ISSN: 2320-2882

JCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

EXPERIMENTAL STUDY ON STRENGTH CHARACTERISTICS OF CONCRETE USING COMPOSITE MATERIALS

¹T. Raja Ramanna, ²P. Dhanamma, ³B. Udayasree

¹Assistant Professor, ² Assistant Professor, ³ Assistant Professor ¹Civil Engineering Department, ¹Matrusri Engineering College, Hyderabad, India

Abstract: The utilization of supplementary cementitious materials is well accepted because of the several improvements possible in the concrete composites and due to the overall economy. With the increased industrialization, generation of industrial by-products has increased significantly. There are many types of industrial by-products depending upon the industry. Utilization of such types of byproducts has become an enormous challenge. One such type of by-product is Ground Granulated Blast Furnace Slag (GGBS) which is produced from the blast-furnaces of iron and steel industries and Fly ash is a fine gray powder consisting mostly of spherical, glassy particles that are produced as a by-product in coal-fired power stations. Therefore, Cement with GGBS and Fly ash replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, energy savings, cost savings, environmental and socio-economic benefits.

This research evaluates the strength gaining characteristics of hardened concrete by partially replacing cement by various percentages of GGBS and Fly ash for M25 grade of concrete at different ages.

In this paper our study is mainly confined to evaluation of changes in both compressive strength and weight reduction of cement in Seven different mixes of M25 Grade composite concrete by replacing 50% cement by GGBS and Fly ash in different proportions. The Compressive Strength and Split Tensile Strength of mixes are determined by these cubes and cylinders for 7days, 14days and 28 days and their respective compressive strength and split tensile strength had observed and up to major extent we can conclude concrete made by that Fly ash and GGBS had good strength and durable properties compared to conventional concrete.

Index Terms - Conventional Concrete, GGBS, Fly ash, Composite Material, Industrial byproducts.

I. INTRODUCTION

INTRODUCTION TO CONCRETE

Concrete is widely used structural material consisting essentially of a binder and mineral filler. It has the unique distinction of being the only construction material actually manufactured on the site, whereas other materials are merely shaped to use at the worksite. Good or bad concrete is made from the same discrete materials like grains of sand, gravel or pieces of crushed rock and the innumerable fine particles of cement powder mixed with water.

Concrete is a composite material composed mainly of water, aggregate, and cement. Often, additives and reinforcements are included in the mixture to achieve the desired physical properties of the finished material. When these ingredients are mixed together, they form a fluid mass that is easily moulded into shape. Over time, the cement forms a hard matrix which binds the rest of the ingredients together into a durable stone-like material with many uses.

INTRODUCTION TO GGBS

Concrete is probably the most extensively used construction material in the world with about six billion tones being produced every year. It is only next to water in terms of percapita consumption. However, environmental sustainability is at stake both in terms of damage caused by the extraction of raw material and CO2 emission during cement manufacture. This brought pressures on researchers for the reduction of cement consumption by partial replacement of cement by supplementary materials. These materials may be naturally occurring, industrial wastes or by-products that are less energy intensive. These materials (called pozzalonas) when combined with calcium hydroxide, exhibits cementitious properties. Most commonly used pozzalonas are fly ash, silica fume, metakaolin, Ground Granulated Blast Furnace Slag (GGBS). This needs to examine the admixtures performance when blended with concrete so as to ensure a reduced life cycle cost. There are competing reasons, in the long term, to extend the practice of partially replacing cement with waste by products and processed materials possessing pozzolanic properties. Lately some attention has been given to the use of natural pozzolans like GGBS as a possible partial replacement for cement. Amongst the various methods used to improve the durability of concrete, and to achieve high performance concrete, the use of GGBS is a relatively new approach, the chief problem is with its extreme finesse and high-water requirement when mixed with Ordinary Portland cement. The present

e88

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

JCR

paper focuses on investigating characteristics of M25 grade concrete with partial replacement of cement with GGBS by replacing cement via 30%, 40%, 50%. The cubes, cylinders and beams are tested for compressive strength, split tensile strength, flexural strength. Numerous works have been done researchers across the globe and some of the important contributions are presented here.

Ground Granulated Blast Furnace Slag

Typical chemical composition

The glass content of slag suitable for blending with Portland cement typically varies between 90- 100% and depends on the cooling method and the temperature at which cooling is initiated. The glass structure of the quenched glass largely depends on the proportions of network-forming elements such as Si and Al over network-modifiers such as Ca and Mg to a lesser extent Al. Increased amounts of network-modifiers lead to higher degrees of network DE polymerization and reactivity. It is a granular product with very limited crystal formation, is highly cementitious in nature and, ground to cement fineness, and hydrates like Portland cement.

