 = p.LpVariable("x12", lowBound = 0)
x13 = p.LpVariable("x13", lowBound = 0)
x14 = p.LpVariable("x14", lowBound = 0)
x15 = p.LpVariable("x15", lowBound = 0)
x16 = p.LpVariable("x16", lowBound = 0)
x17 = p.LpVariable("x17", lowBound = 0)
x18 = p.LpVariable("x18", lowBound = 0)
x19 = p.LpVariable("x19", lowBound = 0)
x20 = p.LpVariable("x20", lowBound = 0)
x21 = p.LpVariable("x21", lowBound = 0)
x22 = p.LpVariable("x22", lowBound = 0)
x23 = p.LpVariable("x23", lowBound = 0)
x24 = p.LpVariable("x24", lowBound = 0)
x25 = p.LpVariable("x25", lowBound = 0)
x26 = p.LpVariable("x26", lowBound = 0)
x27 = p.LpVariable("x27", lowBound = 0)
x28 = p.LpVariable("x28", lowBound = 0)
x29 = p.LpVariable("x29", lowBound = 0)
```

```
x30 = p.LpVariable("x30", lowBound = 0)
x31 = p.LpVariable("x31", lowBound = 0)
x32 = p.LpVariable("x32", lowBound = 0)
x33 = p.LpVariable("x33", lowBound = 0)
x34 = p.LpVariable("x34", lowBound = 0)
x35 = p.LpVariable("x35", lowBound = 0)
x36 = p.LpVariable("x36", lowBound = 0)
x37 = p.LpVariable("x37", lowBound = 0)
x38 = p.LpVariable("x38", lowBound = 0)
x39 = p.LpVariable("x39", lowBound = 0)
x40 = p.LpVariable("x40", lowBound = 0)
x41 = p.LpVariable("x41", lowBound = 0)
x42 = p.LpVariable("x42", lowBound = 0)
x43 = p.LpVariable("x43", lowBound = 0)
x44 = p.LpVariable("x44", lowBound = 0)
x45 = p.LpVariable("x45", lowBound = 0)
x46 = p.LpVariable("x46", lowBound = 0)
x47 = p.LpVariable("x47", lowBound = 0)
x48 = p.LpVariable("x48", lowBound = 0)
x49 = p.LpVariable("x49", lowBound = 0)
```

\# Objective Function
Lp_prob+=5*x1+6.5*x2+4*x3+5*x4+2.5*x5+12*x6+11*x7+7.6*x8+12*x9+14.8*x10+6*x11+6*x12+16*x13+ + $10 * \mathrm{x} 14+6 * \mathrm{x} 15+6 * \mathrm{x} 16+3 * \mathrm{x} 17+4.7 * \mathrm{x} 18+8 * \mathrm{x} 19+4 * \mathrm{x} 20+32 * \mathrm{x} 21+120 * \mathrm{x} 22+14 * \mathrm{x} 23+11.5 * \mathrm{x} 24+6 * \mathrm{x} 25+8 * \mathrm{x} 26+8^{*}$ $\mathrm{x} 27+4 * \mathrm{x} 28+8 * \mathrm{x} 29+4 * \mathrm{x} 30+21 * \mathrm{x} 31+5 * \mathrm{x} 32+10 * \mathrm{x} 33+10 * \mathrm{x} 34+18 * \mathrm{x} 35+24 * \mathrm{x} 36+25 * \mathrm{x} 37+13 * \mathrm{x} 38+20 * \mathrm{x} 39+24 * \mathrm{x} 4$ $0 \quad+6 * x 41+49 * x 42+15 * x 43+57 * x 44+21 * x 45+53 * x 46+54 * x 47+6 * x 48+38 * x 49$
\# Constraints:
\# Constraint corresponding to Protein:
Lp_prob+=12.1*x1+10.4*x2+6.6*x3+7.5*x4+11.1*x5+22.3*x6+24.0*x7+20.8*x8+20.4*x9+23.6*x10+7.2*x11
