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1. ABSTRACT: 
For the noise removal problem of noisy seismic data, an improved noise reduction technique based 

on feedforward denoising neural network (DnCNN) is proposed. The previous DnCNN, which was 

designed to minimise noise in seismic data, had an issue with a large network depth, which hampered 

training efficiency. The revised DnCNN technique was previously introduced for noise reduction in natural 

data sets, and after modifying the essential parameters, this study extends the algorithm to noise reduction 

in seismic data. The DUDnCNN algorithm can reduce noise with high efficiency, according to the analysis 

and comparison of the experimental findings, and the method has certain feasibility and significance for 

further seismic data noise reduction research. 

 

2. INTRODUCTION 
With the growing difficulty of exploration, seismic data fidelity and noise reduction remain a major 

technical challenge. The accuracy of seismic data is especially crucial in following exploration since it 

serves as the foundation for resource exploitation, and complex geological conditions frequently obstruct 

data collecting. As a result, seismic data noise reduction is an important step in improving the signal-to-

noise ratio. 

Many noise reduction strategies were suggested in the early years as a classic topic in the field of image 

processing. Initially, noise reduction techniques like median filtering[1] and mean filtering[2] were 

gradually abandoned due to their weak adaptive ability in executing picture noise reduction and lack of 

edge information extraction. f-x domain[3], least square filtering[4], and block matching based three-

dimensional filter transform (BM3D) algorithm[5] are also traditional noise reduction algorithms. David 

Bonar and Mauricio Sacchi[6] introduced a nonlocal mean algorithm to attenuate random noise in seismic 

data, which has the advantage of noise reduction for all pixels in the image while avoiding certain noise 

reduction constraints. For noise reduction of seismic data, CAO et al[7] introduced a second generation 

wavelet transform method, which is a flexible construction approach based on the wavelet transform 

algorithm that has been enhanced. A non-diagonal seismic noise reduction technique based on continuous 

wavelet transform and hybrid block thresholding was proposed by Mousavi et al[8]. The full-variance 

regularised nonlocal mean approach was used by Li et al[9] to reduce noise in seismic data, which 

efficiently removed the noise while maintaining the edges. A noise reduction technique based on dynamic 

clustering with singular value decomposition was suggested by Wang Wei et al[10]. The adaptive 

thresholding approach based on the shearlet transform was used to reduce seismic data noise by Cheng 

Hao et al [11]. Although many of the aforementioned algorithms have shown promise in the processing of 

seismic data noise, further research is needed to increase the efficiency and accuracy of noise reduction 
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processing, and it is critical to investigate more accurate and efficient noise reduction algorithms for 

seismic data. 

With the rapid growth of computer networks in recent years, a growing number of deep learning algorithms 

have been applied to the study of seismic data noise reduction, with promising results. Tang J. et al.12, for 

example, integrated the K-SVD denoising technique with a deep learning network to investigate a seismic 

random noise suppression method based on deep learning's sparse representation of overcomplete 

dictionary signals. Wang Qiqi et al.13 introduced a multilayer perceptron (MLP) noise reduction approach 

for seismic data and obtained a noise reduction model with improved efficacy after successful model 

training and parameter tweaking. Many researchers have looked at the development of convolutional neural 

networks (CNN) based on artificial neural networks for seismic data noise reduction. Han Weixue et al. 

[14] introduced a CNN-based random noise removal algorithm for seismic data and compared it to classic 

denoising algorithms such as wavelet transform and curvilinear wavelet transform, finding that CNN 

provided superior denoising results. Mandelli et al.[15] investigated the use of a convolutional neural 

network structure dubbed U-Net for seismic data noise reduction and interpolation. As can be observed, 

academics in seismic data noise reduction research adore CNNs with excellent feature learning capabilities. 

DnCNN is a classical feedforward denoising convolutional neural network, which is a more advanced 

denoising algorithm in the field of deep learning at the moment. CNN has a variety of structures, and 

DnCNN is a classical feedforward denoising convolutional neural network, which is a more advanced 

denoising algorithm in the field of deep learning at the moment. Some researchers have previously led the 

way in applying DnCNN to seismic data noise reduction studies, with promising results, but the deeper 

network structure makes it more challenging to train.  

The DuDnCNN network framework utilised in this paper is a hybrid of the DnCNN and U-Net networks. 

