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Abstract: we develop the classes of 'accelerated' sequential procedures of an absolute continuous population is 

developed for estimating the parameters for bounded risk point estimation problem under the set up of 

distributional relationship developed by Chaturvedi,A .,Pandey S,Gupta.M,(1991[2])  

Index terms: Bounded risk, Asymptotic distribution 

In order to construct fixed-range confidence interval for a normal mean, assuming the variance to be unknown 

,Hall [3](1983) proposed an accelerated' sequential Procedure  which combines the rates of two-stage and 

purely sequential procedures and also  is  more flexible in nature because the number of sampling stages can 

be reduced only by introducing finite number of observations .Several other experimenters have also developed 

and studied the same for other distributions also. 

In the present Chapter, we develop the classes of 'accelerated' sequential procedures to construct fixed size 

confidence region for the parameter 𝜃 for the bounded risk point estimation. The set up [2]of the problem is: 

𝐗1, … , 𝐗𝑛  be a random sample of size 𝑛(⩾ 𝑡 + 1),from a t variate  continuous population ,with parameter  𝜃 

of order 𝑡 × 1 of interest and Ψ  a scalar unknown parameter , let (θ′, Ψ)′ ∈ 𝑅𝑡 × 𝑅+. The estimators of 𝜃 and 

Ψ are  θ̂𝑛 = θ̂(𝐗1, … , 𝐗𝑛) and Ψ̂𝑛 = Ψ̂(𝐗1, … , 𝐗𝑛) . The following   hypotheticals are made  

 (A,): A known positive definite matrix 𝑄,  of order t by t, a number 𝛿 ∈ (0,1] and a positive integer 𝑟 ≥ 1  

exist ,s.t. 𝑛[𝜓−1(θ𝑛 − 𝜃)′𝑄(𝜃𝑛 − 𝜃)]δ ∼ 𝜒(𝑟)
2  

(A2) : �̂�𝑛 and Ψ̂𝑛 are   independent for all values of n. 

(A3) : For integers 𝑠(⩾ 1)  ,then for all n greater than or equal to s+1, 

𝑟(𝑛 − 𝑠)Ψ̂𝑛/Ψ = ∑𝑗=1
𝑛−𝑠  𝑍𝑗

(𝑟)
  

where 𝑍𝑗
(𝑟)

 's are iid rv's with 𝑍𝑗
(𝑟)

∼ 𝜒(𝑟)
2 .[2] 

(𝐴4): Ψ̂𝑛 is a consistent estimator of 𝜓. 
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Let [𝑦]+ denote the   positive integral part of 𝑦. The class 𝐶𝐴
∗ of 'accelerated' sequential procedure is as follows: 

let 𝜂 ∈ (0,1) and 𝐿 ∈ (0, ∞) be specified. 

Let the initial sample size taken to be          𝑚 ≥ max{𝑠 + 1, 𝑡 + 1} ,where 

𝑚 = 𝑜(𝐴𝛿/𝛼) as 𝐴 → ∞ and lim
𝐴→∞

 (𝑚/𝐷) < 1 

Starting sequentially with the stopping time 𝑁1 ,where 

𝑁1 = lnf ⋅ [𝑛1 ≥ 𝑚: 𝑛1 ≥ 𝜂{𝐾∗(𝛼, 𝛿, 𝑟)/𝑁}𝛿/𝛼�̂�𝑛1
]……………….(1) 

 on the basis of  𝑁1 observations, find estimate �̂�𝑁1
 and jump by taking N2 observations. S.t. 

𝑁2 = [{𝐾∗(𝛼, 𝛿, 𝑟)/𝑊}𝛿/𝛼�̂�𝑁1
+ 𝐿]

+
+ 1……………..(2) 

𝑁 = 𝑚𝑎𝑥 ⋅ (𝑁1, 𝑁2) and estimate 𝜃 by �̂�𝑁. Let us prove some lemmas which are used in proving the main 

theorem. 

Lemma 1:lim𝐴→∞( N1) = lim𝐴→∞( N2) = ∞  

From the definition of  N1 and N2, respectively, Lemma follows. 

Lemma 2:   lim𝐴→∞  (N/n0) = 1 ,         a.s. 

