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Abstract  

It is shown here that the expressions for ratios of pressure derivatives of bulk modulus of different orders 

in the limit of infinite pressure recently reported by Shanker et al. (2017, Phys. Earth Planet. Inter. 262, 41-

47) and formulated more recently by Stacey and Hodgkinson (2019, Phys. Earth Planet. Inter. 286, 42-68) 

can be obtained directly from the generalized equation derived earlier by Dwivedi (2016, Canadian J. Phys. 

94, 748-750). A comprehensive discussion for evaluating the pressure derivatives of bulk modulus, first 

order as well as higher order derivatives, is presented alongwith the relationships in terms of higher order 

thermoelastic Grüneisen parameters in the limit of infinite pressure.  

Keywords : Bulk modulus, Grüneisen parameter, infinite pressure extrapolation, Bernoulli-I' Hospital rule, 

Higher order pressure derivatives  

A theory of infinite pressure extrapolation for describing the high pressure behaviour of materials 

has been developed by Stacey and Davis (2004) using the thermodynamics in the limit of extreme 

compression (volume V tends to zero). The extrapolated values of equation of state (EOS) parameters in 

the limit of infinite pressure determined by considering the materials to remain in the same structure and 

phase have been found very useful for predicting results at finite pressures (Stacey, 2005).  

Expressions for higher order thermoelastic properties viz. pressure derivatives of bulk modulus and 

Grüneisen parameter have been obtained by Shanker et al. (2009, 2017) and by Dwivedi (2016) using the 

following principle of calculus. If the ratio of two functions of a common variable (such as pressure or 

volume) becomes indeterminate (infinity divided by infinity, or zero divided by zero) at a specific value of 

the variable, then this ratio of two functions becomes equal to the ratio of the differential derivatives of 

these two functions at that point. Stacey and Hodgkinson (2019) pointed out explicitly that this principle 

of calculus is known as the BermoulliI' Hospital rule. Thus Shanker et al. (2009, 2017) and Dwivedi (2016) 

used this rule without mentioning its proper name.  

An alternative method used by Shanker et al. (2009, 2012) is based on the following principle of 

calculus. If y is a function of x such that y varies as xt in the limit of x tends to zero, then we can write  
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   dlny = t              (1)  

 dlnx x→0 

where t is a constant. When (1) t is positive finite, y becomes zero, (2) t is zero, y remains positive finite, 

and (3) t is negative finite, y approaches infinity, all in the limit x → 0. A physically acceptable equation 

of state gives continuously increasing pressure with decreasing volume such that pressure P tends to infinity 

in the limit volume V →  

0. We can write y = P, and x = V in Eq. (1) to have   

  dlnP   K  

  = −   = negative finite        (2)  

  dlnV V→0  P  

where K is bulk modulus equal to – V (dP/dV). Eq. (2) is consistent with Eq. (1), and gives  

 K  

   = positive finite            (3)  

 P  

In the limit V → 0, P and K both tend to infinite but their ratio remains positive finite. We can also write y 

= K and x = V in Eq. (1) to get  

 dlnK  

  = −K  = negative finite         (4)  

 dlnV V→0 

where K  is the value of K  = dK/dP in the limit of infinite pressure. Eq. (4) reveals that K  is positive 

finite which is consistent with the thermodynamics (Stacey and  

Davis, 2004). Taking y = K/P and x = V in Eq. (1), we have  

dln(K/P)  

 dlnV V→0 = 0             (5)  

 

Since (K/P)  is positive finite (Eq, 3), Eq. (5) gives  

  P  1 

   =                (6)  

 K  K  

Eq. (6) was for the first time reported by Knopoff (1963). This equation has the status of an identity and is 

of central importance for explaining the infinite pressure extrapolation theory.  

Taking y = K' and x = V in Eq. (1), we have   

  dlnK   KK  

  = −  = 0          (7)  

  dlnV V→0  K   

so that  
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 (KK )  = 0                (8)  

where K  is the second order pressure derivatives of bulk modulus, i.e. d2K/dP2. The higher order 

derivatives of bulk modulus are represented by KK , K2K , K3KIV , and so on in order to express 

them as dimensionless quantities. Now writing y = KK , and x = V in Eq. (1) we have  

 dlnKK  

   =   positive finite           (9)  

 dlnV V→0 

Eq. (9) gives (Shanker et al. 2012)  

 K2K  

 − K  −
 

KK   =             (10)  