When utilised in the noise reduction processing of the natural dataset BSDS300, the network initially 

showed good noise reduction, and the network topology is relatively basic with little depth, which can 

enhance training efficiency to some extent. As a result, after modifying the required parameters, the 

network is applied to the seismic data under investigation. The experimental dataset is a set of underground 

random seismic data obtained from the kaggle competition's official website, to which we add noise to 

create a noisy dataset and a clean dataset. The test set and analysis of the results can confirm the DUDnCNN 

algorithm's practicality in the field of seismic data noise reduction processing. 

1.2. Noise reduction principle of seismic data based on DnCNN 

 

(1) Principle of noise reduction 

The following equation can be used to define seismic data that is sensitive to noise interference: 

y  x  n 

(1) Where x represents the original noise-free seismic data, y represents the noisy seismic data, and n 

represents the noise, which is commonly additive Gaussian noise with a normal distribution. 

According to the above equation, the main goal of noise reduction is to recover x from y as much 

as possible, i.e., the ultimate goal is to remove noise from noisy data using noise reduction 

processing, so that the obtained seismic data is as close as possible to the original seismic data 

without noise, and the seismic data used in the subsequent experiments in the paper are all seismic 

images. The following equation can be derived by using neural networks to improve the denoising 

model into a learnable process: 

min   xi   F  n  xi 
i 1 

(2) in which xi  

 

is the noise-free original seismic profile image, while n xi is the noisy image after noise 

In addition, F stands for the neural network's forward propagation process, and refers to the weights. 

2 
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To reduce the distance between the outputs, the AdamW algorithm is utilised. 

 

F  n  xi  and xi 

Through the goal of network training is to find the best network model with the best parameters. 

 

  Original DnCNN network 

 DnCNN's network structure is depicted in Figure 1 below. The network is divided into three 

parts, the first of which is the C1 layer, which contains the Conv and ReLu activation layers. Conv 

is primarily used for data feature extraction in the learning process, while ReLu is a common 

activation function that effectively prevents gradient explosion and zeros out all negative values. 

The C2 layer's second section consists of six levels, each of which contains Conv, BN, and ReLu 

activation layers, with one more BN layer than the C1 layer. The BN layer's primary function is to 

modify and normalise the data following convolution. After multi-layer convolution, the third half 

of the convolutional layer is employed for picture reconstruction, where noisy images are learned. 

A global jump is built between the network's input and output, and the noise-bearing image is 

reoperated with the learned output noise image to create a clean denoised image, which is a DnCNN 

residual learning characteristic. 

 

 

 

 

Figure.1 DnCNN network framework 

2. Improving the network DUDnCNN 

 

 

 

Figure.2 Improved noise reduction network DUDnCNN 
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Figure 2 depicts the improved network topology based on DnCNN, with the following benefits 

summarised: 

 

(1) DnCNN combined with U-Net: The composition of DUDnCNN is a good combination of the 

advantages of the two networks. DnCNN's batch normalisation and residual learning can prevent 

internal variable movement, whereas the U-Net network's outstanding advantages are 

downsampling, upsampling, and jump linking. Upsampling is a process of decoding and recovery, 

and the connection is cleverly added in the middle to fully combine the different levels of 

information obtained, so that the network can learn more comprehensive information about the data. 

Downsampling is a process of encoding and compression, and the low-frequency information of 

the data is gradually perceived as downsampling progresses. 

 

 

(2) Expanded convolution: The convolution kernel of the DUDnCNN network is designed using the 

expanded convolution operator. The size of the convolution kernel in the left half of Figure 2 after 

adding the interval is known as downsampling. The sizes are 3 3, 7 7, and 15 15, and the gradually 

increasing receptive field can better extract the image data's low-frequency information, and the 

convolution kernel size design of the up-sampling process in the second half is exactly the opposite 

of the left half, which is also the process of image restoration. 

 

3. LITERATURE SURVEY 

 
In order to improve training efficiency, the framework converts the goal function from effective signal 

learning to noise learning via residual learning. Unsupervised noise reduction necessitates a high level of 

training data representativeness and a large number of training data sets. We use residual learning and batch 

normalisation (BN) in the network architecture to lower the network's training parameters and hence reduce 

feature learning time. The activation function with leakage correction can effectively retain negative 

information, and when combined with the double convolutional residual block, the network's generalisation 

ability and feature extraction performance can be significantly improved. Synthetic data and sophisticated 

field data with uncertain noise levels were put to the test. 

