
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882

IJCRT2209382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d109

Detect SQL Injection Queries in Web

Applications Using Dynamic Tainting

Method

ALLU GANESH KUMAR
#1

, BODALA SAI LALITHA
#2

#1
 Assistant Professor, Department of MCA,

Sanketika Vidhya Parishad Engineering College, P.M. Palem,

Visakhapatnam, Andhra Pradesh.
 #2

 MCA Student, Department of MCA,

Sanketika Vidhya Parishad Engineering College, P.M. Palem,

Visakhapatnam, Andhra Pradesh.

ABSTRACT

 Data is one of the most valuable assets for

modern small and big size commercial firms, and

this is crucial for the growth and development of

each individual. As we are all aware, there are

several attackers that attempt to develop assaults

on the growing amount of data by introducing

certain qualities. One of the many assaults is the

SQL injection attack, which is listed as the top

network risk by the Open Web Application

Security Project (OWASP). In this research, we

attempt to develop a dynamic tainting-based SQL

injection detection system that can effectively

identify intrusion attempts to launch SQL assaults

against the dataset and attempt to contrast it with

several established detection techniques. This

suggested approach attempts to detect the kind of

query by first taking a sample dataset as input and

then producing SQL queries from that test dataset.

KEYWORDS:
SQL Injection, Security Project, Web

Application, Intrusion Detection, Privacy.

1. INTRODUCTION

The majority of research over the

years has identified developers' lack of security

awareness in web development to sanitised input

as the root cause of SQLIA, and as a result, has

moved towards code-based sanitation for their

suggested remedies to solve SQLIA.

Additionally, the well-intentioned free

text processing of the SQL engine itself results

in the SQLIA vulnerability, which makes both

legacy and cloud deployments deficient in

sanitation susceptible. The ability to defend

back-end databases from SQLIA in an era of

large data remains a pressing concern. A search

of the SQL Hall of Shame [1], which details the

latest trends in data pilfering by SQLIA, reveals

the ubiquity of this sort of assault. The SQLIA

keywords are also in plain text, and the grammar

of the SQL language is very similar to that of

plain English [2]. Because of this, the SQLIA

problem in a big data setting is a likely

candidate for predictive analytics using a

supervised learning model that was trained using

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882

IJCRT2209382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d110

both safe web request patterns and known

historical attack signatures.

While legitimate web requests would

take the form of anticipated data from the

application, attack signatures at injection sites

would contain patterns of SQL tokens and

symbols as SQLIA positive. In this study, we

develop a web application for predictive

analytics using a large amount of learning data

to train a classifier. The learning data consist of

labelled vector matrices, or features of

dictionary word list patterns (SQLIA negative)

and SQL tokens (SQLIA positive). In order to

train a supervised learning model using the

Support Vector Machine (SVM) algorithm that

accurately predicts SQLIA and prevents

malicious web requests from reaching the target

back-end database, the contributions made in

this paper provide a representative data set that

undergo feature hashing. Additionally, it

provides context for SQLIA detection and

avoidance in big data internet.

2. LITERATURE SURVEY

Literature survey is that the most vital step

in software development process. Before

developing the new application or model, it's

necessary to work out the time factor, economy

and company strength. Once all these factors are

confirmed and got an approval then we can start

building the application.

MOTIVATION

1) SQL Injection Detection for Web

Applications Based on Elastic-Pooling CNN

Authors: XIN XIE and CHUNHUI REN

Data may be one of a company's most

valuable assets and is frequently essential to its

growth and survival. According to the Open

Web Application Security Project, the initial

danger to network applications is a SQL

injection attack (OWASP). Its negative effects,

universality, and dire condition are obvious.

This study compares Elastic-Pooling CNN

(EP-CNN)-based SQL injection detection

techniques with more established ones. This

technique efficiently identifies the SQL

injection of web applications and can generate

a fixed two-dimensional matrix without

truncating data. It is more difficult to get

around and can identify new assaults based on

the irregular matching features.

2) GMSA: Gathering Multiple Signatures

Approach to Defend Against Code Injection

Attacks

Authors: HUSSEIN ALNABULSI

Invalid code processing results in

security flaws and software problems, which

are the targets of code injection attacks (CIAs).

Hackers try to include the CIA into each new

technique in an effort to get beyond the

security mechanism. In this study, we provide

GMSA, a tool designed to identify a number

of CIAs, including file inclusion attacks, shell

injection attacks, SQL injection attacks, and

cross-site scripting (XSS) attacks. The latter

includes both local and distant file inclusion.