$+2.0 * \mathrm{x} 12+4.4 * \mathrm{x} 13+3.3 * \mathrm{x} 14+1.8 * \mathrm{x} 15+0.6 * \mathrm{x} 16+1.8 * \mathrm{x} 17+36.3 * \mathrm{x} 18+2.3 * \mathrm{x} 19+1.6 * \mathrm{x} 20+8.7 * \mathrm{x} 21+11.5 * \mathrm{x} 22+6.3 * \mathrm{x}$ $23+1.7 * \mathrm{x} 24+1.4 * \mathrm{x} 25+1.4 * \mathrm{x} 26+2.6 * \mathrm{x} 27+1.9 * \mathrm{x} 28+1.3 * \mathrm{x} 29+0.2 * \mathrm{x} 30+1.9 * \mathrm{x} 31+0.4 * \mathrm{x} 32+0.9 * \mathrm{x} 33+0.7 * \mathrm{x} 34+0.7 * \mathrm{x}$ $35+0.5 * \mathrm{x} 36+18.3 * \mathrm{x} 37+25.3 * \mathrm{x} 38+20 * \mathrm{x} 39+6.8 * \mathrm{x} 40+4.3 * \mathrm{x} 41+13.4 * \mathrm{x} 42+3.1 * \mathrm{x} 43+24.1 * \mathrm{x} 44+0 * \mathrm{x} 45+0 * \mathrm{x} 46+0 * \mathrm{x} 4$ $7+0.4 * x 48+0.3 * x 49>=43.2$
\# Constraint corresponding to Fats:
 $+0.9 * \mathrm{x} 13+0.6 * \mathrm{x} 14+0.1 * \mathrm{x} 15+0.3 * \mathrm{x} 16+0.1 * \mathrm{x} 17+0.1 * \mathrm{x} 18+0.9 * \mathrm{x} 19+0.1 * \mathrm{x} 20+15.0 * \mathrm{x} 21+6.8 * \mathrm{x} 22+5.1 * \mathrm{x} 23+0.1 * \mathrm{x} 2$ $4+0.1 * \mathrm{x} 25+0.3 * \mathrm{x} 26+0.4 * \mathrm{x} 27+0.1 * \mathrm{x} 28+0.3 * \mathrm{x} 29+0.2 * \mathrm{x} 30+0.1 * \mathrm{x} 31+0.3 * \mathrm{x} 32+0.3 * \mathrm{x} 33+0.3 * \mathrm{x} 34+0.2 * \mathrm{x} 35+0.3 * \mathrm{x} 3$ $6+43.3 * x 37+40.1 * x 38+39.7 * x 39+62.3 * x 40+6.5 * x 41+23 * x 42+4 * x 43+25.1 * x 44+100 * x 45+100 * x 46+81 * x 47+0$. $1 * x 48+0 * x 49>=67.7$
\# Constraint corresponding to Carbohydrates:

Lp_prob+=69.4*x1+74.8*x2+77.3*x3+73.6*x4+1.5*x5+57.6*x6+59.9*x7+59.8*x8+59.6*x9+56.5*x10+15.9*x $11+2.9 * \mathrm{x} 12+34 * \mathrm{x} 13+6.3 * \mathrm{x} 14+46 * \mathrm{x} 15+6.8 * \mathrm{x} 16+12.6 * \mathrm{x} 17+29.8 * \mathrm{x} 18+12.3 * \mathrm{x} 19+22.6 * \mathrm{x} 20+36.6 * \mathrm{x} 21+49.2 * \mathrm{x} 22$ $+69.4 * x 23+4.5 * x 24+4.6 * x 25+4 * x 26+4 * x 27+3.6 * x 28+4.3 * x 29+6.4 * x 30+2.5 * x 31+27.2 * x 32+11.2 * x 33+7.3 * x 34$ $+10.9 * x 35+16.5 * x 36+25 * x 37+26.1 * x 38+23.8 * x 39+18.4 * x 40+5 * x 41+7.9 * x 42+3 * x 43+6.3 * x 44+0 * x 45+0 * x 46+$ $0 * x 47+95 * x 48+79.5 * x 49>=130$
\# Constraint corresponding to Calcium:
Lp_prob+=0.048*x1+0.016*x2+0.020*x3+0.023*x4+0.01*x5+0.073*x6+0.075*x7+0.056*x8+0.154*x9+0.202* $\mathrm{x} 10+0.02 * \mathrm{x} 11+0.073 * \mathrm{x} 12+0.08 * \mathrm{x} 13+0.184 * \mathrm{x} 14+0.039 * \mathrm{x} 15+0.05 * \mathrm{x} 16+0.04 * \mathrm{x} 17+0.03 * \mathrm{x} 18+0.02 * \mathrm{x} 19+0.01 * \mathrm{x} 2$ $0+1.08 * x 21+0.46 * x 22+0.15 * x 23+0.05 * x 24+0.01 * x 25+0.018 * x 26+0.033 * x 27+0.02 * x 28+0.01 * x 29+0.066 * x 30+$ $0.01 * x 31+0.017 * x 32+0.01 * x 33+0.03 * x 34+0.026 * x 35+0.02 * x 36+1.45 * x 37+0.09 * x 38+0.49 * x 39+0.4 * x 40+0.21$

