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Abstract:  This paper presents an automatic method for obstructive sleep apnea screening and sleep (SL) - wake (WA) stages 

classification based on the whole night PSG (polysomnography) recording of subjects with sleep-disordered breathing during sleep. 

The proposed algorithm can identify apnea (AP), hypopnea (HY), and Onset of apnea (OA) events within a period of a respiration 

cycle. In this work, underlying dynamics embedded in each physiological state (i.e., SL, WA) and different pathological events 

(AP, HY, and OA) are identified with the help of trajectory formed by assigning three signals, i.e., respiration, EEG, and ECG into 

three orthogonal axes. The spatial distribution of the trajectory is found to be varied with the different stages and different events 

of OSA subjects. The discriminating information regarding different stages and events is extracted from the spatial distributions by 

dividing the whole hyperspace into equal-sized subspaces. The persistence of the trajectory in a particular subspace found to be 

sensitive to the physiological state and different pathological events. Application of standard Bayesian classifier revealed its ability 

to discriminate different stages. An encouraging detection accuracy of 95.28% is observed across all the subjects. 

 

Index Terms - Apnea-Hypopnea Events, Bayesian classifier, sleep-wake, trajector. 

I. INTRODUCTION 

Obstructive Sleep Apnea (OSA) is a sleep disorder characterized by repetitive periods of reduced (hypopnea) or total cessation 

(apnea) of respiration caused by the partial or complete collapse of the upper airway, respectively [1]. The prevalence of OSA is 

approximately 4% in adult men and 2% in adult women [2]. The most common sleep apnea symptoms are daytime sleepiness, 

irritability, tiredness, low concentration, and impaired learning [3].  

The undiagnosed OSA is regarded as an essential risk factor for developing severe cardiovascular diseases (e.g., stroke, congestive 

heart failure, left ventricular hypertrophy, atrial fibrillation, myocardial infarction, and sudden cardiac death) [4]. OSA is commonly 

treated with continuous positive airway pressure (CPAP), which prevents the upper airway from collapsing. If patients are identified 

and treated at an early stage of OSA, the adverse health consequences can be reduced [5]. Therefore, early diagnosis of OSA is 

essential.  

The gold-standard method for diagnosing OSA is overnight polysomnography (PSG) (sleep study). This study is carried out in a 

specialized hospital-based sleep laboratory. In the laboratory, multiple biomedical signals are monitored and recorded during sleep. 

These signals are; EEG, electrooculography, electromyography, ECG, oronasal airflow, respiratory effort, and oxygen saturation [6]. 

PSG needs an overnight medical attendant to set up sensors, monitoring, and analysis. According to Rechtschaffen and Kales [7] 

standard, sleep is broken into two different classes: rapid eye movement (REM) and non-REM sleep. Non-REM is subdivided into 

four stages: sleep stage 1-4. In PSG, 30s epochs of the signals are used for decision making means sleep staging and events ( apnea, 

hypopnea, leg movement etc.) marking. Using this method of sleep stage scoring and event detection throughout the recording is 

very tedious, time-consuming work for the physician and depends on the scorer's expertise. The authors [8] reported that manual 

scoring of each 30s epoch has some degree of variability among highly experienced scorers. Therefore, research on developing 

reliable, more accurate computerized automatic sleep staging and apnea event detection for subjects with sleep apnea is encouraged. 

The apnea-hypopnea index (AHI) (e.g., number of apnea and hypopnea events that occur per hour of sleep) from PSG is used to 

characterize apnea severity. An AHI up to 5 is considered normal, an AHI of 5-15 events/h is mild, an AHI of 15-30 events/h is 

moderate, and AHI above 30 events/h is severe sleep apnea-hypopnea syndrome [8]. Previous research indicates that apnea events 

are accompanied by cyclical variations in heart rate: bradycardia/tachycardia [6]. The analysis of Heart Rate Variability (HRV) [9]-

and, in addition to HRV, the effect of changes of different ECG-derived parameters, i.e., R-wave duration, ECG pulse energy, the 

amplitude of S component of each QRS complex, ECG-derived respiration (EDR) [10] during OSA events were studied by the 

researchers from the past few years. Different researchers in the past implemented several techniques like Hilbert transform, wavelet 