Proof : From (1) the inequality 

𝜂{𝑘∗(𝛼, 𝛿, 𝑟)/𝑁}𝛿/𝛼�̂�𝑁1
≤ 𝑁1 ≤ {𝑘∗(𝛼, 𝛿, 𝑟)/𝜔}𝛿/𝛼�̂�𝑁1−1 +1……………(3) 

or, 

                               (�̂�𝑁1

′ /𝜓) ≤ (
𝑁1

𝑛0
) ≤ (�̂�𝑁1−1/𝜓) + (𝜂𝑛0

)
−1

……………………(4) 

Applying Kolmogorov's strong law of large numbers and (𝐴3) ,gives the result that �̂�𝑁1
 → 𝜓 as n → ∞.Using 

this result and Lemma 1 and equation ( 4 ),the result follows. 

Lemma 3:As A→ ∞,(𝜂𝑛0)
−

1

2(𝑁1 − 𝜂𝑛0) → 𝑁(0 ,2𝑞−1) 

Proof: Using (𝐴3), the rule (3)can be rewritten as 

𝑁1 = lnf ⋅ [
𝑛1 ≥ 𝑚: ∑  

𝑛1−𝑠
𝑗=1  𝑞−1𝑧𝑗

(𝑞)
≤ (𝑛1 − 𝑠)(𝑛1/𝜂𝑛0)]

………….(5) 

Defining a new stopping variable 𝑁1
∗  as 

N1
∗ = lnf ⋅ [𝑛1 ≥ 𝑚 − 𝑠:  ∑  

𝑛𝑙
𝑗=1  𝑞−1𝑧𝑗

(𝑞)
≤ 𝑛1

2(1 + 𝑠𝑛1
−1)/𝜂𝑛0] 

With the help of Lemma 1 of Swanepoel and Vanwyk [4](1982), it can be proved that the stopping variables 

N1 and N1
⋆ have same probability distribution 

On Comparing (6) with equation (1.1) of Woodroofe [5](1977), , 𝛼 = 2, 𝐴 = 1, 𝜇 = 1 and 𝜏2 = 2𝑞−1. Using 

result  of Bhattacharya and Malik (1973)[1] the lemma follows . 

(𝜂𝑛0)−
1
2(𝑁1 − 𝜂𝑛0) ⟶

𝐿
𝑁(𝑂, 𝛽2𝜏2𝜇−2) 
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Lemma 4 : For all 𝑚 ≥ 𝑠 + 2𝑞−1, as 𝐴 → ∞ 

𝔼(𝑁1) = 𝜂𝑛0 + 𝜈 − (𝑠 + 2𝑞−1) + 𝑜(1) 

 

 

where 𝜈 is specified. 

Proof: In the notations of Woodroofe[5]  (1977), 𝑎 = 𝑞/2, 𝜆 = 𝜂𝑛0 ⋅ 𝐿(𝑛1) = 1 + 𝑠𝑛1
−1 and 𝐿0 = 𝑠. The 

lemma now follows from Theorem 2.4 of Woodroofe [5] (1977) that, as 𝐴 → ∞, 

𝐸(𝑁1)  = 𝜆 + 𝛽𝜇−1𝜈 − 𝛽𝐿0 −
1

2
𝛼𝛽2𝜏2𝜇−2 + 𝑜(1)

 = 𝜂𝑛0 + 𝜈 − (𝑠 + 2𝑞−1) + 𝑜(1)
 

Lemma5: For all 𝑚 > 𝑠 + 2𝑞−1, as 𝐴 → ∞ 

𝐸(𝑁) = 𝑛0 + 𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1)………….(7) 

 var ⟨𝑁⟩ = 2𝜂−1𝑛0 + 𝑜 (𝜆
𝛿

𝛼⁄ ) . ………………(8)

 and, for 𝛾(> 0). 

𝐸(|𝑁 − 𝐸(𝑁)|𝛾) = 0 (𝜆
𝛾𝛿
2𝛼) … … … … … … . (9)

 

Proof: Rewriting the stopping rule (5) as 

 𝑁1 = lnf[𝑛1 ≥ 𝑚: 𝑞(𝑛1 − 𝑠)(�̂�𝑛1
/𝜓) < 𝑞𝑛1(𝑛1 − 𝑠)/{𝑤/𝐾∗(𝛼, 𝛿, 𝑟)}𝛿/𝛼].  