We look at the architecture of deep Convolutional Networks (ConvNets) for seismic data denoising in this 

letter. The untrained ConvNets are applied to a single seismic data profile with Gaussian noise as a 

generative network. Starting with random initialization parameters, generative networks with various 

handmade architectures can map seismic data at different iterations and can isolate Gaussian noise as 

residuals. The key components of a generative network, depth, width, and skip connection, are formed as 

various architectures to match Gaussian noise, clean, and noisy seismic data, respectively, with the 

objective of studying the capacity of Gaussian noise separation. Extensive experiments on synthetic and 

real-world data demonstrate the effectiveness of the chosen ConvNet, and the benefits are assessed by 

comparing the denoising results to those of f-x multi-channel singular spectrum analysis (MSSA) and a 

state-of-the-art unsupervised neural network (NN)-based method. 

We introduced a fast and flexible convolutional neural network (FFCNN) based on DnCNN in this paper. 

In contrast to existing DnCNN and other AI-based denoisers, FFCNN has several appealing features: 1) 

downsampling and upscaling operations, which can significantly reduce runtimes and memory 

requirements while maintaining denoising performance, and 2) we introduced noised level maps, which 

can allow a single convolutional neural network (CNN) model to handle noise models with varying 

parameters. The main work and benefits of this article are focused on the following two components for 
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real seismic data denoised work: 1) To overcome the paucity of well-labeled samples, we used a data 

augmentation technique, and 2) transfer learning was introduced to the training processing, which used the 

well-trained synthetic seismic data denoising network as a pretrained model. Finally, numerical studies 

show that our strategy works in both synthetic and actual seismic data. 

As a result, we offer a unique unsupervised learning approach that uses noisy data to learn. The method is 

based on two key characteristics of seismic data: 1) geographically connected legitimate signals from 

nearby seismic traces, and 2) random noise that is spatially independent and unexpected. The denoising 

issue was solved using an end-to-end deep convolutional neural network (CNN). The training set's inputs 

and labels were taken from adjacent traces of seismic data with similar seismic phases and interface 

properties. The suggested CNN denoising model was tested with synthetic and field data. When compared 

to two commonly used state-of-the-art denoising approaches, the experimental results show that random 

noise attenuation while keeping amplitude is more successful. 

Deep learning (DL) methods have recently shown promising results in seismic data denoising, one of which 

is supervised DL denoising methods that use clean data as the training label, despite the significant expense 

of getting clean data. Without using clean data, we study a viable self-supervised DL denoising approach. 

The NN is trained using Bernoulli-sampled training pairs of the raw noisy data produced by the dropout 

layer, and a Monte Carlo self-integrated approach improves the denoising quality of the trained NN during 

testing. Using simulated and real data examples, the suggested method outperforms the f-x deconvolution 

(FXDECON), deep image prior (DIP), and sparse autoencoder (SAE) methods in terms of improving 

signal-to-noise ratio (SNR) and decreasing signal loss. 

Deep learning (DL) methods have recently shown promising results in seismic data denoising, one of which 

is supervised DL denoising methods that use clean data as the training label, despite the significant expense 

of getting clean data. Without using clean data, we study a viable self-supervised DL denoising approach. 

The NN is trained using Bernoulli-sampled training pairs of the raw noisy data produced by the dropout 

layer, and a Monte Carlo self-integrated approach improves the denoising quality of the trained NN during 

testing. Using simulated and real data examples, the suggested method outperforms the f-x deconvolution 

(FXDECON), deep image prior (DIP), and sparse autoencoder (SAE) methods in terms of improving 

signal-to-noise ratio (SNR) and decreasing signal loss. 

The field seismic data, on the other hand, falls short of this criteria. To get around it, several researchers 

used labels made from realistic-looking synthetic data or denoised results obtained using traditional 

approaches. Because it requires the same distribution of test and training data, the former ones have a 

problem with poor generalisation ability. We present a novel deep learning framework for attenuating 

random noise in prestack seismic data in an unsupervised manner to avoid constructing noise-free labels. 