I unic 1			
S No		Chemical formula	Percentage
1		CaO	30-45%
2		SiO2	17-38%
3		Al2O3	15-25%
4		Fe2O3	0.5-2.0%
5		MgO	4.0-17%
6		MnO2	1.0-5%
7	~~~~	Glass	85-98%

Table 1.1 CHEMICAL COMPOSITION

TYPICAL PHYSICAL PROPERTIES

Color: Off white Specific gravity: 2.9 Bulk density: 1200 kg/m3 Fineness: 350 kg/m.

INTRODUCTION TO FLY ASH

Fly ash also known as pulverized fuel ash and is a coal combustion product that is composed of the particulates (fine particles of burned fuel) that are driven out of coal-fired boilers together with the flue gases. Ash that falls to the bottom of the boiler is called bottom ash. In modern coal fired power plants, fly ash is generally captured by electro static precipitators or other particle filtration equipment before the flue gases reach the chimneys. Together with bottom ash removed from the bottom of the boiler, it is known as coal ash. Depending upon the source and composition of the coal being burned, the components of fly ash vary considerably, but all fly ash includes substantial amounts of silicon dioxide (SiO₂), aluminum oxide (Al₂O₃) and calcium oxide (CaO), the main mineral compounds in coal-bearing rock strata.

Flyash

It is of 2 types

Class F

The burning of harder, older anthracite and bituminous coal typically produces Class F fly ash. This fly ash is pozzolanic in nature, and contains less than 7% lime (CaO). Possessing pozzolanic properties, the glassy silica and alumina of Class F fly ash requires a cementing agent, such as Portland cement, quicklime, or hydrated lime-mixed with water to react and produce cementitious compounds. Alternatively, adding a chemical activator such as sodium silicate to a Class F ash can form a geopolymer.

Class C

Fly ash produced from the burning of younger lignite or sub-bituminous coal, in addition to having pozzolanic properties, also has some self-cementing properties. In the presence of water, Class C fly ash hardens and gets stronger over time. Class C fly ash generally contains more than 20% lime (CaO). Unlike Class F, self-cementing Class C fly ash does not required an activator. Alkali and sulphate (SO4) contents are generally higher in class C flyash.

Experimental details:

Specific gravity of water

Specific gravity of sand

Specific gravity of aggregate

Unit weight of Flyash = 1.33gm/cu.cm Specific gravity of Flyash = 2.17

MIX DESIGN OF M25GRADE CONCRETE

Grade designation		M25
Type of cement	0PC 53 grade	
Maximum nominal aggregate	20mm	
Minimum water content		194.37Kg/m ³
Maximum water cement ratio		0.427
Workability-Slump		50 m
Compacting factor		0.9
Exposure conditions		Moderate
Type of aggregate		Crushed angular
Test Data for Materials		
Cement used		JP cement OPC
Specific gravity of cement		3.05

1.00

2.74

2.73

Target Strength for Mix Proportioning	
Target mean strength:	
$f_{ck} = f_{ck} + txs = 25 + 1.65x5.3$	33.74 /mm ²
Characteristic Strength at 28 days	$25 \ /mm^2$
Maximum water cement ratio	0.427
Adopted water cement ratio	0.427
Maximum water content	194.37 it
Estimated water content for 50-75 mm	194.37 it
Calculation of cement content	
Water cement ratio	0.427
Cement content	455.199 kg

MATERIALS UTILIZED FOR M25GRADE

Mix proportions	s for one cum of co	oncrete					
Mass of Cement	in kg/m3		455.199 Kg	r			
Mass of Water in	kg/m3		194.37lit				
Mass of Fine Agg	gregate in kg/m3		550.083Kg				
Mass of Coarse A	Aggregate in kg/m3		1138.31 Kg				
Water Cement Ra	atio		0.427				
	Та	ble 4.1					
Mix M25	Cement	Fine agg	gregate	Coarse aggregate	Water		
Weight	455.199	550.083		1138.31	194.37		
Ratio	1	1.208		2.5	0.427		

Mix Proportion: Cement: Fine aggregate: Coarse aggregate = 1:1.2:2.5

GGBS AND FLYASH

A different percentage varying from 10% to 50% of weight of cement is replaced with GGBS and Fly ash to improve the strength and other properties.