Let us consider the difference 

𝐷𝐴 = {𝑞𝑁1(𝑁1 − 𝛿)/𝜂𝜓}{𝑤/𝐾∗(𝛼, 𝛿, 𝑟)}𝛿/𝛼 − 𝑞(𝑁1 − 𝑠)(�̂�𝑁1
/𝜓)…….(10) 

The mean of the asymptotic (as 𝐴 → ∞ ) distribution 0 𝐷𝐴 is 𝜈. Let us define 

𝐷𝐴
∗ = 𝜂{𝑞(𝑁1 − 𝑠)}−1 {

𝐾∗(𝑎, 𝛿, 𝑟)

𝑤
}

𝛿
𝛼

⋅ 𝐷𝐴

 since 𝑧 𝑗(𝑞) 's are positive, 𝑞(𝑁1 − 𝑠) (
�̂�𝑁1

𝜓
) ≥ 𝑞 (𝑁1 − 𝑠 − 1) (

�̂�𝑁1−1

𝜓
)

(11) 

using this resuit and basic inequality (3), we obtain from (.10) and 11) that 

𝐷𝐴
∗ = 𝜂{𝑞(𝑁1 − 𝑠)}−1 {

𝐾∗(𝑎, 𝛿, 𝑟)

𝑤
}

𝛿
𝛼

 [
𝑞(𝑁1(𝑁1 − 𝑠)

𝜂𝜓′
⋅ {

𝑤

𝐾⋆(𝛼, 𝛿, 𝑟)
}

𝛿/𝛼

− 𝑞(𝑁1 − 𝑠)�̂�𝑁1] 

≤ 𝜂{𝑞(𝑁1 − 𝑠)}−1 {
𝐾∗(𝑎, 𝛿, 𝑟)

𝑤
}

𝛿
𝛼

 𝜓 ⋅ [
𝑞𝑁1(𝑁1 − 𝑠)

𝜂𝜓
{

𝑤

𝐾∗(𝛼, 𝛿, 𝑟)
}

𝛿/𝛼

− 𝑞(𝑁1 − 𝑠 − 1) �̂�𝑁1−1/𝜓] 
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≤ 𝜂{𝑞(𝑁1 − 𝑠)}−1 {
𝐾∗(𝛼, 𝛿, 𝑟)

𝑤
}

𝛿/𝛼

𝜓 [
𝑞1(𝑁, −𝑠)

𝜂𝜓
{
𝐾∗(𝛼, 𝛿, 𝑟)

𝑤
}

𝛿/𝛼

− {
𝑞(𝑁1 − 𝑠 − 1)

𝜂𝜓
} {

𝐾∗(𝛼, 𝛿, 𝑟)

𝑤
}

𝛿/𝛼

(𝑁1 − 1)] 

 

 

≤ 𝜂{𝑞(𝑁1 − 𝑠)}−1 {
𝑘∗(𝑎, 𝛿, 𝑟)

𝑊
}

𝛿/𝛼

𝜓 [
𝑞𝑁1(𝑁, −𝑠)

𝜂𝜓
. {

𝑤

𝐾∗(𝑎, 𝛿, 𝑟)
}

𝛿/𝛼

(𝑁1 − 1)] 

 

 .

 ≤ 𝑁1 − (𝑁1 − 𝑠 − 1)

 = 𝑠 + 1.

 

Moreover, again using (.3), it follows from (.10) and (.11) that. 

𝐷𝐴
∗ ≥ 𝜂 {𝑞(𝑁1 − 𝑠)}−1 {

𝐾∗(𝛼, 𝛿, 𝑟)

𝑤
}

𝛿/𝛼

𝜓 [
𝑞𝑁1(𝑁1 − 𝑠)

𝜂𝜓

 ⋅ {
𝑊

𝐾∗(𝛼, 𝛿, 𝑟)
}

𝛿/𝛼

−
𝑞(𝑁1 − 𝑠)

𝜓
𝜂−1 ⋅ {

𝑤

𝐾∗(𝛼, 𝛿, 𝑟)
}

𝛿/𝛼

𝑁1]

= 0

 

Thus: 0 ≤ 𝐷𝐴
∗ ≤ 𝑠 + 1 and from dominated convergence, as A tends to infinity 𝐸(𝐷𝐴

∗)=v. Using this result and 

Lemma 4, gives, 

 for all m> 𝑠 + 2𝑞−1 

 
𝜈  = 𝐸(𝐷𝐴

∗)