decomposition, sample entropy method to extract information related to cardiac dynamics from HRV. Features based on RR interval 

and ECG-derived respiration (EDR) showed 90% correct apnea classification on a minute-by-minute basis [11]. 
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 Different computational systems, including the Bayesian hierarchical model, classification and regression method, linear and 

quadratic classifiers method, neural networks, Support Vector Machine, Deep Neural Network etc. [12-13], were implemented for 

the automatic detection of OSA events using HRV, EDR and/or ECG signal. The K-nearest neighbor (KNN) classifier [12-14] was 

employed to distinguish apnea and non-apnea events based on spectral parameters of RR intervals and QRS complex areas. The 

authors evaluated the KNN-based method through a bivariate autoregressive model [13]. Several researchers directly used the 

respiration signal to identify apnea events [12], [14].  

As OSA causes frequent interruptions in the sleep period during the night, patients cannot achieve good sleep [12]. Such 

interruptions can be seen as awakening responses in EEG records, and these responses are known as arousals [3]. As this is an area 

of interest, several studies have been published for automatic detection of arousal using EEG signal. Many researchers have classified 

OSA events from non-OSA based on the patterns of theta energy ratio in EEG. The study in [15-16] showed that Inter-Hemispheric 

Synchrony Index (IHSI) computed from EEG could classify apnea with an accuracy of 91%. In recent works, Hilbert-Huang 

transformation [17] and bi-spectral analysis [18] of EEG are found to be useful for OSA estimation. 

Given this background, this current study aims to propose a novel approach for automated recognition of apnea (AP), hypopnea 

(HY), and onset of apnea (OA) events from regular breathing events and classification of sleep (SL), wake (WA) stages in OSA 

subjects based on ECG, EEG and respiration signals. A trajectory of multivariate dynamics is estimated in terms of persistence, which 

correlates with the hidden nonlinear dynamical properties of EEG and the cardio-respiratory system. In past although Bayesian 

classifier has been applied for detection of sleep apnea [19], however the authors have not detected the above mentioned stages of 

sleep apnea.  

In this work, a trajectory of multivariate dynamics is estimated, which coincides with the underlying nonlinear dynamical features 

of EEG and the cardio-respiratory system. The persistence of the trajectory in eight areas for all stages/events is thoroughly 

investigated by getting various statistical metrics. Bayesian classifier has been applied for classification of the multiple statistical 

metrics and thereafter for automatic identification. 

 The organization of the paper is as follows. Section II describes the details of the data that has been used in work. The pre-

processing of the ECG, EEG, and respiration signals is presented in Section III. Section IV presents the proposed method for trajectory 

formation and persistence estimation. The Bayesian classifier is presented in Section V. The obtained results are shown in Section 

VI, followed by a discussion and conclusions in Section VI. 

 

II MATERIALS 

In the present study, the signal records of the MIT-BIH PSG database for OSA positive subjects [20] are used, which consist of 18 

PSG records from 16 different subjects, with a duration from 1 hour up to 7 hr (4 hr on average), sampled at 250 Hz with 12-bit 

ADC resolution. All the subjects are male, aged 32 to 56 (average 43), with weights ranging from 89 to 152 kg (mean weight 119 

kg). Records include: 

 ECG and EEG signals. 

 Respiration signals from the nasal thermistor. 

 Respiratory effort signals derived by inductance plethysmography  

 Blood pressure signals. 

The raw data used in this study consist of ECG, EEG, and respiration signals from 14 records of 13 different subjects. The 

discarded records do not contain respiration signals from nasal thermistor. The website provided the annotation for each recording 

with an interval of 30s. Onset-of-Apnea (OA) is not marked; hence an epoch (each of the 30s) is considered as an OA epoch that 

precedes an AP epoch. Total 3771 epochs from non-apneic episodes were collected. Among these epochs, 1792 epochs are from 

sleep states, including REM and non-REM sleep, and 1979 are from wake states that occur after apnea/hypopnea events. One 

thousand seven hundred forty-five (1745) epochs from apneic (AP) events, 770 epochs from HY events, and 535 epochs from OA 

events that are collected from 13 subjects, details of the subjects and stage-wise collected epochs along with subject Identification 

number (ID) is summarized in Table I. 