\# Constraint corresponding to Iron:
Lp_prob+=0.0049 ${ }^{x} 1+0.0016 * x 2+0.02 * x 3+0.0066 * x 4+0.0023 * x 5+0.0027 * x 6+0.0039 * x 7+0.0053 * x 8+0.0038 *$ $\mathrm{x} 9+0.0095 * \mathrm{x} 10+0.0015 * \mathrm{x} 11+0.00114 * \mathrm{x} 12+0.0006 * \mathrm{x} 13+0.00142 * \mathrm{x} 14+0.0008 * \mathrm{x} 15+0.00037 * \mathrm{x} 16+0.0012 * \mathrm{x} 17+$ $0.0012 * \mathrm{x} 18+0.0035 * \mathrm{x} 19+0.00048 * \mathrm{x} 20+0.0117 * \mathrm{x} 21+0.0124 * \mathrm{x} 22+0.0678 * \mathrm{x} 23+0.00061 * \mathrm{x} 24+0.00044 * \mathrm{x} 25+0.00$ $038 * x 26+0.00123 * x 27+0.0018 * x 28+0.000567 * x 29+0.00035 * x 30+0.0006 * x 31+0.00036 * x 32+0.00027 * x 33+0.0$ $007 * \mathrm{x} 34+0.00032 * \mathrm{x} 35+0.00052 * \mathrm{x} 36+0.0025 * \mathrm{x} 37+0.0025 * \mathrm{x} 38+0.0079 * \mathrm{x} 39+0.0078 * \mathrm{x} 40+0.0002 * \mathrm{x} 41+0 * \mathrm{x} 42+$ $0.0002 * \mathrm{x} 43+0.0021 * \mathrm{x} 44+0 * \mathrm{x} 45+0 * \mathrm{x} 46+0 * \mathrm{x} 47+0.00264 * \mathrm{x} 48+0.000696 * \mathrm{x} 49>=0.03$
\# Constraint corresponding to Vitamin A:
Lp_prob+=0.000284*x1+0.000276*x2+0.00003361*x3+0.00005046*x4+0.000893*x5+0.000484*x6+0.000619* $\mathrm{x} 7+0.000999 * \mathrm{x} 8+0.000463 * \mathrm{x} 9+0.000622 * \mathrm{x} 10+0.001286 * \mathrm{x} 11+0.009553 * \mathrm{x} 12+0.012577 * \mathrm{x} 13+0.013808 * \mathrm{x} 14+0$. $000339 * \mathrm{x} 15+0.00001761 * \mathrm{x} 16+0.00003104 * \mathrm{x} 17+0.00003048 * \mathrm{x} 18+0.00025 * \mathrm{x} 19+0.000224 * \mathrm{x} 20+0.000553 * \mathrm{x} 21$ $+0.002219 * x 22+0.000427 * x 23+0.001501 * x 24+0.001449 * x 25+0.000309 * x 26+0.00005048 * x 27+0.000546 * x 28+$ $0.002511 * \mathrm{x} 29+0.001223 * \mathrm{x} 30+0.000171 * \mathrm{x} 31+0.00026 * \mathrm{x} 32+0.000996 * \mathrm{x} 33+0.00008513 * \mathrm{x} 34+0.000675 * \mathrm{x} 35+0$. $000208 * \mathrm{x} 36+0.00005706 * \mathrm{x} 37+0.0000828 * \mathrm{x} 38+0.00675 * \mathrm{x} 39+0.000176 * \mathrm{x} 40+0.00008087 * \mathrm{x} 41+0.000194 * \mathrm{x} 42+$ $0 * \mathrm{x} 43+0$ x $44+0 * \mathrm{x} 45+0 * \mathrm{x} 46+0 * \mathrm{x} 47+0.00001849 * \mathrm{x} 48+0 * \mathrm{x} 49>=0.00086$
\# Constraint corresponding to Vitamin D2:
Lp_prob $+=0.0000152 * x 1+0.00000819 * x 2+0 * x 3+0 * x 4+0.0000336 * x 5+0.00000212 * x 6+0.00000205 * x 7+0.0000$ $0175 * \mathrm{x} 8+0.00000842 * \mathrm{x} 9+0.00000977 * \mathrm{x} 10+0.00001521 * \mathrm{x} 11+0.00000026 * \mathrm{x} 12+0.00000236 * \mathrm{x} 13+0 * \mathrm{x} 14+0.000$ $00021 * \mathrm{x} 15+0.0000004 * \mathrm{x} 16+0.00000012 * \mathrm{x} 17+0.00000197 * \mathrm{x} 18+0.0000031 * \mathrm{x} 19+0.00000019 * \mathrm{x} 20+0.0000121 *$ $\mathrm{x} 21+0.00002568 * \mathrm{x} 22+0.00001867 * \mathrm{x} 23+0.00000182 * \mathrm{x} 24+0.0000014 * \mathrm{x} 25+0.00000104 * \mathrm{x} 26+0.00000132 * \mathrm{x} 27+$ $0.000011 * x 28+0.0000007 * x 29+0.00000746 * x 30+0.00000136 * x 31+0.0000002 * x 32+0.000000168 * x 33+0.00000$ $03 * x 34+0.00000034 * x 35+0.00000359 * x 36+0.00006274 * x 37+0.0000071 * x 38+0.00003179 * x 39+0 * x 40+0.0000$ $0163 * x 41+0.00000013 * x 42+0 * x 43+0 * x 44+0 * x 45+0 * x 46+0 * x 47+0.00000047 * x 48+0 * x 49>=0.000015$
\#\# Constraint corresponding to Vitamin B9:
Lp_prob+=0.00002922*x1+0.00002568*x2+0.00000846*x3+0*x4+0.00002581*x5+0.000108*x6+0.00009211* $\mathrm{x} 7+0.000182 * \mathrm{x} 8+0.00008875 * \mathrm{x} 9+0.000349 * \mathrm{x} 10+0.00005477 * \mathrm{x} 11+0.000142 * \mathrm{x} 12+0.00007526 * \mathrm{x} 13+0.0000510$ $1 * \mathrm{x} 14+0.00004636 * \mathrm{x} 15+0.00002465 * \mathrm{x} 16+0.00002968 * \mathrm{x} 17+0.00007882 * \mathrm{x} 18+0.00001082 * \mathrm{x} 19+0.00001385 * \mathrm{x}$ $20+0.00002779 * x 21+0.00002189 * x 22+0.00001386 * x 23+0.00004745 * x 24+0.00002414 * x 25+0.00003393 * x 26+$ $0.00004595 * \mathrm{x} 27+0.00001251 * \mathrm{x} 28+0.00005185 * \mathrm{x} 29+0.0006368 * \mathrm{x} 30+0.00001467 * \mathrm{x} 31+0.00001793 * \mathrm{x} 32+0.000$ $02976 * x 33+0.00001538 * x 34+0.00001946 * x 35+0.00000835 * x 36+0.000131 * x 37+0.00009087 * x 38+0.00009488$
*x $39+0.00002427 * x 40+0.00000857 * x 41+0.00009331 * x 42+0 * x 43+0 * x 44+0 * x 45+0 * x 46+0 * x 47+0.0000144 * x 4$ $8+0 * x 49>=0.000245$
\# Constraint corresponding to Vitamin C:
Lp_prob $+=0 *$ x $1+0 * x 2+0 * x 3+0 * x 4+0 * x 5+0 * x 6+0 * x 7+0 * x 8+0 * x 9+0 * x 10+0.0384 * x 11+0.03028 * x 12+0.05825^{*}$
$\mathrm{x} 13+0.02387 * \mathrm{x} 14+0.03325 * \mathrm{x} 15+0.1763 * \mathrm{x} 16+0.01096 * \mathrm{x} 17+0.1357 * \mathrm{x} 18+0.00543 * \mathrm{x} 19+0.02641 * \mathrm{x} 20+0 * \mathrm{x} 21+0$
*x $22+0 * \mathrm{x} 23+0.01581 * \mathrm{x} 24+0.00804 * \mathrm{x} 25+0.00209 * \mathrm{x} 26+0.04714 * \mathrm{x} 27+0.01641 * \mathrm{x} 28+0.00123 * \mathrm{x} 29+0.02251 * \mathrm{x} 30$