I	Percentage of GGBS ac	lded	Weight in Kg/m ³	Percentage of Fly ash added	Weight in Kg/m ³
()%		0	0%	0%
5	50%	· · · ·	14	0%	0
4	40%		11.2	10%	2.8
	30%		8.4	20%	5.6
2	20%		5.6	30%	8.4
1	10%		2.8	40%	11.2
()%		0	50%	14
1	TOTAL		42		42
т					
ng v	veight of Cement for dif	ferent perce	ntages of GGBS and F	Flyash	UT I
of C	EMENT for different	percentages	of GGBS and Flyas)
	e conc				

Different percentage weights of GGBS and FLYASH

CEMENT

Remaining weight of Cement for different percentages of GGBS and Flyash

Weight of CEMENT for different percentages of GGBS and Flyash

Percentage of GGBS added	GGB <mark>S</mark> Weight in Kg/m ³	CEMENT Weight in Kg/m ³	Percentage of Flyash added	Flyash Weight in Kg/m ³
0%	0	28	0%	0
50%	14	14	0%	0
40%	11.2	14	10%	2.8
30%	8.4	14	20%	5.6
20%	5.6	14	30%	8.4
10%	2.8	14	40%	11.2
0%	0	14	50%	14
TOTAL	42	112		42

www.ijcrt.org

Weight materials	
Material	Weight in kg/m3
Fine aggregate	238
Coarse aggregate	490
Water	84

5Specific gravity of different materials

Material	Specific gravity
GGBS	2.85
Flyash	2.17
Cement	3.05
Fine Aggregate	2.73
Coarse Aggregate	2.74

Percentage In Increase Of Compressive Strength In N/mm²Of Concrete With GGBS And Flyash With Respect To Conventional Concrete

S. No	% of % of GGBS FLYAS	Compressive strength N/mm2			% increa	ise	% decrease				
		H	7 days	14 days	28 days	7 Days	14 days	28 days	7 days	14 days	28 days
1	0%	0%	15.72	18.9	31.7	-	$\langle \rangle$	•			-
2	50%	0%	16.15	20.15	33.7	2.73	6.62	6.3	22		-
3	40%	10%	17.33	25.7	35.4	10.24	20.10	11.67		-	-
4	30%	20%	15.55	18.66	32.15		-	1.41	1.08	1.26	-
5	20%	30%	16.59	20.07	33.1	5.53	16.77	4.41	-	-	-
6	10%	40%	16.15	23.5	33.9	2.73	24.33	6.94	-	-	-
7	0%	50%	16.15	22.07	32	2.73	16.77	0.94	-	-	-

Percentage Increase of Spilt Tensile Strength In N/mm2 Of Concrete with GGBS And Flyash with Respect to Conventional Concrete

S. No	% of GGBS	% of FLYASH	Split ter N/mm2	nsile stre	ength % increase		% decrease				
			7 days	14 days	28 days	7 Days	14 days	28 days	7 days	14 days	28 days
1	0%	0%	1.48	2.2	2.61	-	-	-	-	-	-
2	50%	0%	1.55	2.68	3.02	4.73	21.8	15.7	-	-	-
3	40%	10%	1.62	2.44	2.91	9.46	10.9	11.5	-	-	-
4	30%	20%	1.46	2.22	2.93	-	0.9	12.3	0.81	-	-
5	20%	30%	1.68	2.84	3.36	13.51	29.09	28.7	-	-	-
6	10%	40%	1.80	2.61	2.92	21.62	18.63	12.3	-	-	-
7	0%	50%	1.88	2.28	3.16	27.02	3.63	21	-	-	-

Compressive Strength of Concrete

Split Tensile Strength of Concrete

Compressive Strength At 28 Days

Testing Specimen of cylinder

Specimen after testing

Testing Specimen of cube

CONCLUSION

- The plain cement concrete prepared by OPC cement and natural sand of M25 grade. The maximum compressive strength achieved is 35.4Mpa at 40% of GGBS and 10% of FLYASH replacement and those achieved for 50% 0f GGBS and 0% FLYASH,20% GGBS and 30% FLYASH of concrete is 33.7Mpa, 33.1Mpa respectively as compare to 31.7Mpa of strength of plain cement concrete for 28 days.
- The tensile strengths achieved are 2.61Mpa, 3.02Mpa, 2.91Mpa, 2.93Mpa, 3.36Mpa, 2.92Mpa, 3.16Mpa at 0%&0%, 50%&10%, 40%&20%, 30%&20%, 20%&30%, 10%&40%, and 0%&50% for GGBS and FLYASH concrete respectively for M25 grade concrete of OPC cement and natural sand.
- The compressive strength at 28 days for 40% GGBS and 10% FLYASH replacement indicated increase in strength compared to conventional concrete.
- The percentage increase of strength with respect to conventional concrete was 11.67% at 28 days for 40% GGBS and 10% FLYASH replacement.
- The tensile strength at 28 days for 20% GGBS and 30% FLYASH replacement indicated increase in strength compared to conventional concrete.
- The percentage increase of strength with respect to conventional concrete was 28.73% at 28 days for 20% GGBS and 30% FLYASH replacement
- GGBS and FLYASH is used to make durable concrete structures in combination with ordinary Portland cement and /or other pozzolanic materials.