TABLE I 

SUBJECT RECORDS AND DETAILS OF COLLECTED EPOCHS 

Records Subject 

ID 
SL WA AP HY OA Total 

slp02a P1 110 29 81 10 20 250 
slp02b P1 95 90 40 2 23 250 

slp03 P2 306 129 34 192 15 676 

slp04 P3 162 117 280 1 59 619 

slp16 P4 110 278 118 58 33 597 

slp32 P5 85 310 73 1 46 515 

slp37 P6 34 54 497 0 54 639 

slp45 P7 380 5 123 8 82 598 

slp48 P8 119 178 128 143 56 624 

slp59 P9 110 120 81 70 15 396 

slp60 P10 18 191 171 45 80 505 

slp66 P11 55 148 12 191 1 407 

slp67X P12 28 50 15 7 9 109 

Total  1612 1699 1653 728 493 6185 

slp14 P13 180 280 92 42 42 636 
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III PREPROCESSING OF SIGNALS 

The raw signals collected from the database were found to be contaminated with noises from various sources. In the present 

work, all the three signals ECG, EEG and Respiration were preprocessed separately in different ways to extract the required 

information and removal of noise.  

3.1 ECG Signal Processing 

First, the different filters are applied to the ECG signal to remove the noise and artifacts, and then the most represented beat is 

extracted from each epoch.  

Detail frequency-domain study of the ECG signals showed that most of the recordings are contaminated with power line 

interference of narrowband 60 Hz noise, which is removed with a 6th order IIR notch filter, having a rejection bandwidth of 0.8 Hz. 

The study also revealed that baseline drift due to respiration is significant and has an average frequency band of 0.18 Hz to 3.74 

Hz. To remove the baseline drift and high-frequency noises, the signal is filtered with a bandpass filter of passband 8 to 25Hz. The 

electrode contact noise and motion artifacts are of high amplitude and duration of 0.1-1s. The recordings are identified by comparing 

the sampled value with the 200-point moving average value of the signal. The signals of the affected portions are removed and not 

considered for further processing. Noise due to muscle contraction is of zero mean band-limited, Gaussian type and having very 

low amplitude concerning ECG signal, hence neglected. 

QRS-complex is determined for beat detection from the artifact removed ECG signal using a well-known Hamilton-Tompkins 

algorithm [21]. After the QRS detection, each beat is extracted by the following technique. 

Let  𝑋(𝑛) is any epoch of 30s, which was obtained from the artifact removed ECG signal, where  𝑛 = 1,2,3, … 𝑀 is the sample 

number, 𝑀 = 7500 for 30s epoch. Now, if 𝑛𝑞1 ,𝑛𝑞2, 𝑛𝑞3, … . 𝑛𝑞𝑚 are the sample points on the 𝑅 peaks, then each beat can be 

represented as 𝑥𝑏𝑖[𝑠], where, 

 𝑠 = 𝑛𝑞𝑖 − (𝑛𝑞𝑖 − 𝑛𝑞(𝑖−1)) × 0.6, 𝑛𝑞𝑖 − (𝑛𝑞 − 𝑛𝑞(𝑖−1)) × 0.6 + 1, 𝑛𝑞𝑖 − (𝑛𝑞𝑖 − 𝑛𝑞(𝑖−1)) × 0.6 + 2, . . 𝑛𝑞𝑖 + (𝑛𝑞(𝑖+1) − 𝑛𝑞𝑖) × 0.4         

If 𝐶𝑖𝑗 represents correlation between 𝑖𝑡ℎ beat with 𝑗𝑡ℎ beat,   then 

 𝐶𝑖𝑗 =
∑ [𝑥𝑏𝑖(𝑠)−�̅�𝑏𝑖][𝑥𝑏𝑗(𝑆)−�̅�𝑏𝑗]𝑁

𝑠=1

∑ [𝑥𝑏𝑖(𝑠)−�̅�𝑏𝑖]1/2𝑁
𝑠=1 ∑ [𝑥𝑏𝑗(𝑠)−�̅�𝑏𝑗]

1/2𝑁
𝑠=1

,  

where �̅�𝑏𝑖 =
1

𝑁
∑ 𝑥𝑏𝑖

𝑁
𝑠=1 (𝑠), �̅�𝑏𝑗 =

1

𝑁
∑ 𝑥𝑏𝑗

𝑁
𝑠=1 (𝑠) and N denotes the average beat length. The most representative beat 𝑋𝐵𝑚  for each 

epoch was obtained by calculating 𝑋𝐵𝑚 = max [𝑋𝐵(𝑖)]. Here, 𝑋𝐵(𝑖) = ∑ 𝐶𝑖𝑗
𝑝
𝑗=1 , where    𝑝 is the total number of beat in a particular 

epoch of 30s. After extracting the most correlated beat it was normalized and up sampled to fit with respiration cycle. 