 = 𝐸[𝑁1 − 𝜂{𝐾∗(𝛼, 𝛿, 𝑟)/𝑤}𝛿/𝛼�̂�𝑁1]
𝛿/𝛼 

or 

𝐸[{𝐾∗(𝑎0𝛿, 𝑟)/}𝛿/𝛼�̂�𝑁1
]  = 𝜂−1{𝐸(𝑁1) − 𝜈}

 = 𝑛0 − 𝜂−1(𝑠 + 2𝑞−1) + 0(1).
 

from the definition of N ,it follows that 

𝐸(𝑁) = 𝑛0 + L − 𝜂−1(𝑠 + 2𝑞−1) + 0(1) 

and (.7) holds 

 From the definition of 𝑁, Var (𝑁) = 𝜂−2Var (𝑁1) 

Let ℎ(𝑁1) = (𝜂0)−1/2(𝑁1 − 𝜂𝑛). It fol1ows from Theorem 2. [5] of woodroofe (1977) that h2( N1) 1s 

unifomby integrable for al 𝑚 > 𝑠 + 2𝑞−1. Hence. using Lemma 3, we get  for all 𝑚 > 𝑠 + 2𝑞−1, as 𝐴 → ∞ 

Var ⋅ (𝑁) = 𝜂−2[2𝜂𝑛0{1 + 𝑜(1)}] 

= 2𝜂−1𝑛0 + 𝑜(𝜆𝛿/𝛼). 

 And (8) follows. The proof of (9) follows from Hall [3 . The  following theorem gives the main result 
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. 

Theorem 1: For  all m> max{𝑡, 𝑠 + 2𝑞−1} 𝑎𝑛𝑑 sufficiently large A, 

      say 𝐴 ≥ 𝐴0, 𝐸[𝐿(𝜃, �̂�𝑁)] ≤ 𝑊,if 

𝐿 ≥ 𝜂−1 (𝑠 + 2𝑞−1 +
𝛼

𝛿
+ 1). 

Proof: The risk associated with the sampling scheme (1) − (2) is 

𝐸[𝐿(𝜃, �̂�N)] = 𝑊𝐸{(𝑛𝑂/N)𝛼/𝛿} 

Using Taylor's expansion, we obtain 

𝐸[𝐿(𝜃, �̂�𝑁)] = 𝑊𝑛0

𝛼
𝛿⁄  [𝑛0

−𝛼⁄ 𝛿 −
𝛼 

𝛿
𝑛0

−(
𝛼
𝛿 + 1) 

 - 𝐸(𝑁 − 𝑛0) +
𝛼

2𝛿
(

𝑎

𝛿
+ 1) 𝑛0

−(
𝛼
𝛿

+2)
𝐸(𝑁 − 𝑛0)2] + 𝜉𝐴.  

 - where the remainder term 𝜉𝐴 = 𝑂 (𝐴
−3𝛿

𝛼⁄  𝐸(𝑁 − 𝐸(𝑁))3). 

Thus, applying Lemma 5. we obtain for all 𝑚 > 𝑠 + 2𝑞−1, 

𝐸[𝐿(𝜃, �̂�𝑁)] = 𝑤 [1 −
𝛼

𝛿𝑛0

(𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1)

 +
1

2𝑛0
2 ⋅

𝛼

𝛿
(

𝛼

𝛿
+ 1) {(2𝜂−1𝑛0 +𝑜(𝐴𝛿/𝛼)) + (𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1))2} + 𝑜(𝐴−3𝛿/2𝛼)

 

 = 𝑤 [1 −
𝛼

𝛿𝑛0
{𝐿 − 𝜂−1{(𝑠 + 2𝑞−1) + (

𝛼

𝛿
+ 1)}}] + 𝑜(𝐴−𝛿/𝛼) + 𝑜(𝜆−3𝛿/2𝛼)

 = 𝑤 [1 −
𝛼

𝛿𝑛0
{𝐿 − 𝜂−1 (𝑠 + 2𝑞−1 +

𝛼

𝛿
+ 1)}] + 𝑜(𝐴−𝛿/𝛼) + 𝑜(𝐴−2𝛿/𝛼) + 𝑜(𝐴−3𝛿/2𝛼)

 

 And the theorem follows. 
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