www.ijcrt.org

References

- [1] Pratap. K. V., M. Bhasker and P.S.S.R. Teja (2014)"*Triple Blending of Cement concrete with Fly Ash and Ground Granulated Blast Furnace Slag*" International Journal of Engineering Research and Applications, Vol. 4, PP 54-58.
- [2] B Udayasree, T Raja Ramanna, Studies on concrete made of quartz and feldspar mineral mining materials for sustainability, Materials Today: Proceedings, 2022, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.12.327.
- [3] Ranjitham M, Piranesh B and A. Vennela (2014) "Experimental Investigation on High Performance Concrete with PartialReplacement of fine aggregate by Foundry Sand with cement by Mineral Admixtures" International Journal of Advanced Structures and Geotechnical Engineering, Vol. 03, pp28-33.
- [4] Rama lakshmi, R. Sheeja and R. Gopinath (2014)"*Experimental Behaviour of Reinforced Concrete with Partial Replacement of Cement with GroundGranulated Blast furnace Slag*" ISSN: 2278-0181, Vol. 3, pp 525 534.
- [5] amilarasan V.S., Perumal and Maheswaran (2012), "Workability studies on concrete with GGBS as a replacement material for Cement with and without Superplasticiser".
- International Journal of Advanced Research in Engineering and Technology, Vol 3, pp.11-21
- [6] K. E. Hassan, J.G. Cabrera, R.S. Maliehe. 2000. The effect of mineral admixtures on the properties of high performance concrete. cement and concrete composites. 22: 267-271.
- [7] Sangeetha S.P. and P. S. Joanna (2014) "Flexural behaviour of Reinforced Concrete Beams with GGBS" ISSN 0976 6308, Vol 5, pp. 124-131
- [8] Sonali K. Gadpalliwar, R. S. Deotale and Abhijeet R. Narde (2014) "*To Study the Partial Replacement of Cement by GGBS & RHA and Natural Sand by Quarry Sand in Concrete*" IOSR Journal of Mechanical and Civil Engineering, Volume 11, PP 69-77.
- [9] SuvarnaLatha K., M V SeshagiriRao, SrinivasaReddy. V (2012) "Estimation of GGBS and HVFA Strength Efficiencies in Concrete with Age", International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 8958, Volume-2 pp 221-225.
- [10] SwaroopA.H.L, K. Venkateswararao and Kodandaramarao (2013) "Durability studies on concrete with Fly Ash & GGBS" International Journal of Engineering Research and Applications, Vol. 3, pp.285-289.
- [11] Veena G Pathan, Vishal S. Ghutke and GulfamPathan (2012) "Evaluation of concrete properties using Ground Granulated Blast Furnace slag" International Journal of Innovative Research in Science, Engineering and Technology, Vol. 1, pp 71-79.
- [12] VenuMalagavelli and P. N. Rao (2010), "High performance concrete With GGBS and ROBO sand" International Journal of Engineering Science and Technology, vol 2, pp 5107-5113.
- [13] Vidivelli. B and A. Jayaranjini (2014) "Comparative Study on High Performance Concrete with Different Admixtures" Journal of Modern Engineering Research, Vol. 03, pp 7-9.
- [14] VijayaSekhar Reddy and Seshalalitha, (2014), "Strength Properties of High-Performance Concrete using GGBS and ROBO Sand" International Journal of Civil Engineering and Technology, Vol 5, pp. 94-100.
- [15] Yogendra O. Patil, P. N. Patil and Arun Kumar Dwivedi (2013) "GGBS as Partial Replacement of OPC in Cement Concrete An Experimental Study" ISSN No 2277, Vol 2, pp 189-191.

Authors' Profiles

T. Raja Ramanna is currently working as Assistant Professor in Department of Civil Engineering, Matrusri Engineering College, Hyderabad. He received M.E. in Construction Engineering and Management from University College of Engineering, Osmania University in 2013. His research interests are in Concrete Technology and Construction Management.

P. Dhanamma is currently working as Assistant Professor in Department of Civil Engineering, Matrusri Engineering College, Hyderabad. She received M. Tech. in Structural Engineering from Spoorthy Engineering College, JNTUH in 2015. Her research interests are in Concrete Technology.

B. Udayasree is currently working as Assistant Professor in Department of Civil Engineering, Matrusri Engineering College, Hyderabad. She received M. Tech. in Structural Engineering from JNTU Hyderabad, in 2010. Her research interests are in Concrete Technology.