3.2 EEG Signal Processing 

The most common physiological artifacts present in the EEG are muscular activity, eye blink, eye movements and ECG. 

Generally EEG signals are contaminated by ECG signal especially in the time interval of QRS complex. The removal of this noise 

was done by scaling the ECG channel of polysomnography data to the EEG and subtracted it from the EEG. The ocular artifact 

zones were removed by visual inspection of the components.  

High frequency components can clearly be observed during the waking state. The high-frequency microarousal can be observed 

after Apnea and Hyponea, whereas, during sleep, the low-frequency signals can be observed. As the apnea and hyponea events 

occur during sleep therefore extracting the high frequency part and carefully eliminating the low frequency part helped to get a 

derived EEG signal which vary significantly due to the above mention stages/events. In the present work, the information related 

to changes in high frequency components of EEG is extracted by the number of times EEG signal crossed the 200 points moving 

average values taken over a moving window of 200 points. The window is shifted by 1 sample each time. The derived EEG signal 

hence forth will be termed as moving-average-EEG (MAEEG). Fig. 1 shows the wake stage of EEG signal and the 200 points 

moving average signal for subject P1.  
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Fig. 1. Time domain plot of A) EEG signal B) 200 point moving average signal. 

3.3 Respiration Signal Processing 

Respiration signal is of very low frequency compared with ECG and EEG signal and generally having frequency range from 0.18 

Hz to 0.42 Hz. In the present work, respiration signal was filtered with 8th order Butterworth filter having cutoff frequency of 3.5 

Hz to remove the noise caused by patient or sensor movements.  

For extracting a respiration cycle (consists of inspiration and expiration), a zero crossing detection principle with phase transition 

information was implemented. After separating each cycle the most representative cycle of a particular epoch was obtained as 

discussed for ECG beats. 

IV TRAJECTORY FORMATION WITH ECG, EEG AND RESPIRATION SIGNALS 

In order to realize the changes in underlying dynamics of the physiological process, a complete respiration cycle with the 

corresponding MAEEG signal and the most correlated up sampled ECG beat as shown in Fig. 2 are assigned to three orthogonal 

axes which results a trajectory in a three-dimensional space.  

 
Fig. 2. Time-domain plot of (A) up-sampled ECG signal, (B) Respiration cycle and (C) MACEEG [scaled to fit]. 

 

As obstructive apneas and hypopneas alter the linear relationship between autonomic cardiac activity and sleep EEG, From As 

extensive cross coupling and interaction exists between the cardiovascular and respiratory control system, the traces of the 

trajectories were found to different in each physiological state (SL, WA) from normal breathing apnea-hypopnea events vary with 

the different stages of a subject and also found to vary with subjects.  Since the brain activity is very complex in wake stage, EEG 

signal in this stage shows a complicated random behavior. Since trajectories are found to provide a new way to characterize, describe 

and quantify the underlying  dynamics, therefore, a possible usefulness of it in clinical diagnosis of apnea events and sleep, wake 

stage classification have been evaluated. Therefore to extract the discriminating information of different stages from these 

trajectories, the whole space was divided into eight equal-sized subspaces (S1, S2, S3,……, S8) where the persistence (inverse of 

the total number of point  into the particular subspace) of the trajectory in a particular subspace was calculated and a N × C   column 

matrix was formed where C represents the no of subspaces, whose optimum number found to be 8 and N  represents total number 
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of measurements where each measurement corresponds to each respiration cycle. Fig. 3 describes trace of the trajectory in a three-

dimensional space during AP, SL and WA stages of P1 and P2 subjects. The horizontal and vertical slices of Fig. 3 (a) divides the 

whole space in 8 subspaces. The persistence (total time elapsed) of the trajectory in eight regions for all the different stages/events 