$+0.00621 * \mathrm{x} 31+0.00806 * \mathrm{x} 32+0.214 * \mathrm{x} 33+0.04696 * \mathrm{x} 34+0.04272 * \mathrm{x} 35+0.01710 * \mathrm{x} 36+0 * \mathrm{x} 37+0 * \mathrm{x} 38+0 * \mathrm{x} 39+0 * \mathrm{x} 4$ $0+0.00237 * x 41+0 * x 42+0 * x 43+0 * x 44+0 * x 45+0 * x 46+0 * x 47+0 * x 48+0 * x 49>=0.066$
\# Constraint corresponding to Magnesium:
Lp_prob+=0.125*x1+0.03789*x2+0.07792*x3+0.06459*x4+0.145*x5+0.119*x6+0.155*x7+0.118*x8+0.173*x $9+0.205 * \mathrm{x} 10+0.04011 * \mathrm{x} 11+0.08697 * \mathrm{x} 12+0.06367 * \mathrm{x} 13+0.07268 * \mathrm{x} 14+0.01799 * \mathrm{x} 15+0.02225 * \mathrm{x} 16+0.01516 * \mathrm{x} 1$ $7+0.02578 * \mathrm{x} 18+0.03686 * \mathrm{x} 19+0.02234 * \mathrm{x} 20+0.442 * \mathrm{x} 21+0.196 * \mathrm{x} 22+0.26 * \mathrm{x} 23+0.04301 * \mathrm{x} 24+0.01043 * \mathrm{x} 25+0.0$ $21 * \mathrm{x} 26+0.02308 * \mathrm{x} 27+0.01357 * \mathrm{x} 28+0.01184 * \mathrm{x} 29+0.0661 * \mathrm{x} 30+0.01848 * \mathrm{x} 31+0.03022 * \mathrm{x} 32+0.015261 * \mathrm{x} 33+0.0$ $089 * x 34+0.01105 * x 35+0.00687 * x 36+0.372 * x 37+0.197 * x 38+0.266 * x 39+0.09721 * x 40+0.01005 * x 41+0.02662 *$ $\mathrm{x} 42+0 * \mathrm{x} 43+0 * \mathrm{x} 44+0 * \mathrm{x} 45+0 * \mathrm{x} 46+0 * \mathrm{x} 47+0.115 * \mathrm{x} 48+0 * \mathrm{x} 49>=0.325$
status $=$ Lp_prob.solve() \# Solver
\# Sensitivity Analysis:
import pandas as pd
Lp_prob.solve()
print("Model Status: $\}$ ".format(p.LpStatus[Lp_prob.status]))
print("Objective = ", p.value(Lp_prob.objective))
for v in Lp_prob.variables():
print(v.name,"=", v.varValue)
o = [\{ 'Name':name,'Constraint':c,'shadow price':c.pi,'slack': c.slack\} for name, c in Lp_prob.constraints.items()] print(pd.DataFrame(o))

4. SOLUTION OF DIET PROBLEM OF INDIAN GIRLS

Table 3: Output of Python Program of diet problem of Indian girls.

$\mathrm{x} 9=0.0$

Here we get resultant optimum solution which gives the minimum cost (z) Rs. 25.29067 of food items satisfying minimum nutritional requirement (constraints) with values of basic variables as $x_{3}=1.43, x_{5}=1.27, x_{18}=0.54, x_{30}=0.25$ and $x_{45}=0.61$ as shown in table 3.. Here $\mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{18}, \mathrm{x}_{30}$ and x_{45} indicate quantities in 100 grams of rice flakes, dry maize, garlik, ladies fingers and Cooking oils like groundnuts oil, coconut oil,etc.

Finding the optimum solution to a linear programming model is only the first step. After that we perform the sensitivity analysis of the optimum solution and the output is as shown in table 4.

Table 4: Sensitivity Analysis of Optimum solution of diet problem of Indian girls.