According to our empirical investigation, the

gathering multiple signatures method (GMSA)

performs a precision performance when

compared to previous research (the suggested

algorithm's accuracy is 99.45%). GMSA has a

low false positive rate (FPR) of 0.59% when

compared to other has reported.

3) SQL Injection Detection for Web

Applications Based on Elastic-Pooling CNN.

Authors: Chunhui Ren

Data may be one of a company's most

valuable assets and is frequently essential to its

growth and survival. According to the Open

Web Application Security Project, the initial

danger to network applications is a SQL

injection attack (OWASP). Its negative effects,

universality, and dire condition are obvious.

This study compares Elastic-Pooling CNN

(EP-CNN)-based SQL injection detection

techniques with more established ones. This

technique efficiently identifies the SQL

injection of web applications and can generate

a fixed two-dimensional matrix without

truncating data. It is more difficult to get

around and can identify new assaults based on

the irregular matching features.

http://www.ijcrt.org/
https://ieeexplore.ieee.org/author/37085861847

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882

IJCRT2209382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d111

3. EXISTING SYSTEM AND ITS

LIMITATIONS

Today's online apps can be accessible

through the Internet using any Web browser,

regardless of operating system or architecture.

Because of their simplicity, adaptability,

accessibility, and interoperability, they have

spread like wildfire. Unfortunately, a number of

brand-new security risks can also affect Web apps.

Among these dangers, SQL Injection Attacks

(SQLIAs) are one of the most serious. Because

they may provide attackers full access to the

databases that support Web applications, SQLIAs

are becoming more prevalent and constitute very

significant security dangers. The constraints

brought on by this SQLIAs are listed below.

LIMITATION OF PRIMITIVE SYSTEM

The following are the limitations of the

existing system.

1) In the existing days there is no automated

approach for dynamic detection and prevention of

SQLIAs.

2) There is no concept to identify the difference

between “Trusted “Strings and Injected Strings.

3) There is no mechanism which can identify the

injection of some special operators or keywords

during data insertion in a dynamic manner.

4) In the existing days there is no method like

“DYNAMIC TAINTING” , which marks and

tracks certain data in a program at runtime.

5) All the existing schemes failed to detect the

SQL injections for web applications in accurate

manner.

4. PROPOSED SYSTEM AND ITS

ADVANTAGES

In this scenario, the user has two options

for searching SQL queries: one in which the

queries contain no special characters or strings,

and the other in which the questions contain some

special strings. We can easily recognise the sql

queries that comprise both false positive and false

negative queries by using the dynamic tainting

approach. By running several tests on our

proposed model, we were able to demonstrate that

it is effective and feasible for detecting sql-

injection threats over secure connections.

The following are the advantages of the

proposed system. They are as follows:

1) In the proposed system we try to design an

automated approach for dynamic detection and

prevention of SQLIAs.

2) There is a advanced concept to identify the

difference between “Trusted “ Strings and Injected

Strings.

3) In this proposed mechanism we can able to

identify the injection of some special operators or

keywords during data insertion in a dynamic

manner.

4) We try to develop “DYNAMIC TAINTING” ,

which marks and tracks certain data in a program

at runtime.

5) The proposed method utilizes the facility to

detect the SQL injections for web applications in

accurate and efficient manner.

5. IMPLEMENTATION PHASE

Implementation is the stage where the

theoretical design is converted into

programmatically manner. In this stage we will

divide the application into a number of modules

and then coded for deployment. The front end of

the application takes JSP,HTML and CSS and as a

Back-End Data base we took SQL Injection

dataset. Here we are using Java as Programming

Language to Implement the current application.

The application is divided mainly into following 3

modules. They are as follows:

1) User Module

2) Admin Module

3) Data Storage Module

1) User Module

The user here is general web browser how

retrieves the information from web where it was

connected to a backend database. The user doesn’t

need any login access. He simply fires the query to

get the necessary information from that particular

domain .

2) Admin Module

Admin the one who responsible for

loading the data into the database and

maintain the database from identifying SQL

injection attacks that cannot be recognized by

traditional methods. And also use as an

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882

IJCRT2209382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d112

auxiliary method of traditional SQL detection

methods.Admin also has an login access to

database

3) Data Storage Module

In this project we don’t use any

database tables for storing and retrieving the

records. Instead of physical tables we try to

load the dataset which is required to access the

data to and from the application. Here we try

to load a SQL dataset as input and try to pre-

process the dataset using WEKA tool and then

check the type of query from that loaded

dataset.

 6. EXPERIMENTAL RESULTS

In this section we try to design our

current model using Java as programming

language and we used J2EE as working

environment for executing the application.

Now we can check the performance of our

proposed application as follows:

MAIN PAGE

The above window clearly represent

the main page of our proposed application.