ware studied in details by obtaining various statistical parameters like mean, standard deviation, variance, skewness and kurtosis 

etc. It was observed that the persistence values in the eight regions for the above mentioned different stages/events are statistically 

different, but the variations in the statistical properties from  subject to subject so dominant that it rejects any straight forward 

hypothetical rule constructed from the above mentioned statistical properties. In order to provide an overall idea about the variation 

of statistical properties of the persistence to the readers, a box-whiskers plots for the different stages/events for the eight subspaces 

is shown in Fig. 4. The box corresponds to the interquartile range, the bar represents the median, and the whiskers extend to the 

minimum and maximum values the theoretical details about the box-whiskers plots can be found in [22]. Therefore the persistent 

values in subspaces S1,S2…..S8 were considered as features.  

 

 
Fig. 3. 3D plot of the trajectory of the ECG, MACEEG and Respiration cycle for AP event and SL, WA stages for subjects: (a) P1 

and (b) P2.   

 

V CLASSIFICATION BASED ON BAYES’ RULE 

The objective of the Bayesian classifier [22] is to find the class which has the maximum posterior probability for a given 

observation. Mathematically for a particular class 𝑐 where, 𝑐 = {1,2, … . . 𝐶}  using Bayesian classification one finds: 

 

�̂� = arg max
1≤c≤C

P(θc│X) = arg max
1≤c≤C

p(X│θc)P(θc)

p(X)
,  

 

wherep(X|θc) represents class conditional probability, P(θc) prior probability and p(X) unconditional density, which is independent 

of class. Using logarithms and considering the independence between observations, the classification system becomes, 

 

�̂� = arg max
1≤c≤C

∑ lnN
n=1 {𝑝(�⃗�𝑛│θc)P(θc)}  

 

where  𝑝(�⃗�𝑛│θc)  is given in equation (8). 

VI RESULTS AND DISCUSSION 

A complete experimental evaluation is performed on 12-subject to develop a Bayesian multiclass classifier. Initially, evaluation 

was done on the subject-wise dataset by training and testing the Bayesian classifier with the feature vectors of the same subject. In 

this case, the features are drawn randomly from the respective subject-wise dataset of a particular subject, and the rest of the features 

of that patient are used for testing. The performance of the classifier is studied by varying the training data size. Table VI summarizes 

the classifier performance. It showed that in most cases, 100% successful classification is obtained with the training data size of 

80%. This outstanding performance is because subject-wise feature space is often not overlapped, and a clear decision boundary 

can be formed. 
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TABLE II 

SUCCESSFUL CLASSIFICATION IN (%) FOR INDIVIDUAL SUBJECT-WISE TRAINING AND TESTING 

Patient ID Training Data Size (%) 

 80 70 60 

P1 100 99.6 98.8 

P2 100 100 99.4 

P3 98.9 98.7 98.6 

P4 100 100 99.3 

P5 100 99.4 98.6 

P6 100 99.8 99.3 

P7 98.6 97.8 97.1 

P8 99.4 99.1 98.7 

P9 100 100 98.7 

P10 100 99.9 99.5 

P11 99.5 98.9 98.2 

P12 100 100 99.7 

Average 99.7 99.4 98.8 

 

In the next stage of the evaluation process, the Bayesian classifier is trained with a dataset of all the subjects (P1 to P12) by 

randomly drawing the training features from all the subjects while remaining used for testing. Varying training data sizes perform 

the detailed study. The evaluation results presented in Table III are the classification performance with 70% training data size. In 

this case, among the total 6185 (as listed in Table I) no feature vectors, 4328 (~70%) feature vectors are randomly selected for 

training, and the remaining 1857 feature vectors are kept for testing. The actual number of feature vectors in each AP, SL, WA, 

HY, and OA stage are 484, 510, 496, 218, and 149, respectively. After training of Bayesian classifier, a cross-validation scheme is 

adopted for multiple runs to evaluate the generalization ability of the classifier. The procedure is summarized in Table III in a well-

known confusion matrix. From this confusion matrix, it can be observed that the mean value of correct classification for AP, SL, 

WA, HY, and OA stages are 459, 498, 492, 210, and 134, respectively, where  ±11, ±4, ±2, ±7 and ±6 indicate the maximum 

deviation over all the run. The average successful classification by the Bayesian classifier, with 70%, 80%, and 90% training data 

sizes, are 96.06±1.6 %, 96.88±0.9 %, and 97.72±0.5%, respectively. The dropped in the classifier performance is found when 

compared to subject-wise classification because the subject-wise features are often separable by linear or nonlinear decision 

boundaries. Still, as individual subjects have unique patterns of ECG, EEG, and respiration signals, their feature vectors vary in 

feature space. By considering the features of all the subjects, it was observed that the features of different classes (i.e., SL, AP, HY, 

OA) overlapped with each other.  