 

where  the third order Grüneisen parameter is always a positive finite quantity. The subscript  

correspondents to the limit of infinite pressure (V → 0). It should be mentioned that the first order Grüneisen 

parameter  tends to  a positive finite quantity in the limit of infinite pressure (Stacey and Davis, 2004; 

Stacey, 2005). It has been found that  must be greater than 2/3 for all materials (Stacey and Hodgkinson, 

2019). It is pertinent to mention here that  and K  both are material dependent parameters (Stacey and 

Davis, 2004). The second order Grüneisen parameter q, and the third order  

Grüneisen parameter  in the limit of infinite pressure can be written as follows   

 dln   

  = q  = 0             (11)  

 dlnV V→0 

and   

 dlnq  

  =  = positive finite          (12)  

 dlnV V→0 

Equations (11) and (12) are consistent with Eq. (1). Eqs. (10) and (12) give   

 K2K  

 −  KK   = K  +  = positive finite        (13)  

 

It should be emphasized that Eq. (10) was first derived by Shanker and Singh (2005) using the 

Stacey reciprocal K-primed equation of state (Stacey, 2000). It is found that (1− K P/ K), KK  and 

K2K  all tend to zero in the limit of infinite pressure, but their ratios KK /(1− K P/ K) and K2K / 

KK  were demonstrated for the first time by Shanker and Singh (2005) to remain finite at extreme 

compression. These results were subsequently confirmed by Shanker et al. (2017) and by Stacey and 

Hodgkinson (2019).  
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With the help of Eq. (1), we can write  

dln(1− K P/K)  

 dlnV V→0 = positive finite         (14)  

Eq. (14) gives  

 K  + 1  
KK  

 = positive finite        (15)  

K  1− K P/K  

The left hand side of Eq. (15) is equal to  (Shanker et al. 2009). An important result obtained from Eq. 

(15) is given below   

  KK   

  = finite             (16)  

1− K P/K  

Shanker et al. (2012) have found that   

  q  

  = finite              (17)  

 KK  

Stacey and Hodgkinson (2019) using the free volume formula (their Eq. 4.4) have demonstrated that   

  q  

  = finite             (18)  

1− K P/K  

Eqs. (17) and (18) are consisted with Eq. (16).  

Dwivedi (2016) has extended the application of the Bernoulli-I' Hospital rule for determining higher 

order pressure derivatives of bulk modulus. A generalized expression obtained by Dwivedi (2016) is given 

below   

KKnn(−d1n(d+1nKK//dPdPnn+1))  = −(n −1)K  −         (19)  

 

where n is a positive integer such that n  2. For n = 2, Eq. (19) is reduced to Eq. (10). Also Eqs. (15), (27), 

(28) and (29) reported in the paper by Shanker et al. (2017) can be reproduced with the help of Eq. (19) in 

the present paper.   

Equations (5.13), (5.14) and (5.15) recently formulated by Stacey and Hodgkinson (2019) can also 

be obtained from the generalized equation (19). For n = 3, Eq. (19) gives   
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 K3KIV  

 
K2K   = −2K  −             (20)  

 

Using Eq. (10) in Eq. (20), we get   

  K3KIV   K2K 2  K2K  

 

 KK   =  KK  −K  KK   

 

 = (2K  + )(K  + )            (21)  

Eq. (21) is the same as Eq. (15) in the paper by Shanker et al. (2017). KK  and  

(1− K P/ K) both tend to zero in the limit of infinite pressure, but their ratio remains finite (Shanker et al. 

2009)  

  KK   

  = −K (K  − )          (22)  

1−K P/K  

Equations (10) and (22) taken together yield  

  K2K   

1 − K P/K  = K (K  − )(K  + )        (23)  

Equations (21) and (22) give  

  K3KIV  

1 −K P/K  = −K (K  − )(K  + )(2K  + )    (24)  

 

Equations (23) and (24) are same as Eqs. (5.14) and (5.15) respectively in the paper by Stacey and 

Hodgkinson (2019). For n = 4, Eq. (19) gives  

 K4KV  

 
 

K3KIV  = −3K  −             (25)  

 

Eqs. (24) and (25) taken together yield   

 K4KV  

1 − K P/K  = K (K  − )(K  + )(2K  + )(3K  + )    (26)  
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Thus the generalized equation (19) is a useful formulation for determining higher pressure derivatives in 

the limit of infinite pressure.  
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