ADMIN LOGIN PAGE

From the above window we can see

admin is trying to enter his account with his

valid username and password.

ADMIN UPLOAD THE DATASET AND

PRE-PROCESS

From the above window we can

clearly see the pre-processing of input dataset

is done successfully.

USER SEARCH FOR QUERY

From the above window we can

clearly see the user search query is normal and

successful.

USER SEARCH WITH INJECTION

 From the above window we can clearly see

the user search query is ABNORMAL.

7. CONCLUSION

In this study, using a dynamic tainting

technique, we create and use predictive analytics

for the first time for SQLIA detection and

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882

IJCRT2209382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d113

prevention in a big data scenario. This method is

generally the best for dynamically recognising

false positive and false negative data, and this is

the first time that SQL queries have been run to

find any abnormalities that may be present. The

simulation results clearly show that our

programme is the best at accurately differentiating

between regular queries and sql injection queries,

and that it will classify them into two separate lists

that seem to be absent in all other enterprise-level

solutions right now.

8. REFERENCES

[1] M. Qbea'h, M. Alshraideh, and K. E. Sabri,

``Detecting and preventing SQL injection attacks: A

formal approach,'' in Proc. Cybersecur. Cyber-forensics

Conf. (CCC), Aug. 2016, pp. 123_129.

[2] S. O. Uwagbole, W. J. Buchanan, and L. Fan,

``Applied machine learning predictive analytics to SQL

injection attack detection and prevention,'' in Proc.

IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM),

May 2017,pp. 1087_1090.

[3] P. R. McWhirter, K. Kifayat, Q. Shi, and B.

Askwith, ``SQL injection attack classification through

the feature extraction of SQL query strings using a gap-

weighted string subsequence kernel,'' J. Inf. Secur.

Appl., vol. 40,pp. 199_216, Jun. 2018.

[4] M. Lodeiro-Santiago, C. Caballero-Gil, and P.

Caballero-Gil, ``Collaborative SQL-injections detection

system with machine learning,'' in Proc. 1
st
 Int. Conf.

Internet Things Mach. Learn., 2017, Art. no. 45.

[5] B. Hanmanthu, B. R. Ram, and P. Niranjan, ``SQL

injection attack prevention based on decision tree

classi_cation,'' in Proc. IEEE 9th Int.

[6] J. Santoso, E. M. Yuniarno, and M. Hariadi, ``Large

scale text classi_cation using map reduce and Naive

Bayes algorithm for domain specified ontology

building,'' in Proc. 7th Int. Conf. Intell. Hum.-Mach.

Syst. Cybern.,vol. 1, Aug. 2015, pp. 428_432.

[7] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi,

``A survey of the recent architectures of deep

convolutional neural networks,''

2019,arXiv:1901.06032. [Online]. Available:

https://arxiv.org/abs/1901.06032.

[8] The Ten Most Critical Web Application Security

Risks, Top OWASP 10, Toronto, ON, Canada, 2013.

[9] N. Singh, M. Dayal, R. S. Raw, and S. Kumar,

``SQL injection: Types, methodology, attack queries

and prevention,'' in Proc. 3rd Int. Conf. Comput.

Sustain. Global Develop. (INDIACom), Mar. 2016, pp.

2872_2876.

[10] D. Kar, S. Panigrahi, and S. Sundararajan,

``SQLiGoT: Detecting SQL injection attacks using

graph of tokens and SVM,'' Comput. Secur., vol. 60,pp.

206_225, Jul. 2016.

[11] K. Kamtuo and C. Soomlek, ``Machine Learning

for SQL injection prevention on server-side scripting,''

in Proc. Int. Comput. Sci. Eng. Conf.(ICSEC), Dec.

2016, pp. 1_6.

[12] S. M. Darwish, ``Machine learning approach to

detect intruders in database based on hexplet data

structure,'' J. Elect. Syst. Inf. Technol., vol. 3, no. 2,pp.

261_269, 2016.

About the Authors

ALLU GANESH KUMAR is currently

working as an Assistant

Professor in Department

of MCA at Sanketika

Vidhya Parishad

Engineering College,

P.M. Palem,

Visakhapatnam, Andhra

Pradesh. He has more

than 12 years of teaching experience. His

research interest includes Java, Python, Cloud

Computing, and Deep Learning.

BODALA SAI LALITHA is currently

pursuing her 2 years

MCA in Department of

Computer Science and

Applications at

Sanketika Vidhya

Parishad Engineering

College, P.M. Palem,

Visakhapatnam, Andhra

Pradesh.Her area of

interest includes Python, Java, C, C++.

http://www.ijcrt.org/
https://arxiv.org/abs/1901.06032