The performance of the classifier is analyzed by calculating False Negative (FN), False Positive (FP), True Positive (TP), and 

True Negative (TN) with the help of the confusion matrix shown in Table IV From that, Sensitivity (SE), Specificity (SP), 

Predictivity (PR), and Accuracy (AC) were calculated according to [22], which is shown in Table IV. It can be observed that the 

Sensitivity of the OA class is the lowest among all the classes, which is because OA class features are overlapped with SL and AP 

classes. In contrast, the AP has the most insufficient accuracy. 

  

 

TABLE III 

CONFUSION MATRIX FOR SUBJECT INDEPENDENT CLASSIFICATION WITH 70% TRAINING DATA SIZE 

 
 Predicted Class 

 AP SL WA HY OA 

T
ru

e 
C

la
ss

 AP 459±11 0 0 15±7 10±4 

SL 0 498±4 0 0 12±4 

WA 0 4±2 492±2 0 0 

HY 15±5 0 0 201±7 2±2 

OA 

 
7±3 7±2 0 1±1 134±6 

 

TABLE IV 

VARIOUS PARAMETERS FOR CLASSIFIER PERFORMANCE EVALUATION 

FN FP TP TN SE SP PR AC 

25 22 459 1351 0.948 0.984 0.955 0.975 

12 11 498 1336 0.976 0.992 0.979 0.988 

4 0 492 1361 0.992 1.000 1.000 0.998 

17 17 201 1622 0.923 0.990 0.924 0.982 

15 24 134 1683 0.900 0.986 0.849 0.979 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2022 IJCRT | Volume 10, Issue 5 May 2022 | ISSN: 2320-2882 

IJCRT2205697 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g58 
 

In a practical situation, the classifier has to face new features of the new subjects whose characteristics are not included in the 

construction of the model. Leave-one-out cross-validation technique may not reflect the classification accuracy in that case because 

the features from all these 12 subjects are taken to develop the model. For that, the record of P13, which is kept separately and not 

used for the model's design, is used only for testing the performance. In this case, the model is trained with all the data sets from 12 

patients. The confusion matrix shown in Table V summarizes the obtained results with the Bayesian classifier. The successful 

classification that is achieved with the achieved with Bayesian classifier is 95.28 %.   

 

TABLE V 

CONFUSION MATRIX FOR CLASSIFICATION OF UNKNOWN SUBJECT (P13) 

 
 Predicted Class 

 AP SL WA HY OA 

T
ru

e 
C

la
ss

 AP 168 0 0 7 5 

SL 0 271 0 2 7 

WA 0 0 92 0 0 

HY 3 0 0 39 0 

OA 

 
3 3 0 0 36 

 

Another analysis is performed to find the optimum number of subspaces. That is obtained experimentally by varying the number 

of subspaces from 4 to 32. Finally, the optimum number is decided as eight, with a tradeoff between classifier performance and 

computational requirements. 

VI CONCLUSION 

The new technique for extraction features from ECG, Respiration, and EEG signals is reasonable for classifying different stages 

in OSA subjects. The method is reasonably fast as it samples the signal only for 30 seconds and analyzes the signal only for one 

respiration cycle compared to the algorithm based on HRV. The highest sensitivity achieved by the model is 99% in the subject-

wise dataset and 97% in the case of the dataset formed with all the subjects. Leave-one-out cross-validation scheme was found to 

be better when compared to other algorithms. Most of the errors are due to misclassification in HY and OA classes, in a practical 

situation that is also difficult to separate. When a completely unknown subject was presented to the model, 95.28% successful 

classification was obtained. It proves the acceptance of the proposed model for classification.   
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