5. SENSITIVITY ANALYSIS

5.1. Interpreting Dual Values:

Dual values are the most basic form of sensitivity analysis information. The dual value for a variable i.e. Reduced cost is nonzero only when the variable's value is equal to its upper or lower bound at the optimal solution. This variable is called a nonbasic variable, and its value was driven to the bound during the optimization process. The reduced costs tell us how much the objective function coefficients (costs per 100 gm) can be increased or decreased before the optimal solution changes.

The dual value for a constraint i.e., shadow price is nonzero only when the constraint is equal to its bound as shown in the figure 3. This is called a binding constraint, and its value was driven to the bound during the optimization process. These shadow prices tell us how much the optimal solution can be increased or decreased if we change the right hand side values (Minimum Requirement) with one unit.[6]

5.2. Interpreting Range Information

In this diet problem, the dual values are constant over a range of possible changes in the objective function coefficients and the constraint right hand sides. For each decision variable, the report shows its coefficient in the objective function, and the amount by which this coefficient could be increased or decreased without changing the dual value (Allowable Increase and Allowable Decrease). For each constraint, the report shows the constraint on the right hand side, and the amount by which the RHS could be increased or decreased without changing the dual value (Allowable Increase and Allowable Decrease)[6].

The shadow/dual prices Lower limits (allowable decrease) of constraints and the slack variables are as shown in the table 4.

6. CONCLUSIONS

The optimum solution with food items rice flakes, dry maize, garlik, ladies fingers and Cooking oils like groundnuts oil, coconut oil,etc. from which the the teenage girls (in the age group 10 to 18 years) in India can have sufficient nutritional benefits necessary for sustaining the healthy life by spending Rs. 25.29067 per day only. This diet may not be tasteful but there is no doubt about the optimality of the solution within the limitations we have formulated.

The costs of food items play a very important role in finding the optimum solution to the diet problem. It should be noted that as costs always vary according to locations and seasons, the optimum solution changes.

The Sensitivity Report details how changes in the coefficients of the objective function affect the solution and how changes in the constants on the right hand side of the constraints affect the solution.For each variable, we can calculate the range of values that the coefficient can take on by subtracting the allowable decrease from the coefficient or adding the allowable increase to the coefficient. The second part of the Sensitivity Report examines how changes to the right hand side of any constraint affects the optimal solution. A change to the constant on the right hand side of a constraint changes the size of the feasible region. Increasing the right hand side of any constraint with positive coefficients shifts the border matching the constraint up. Decreasing the right hand side of any constraint with positive coefficients shifts the border matching the constraints down. The shadow price indicates how the objective function will change when the constant on the right hand side is changed [9].

The sensitivity analysis for a nonbinding constraint, like Carbohydrates Vitamin A, Vitamin C and calcium, is different. After we get the optimal solution, changes to the right hand side do not affect the costs as long as the right hand side is not decreased too much. This means that the shadow price is Rs. 0 .

REFERENCES

[1] https://fssai.gov.in/upload/advisories/2021/07/60f1798019f94Direction_RDA_16_07_2021.pdf
[2] B. Srilakshmi, " Food Science", New age international Publications.
[3]C. Gopalan, B .V. Rama Sastri, S. C. Balsubramanian, "Nutritive Value of Indian Foods", National institute of Nutrition, (ICMR), Hyderabad (India).
[4] T. Longvah, R. Ananthan, K. Bhaskaracharya, Venkaiah, "Indian Food Consumption Table", National institute of Nutrition, (ICMR), Hyderabad (India).
[5] Kanti swarup, P.K. Gupta, Man Mohan, "Operations Research", Sultan Chand and Sons.
[6] Pratibha Lakhani, Pooja Manjre, "APPLICATION OF R PROGRAMMING IN SOLUTION AND SENSITIVITY ANALYSIS OF DIET PROBLEM OF INDIAN MEN", International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2019): 7.583, Volume 10 Issue 1, 904-908, January 2021.
[7] https://coin-or.github.io/pulp/main/installing_pulp at home.htm
[8] https://www.geeksforgeeks.org/python-linear-programming-in-pulp/
[9]P. B. Lakhani, Dipali Dhavane, Pooja Manjre, "Solution and Sensitivity Analysis of Diet Problem of Sedentary and Moderate Working Women in India", Internal Journal of Creative Research Thoughts, Volume 8 Issue 2, ISSN: 2320-2882, February 23, 2020.