The self-similarity of prestack seismic data like common-reflection-point (CRP) collects and common-

midpoint (CMP) gathers after normal moveout (NMO) correction is very high. Because their events are 

time–space coherent and roughly horizontal from shallow to deep layers, this is the case. Before learning 

anything else, the generator convolutional neural network (GCN) learns self-similar features. 

Despite the fact that deep neural networks (DNNs) typically outperform traditional denoising methods, 

their performance is not assured since neural networks still lack good mathematical interpretability. We 

suggested an unsupervised denoising technique based on model-based deep learning, which merged 

domain knowledge with a data-driven method to reduce the reliance on labelled data and explore insights 

into the denoising system. We created a network using the modified iterative soft threshold algorithm 

(ISTA), which omitted the soft threshold to reduce the uncertainty caused by empirically chosen thresholds. 

The lexicon and code are trainable parameters in this network. To ensure that network training can be done 

without supervision, a loss function with a smooth penalty was created. 
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4. EXPERIMENT 

 

 This section goes over the specifics of this noise reduction experiment, such as how to prepare the 

dataset and how to train and evaluate the noise reduction network. The noise reduction effect plots of 

DUDnCNN with different parameters are compared and analysed in the test and result analysis section at 

the end of this section, and the result outputs of both DnCNN and DUDnCNN are also compared to 

demonstrate the advantages of DUDnCNN in seismic data noise reduction. 

(1) Data preparation 

 

      
(a) Clean image  (b) Noise image 

 

Figure.3 Comparison of images before and after adding noise 

The dataset utilised in the experiment is the salt body segmentation competition dataset published by 

Kaggle's official website. The data consists of a collection of 101101 pixel photographs taken at various 

positions around the underground. A total of 3100 photos were chosen from the dataset, with 3000 serving 

as the training set and 100 serving as the test set. All of the images were clean and noise-free. In the data 

processing, Gaussian noise is first applied to the 3000 photos of the training set to create noisy images, 

resulting in a processed training set that has 3000 clean and 3000 noisy images, and the test set is handled 

similarly. On the left are the clean images from the original data set, and on the right are the noisy images 

after adding Gaussian noise. 

(1) Training 

The training and testing processes of the experiment are depicted in Figure 4, with the training procedure 

in the upper half. In the training phase, the image size is 101101, and the output image is the same size. In 

the training phase, the image size is 101101, and the output image is the same size. The training process 

entails batching the noisy data from the training set into the improved DnCNN noise reduction network, 

extracting and removing the noise features to obtain a clean image, calculating the error between the clean 

image and the clean image in the training set before adding noise, and then back propagating to update 

various parameters in the network, and looping this process until the error is minimised and the model is 

finished, at which point the model should be finished. The model should achieve the best convergence 

effect possible, and the network training process parameters are selected as indicated in Table 1. 

  
 

Table.1 Training parameter setting 
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Training 

parameters 

Numerical 

settings 

Epoch 30 

Learning rate range 0.0001 

Batch size 8 

Image size (101,101) 

 

(2) Test and Result Analysis 

 

In this section, we primarily evaluate the DUDnCNN algorithm by feeding seismic data from the test set 

into the network and comparing the noise reduction effect of different parameters and optimizer settings. 

 
 

(a) Denoising results of Adam optimizer 

 

 
 

(a) Denoising results of Adamw optimizer  

 

Figure.5 Denoising results under different optimizers 

 

Figure 5 shows the noise reduction outcomes of the two optimizers. (a) depicts the Adam optimizer's 

noise reduction effect, which combines the benefits of both AdaGrad and RMSprop and is known for its 

fast convergence speed. (b) shows the noise reduction effect of the AdamW optimizer, which is a version 

of Adam, and how its weight decay and L2 regularisation may successfully ease the overfitting problem 

in training, as well as Adamw's superior generalisation ability. AdamW can also minimise the loss to a 

lower magnitude and converge faster at the same epoch, as shown by the training loss curve at the bottom 

of Figure 5. However, both optimizers' noise reduction effects have the same issue: the effective 
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information is damaged throughout the noise reduction process, and we must alter the learning rate and 

epoch to improve the problem. 

The effect of the two algorithms DnCNN and DUDnCNN on noise reduction is shown in Figure 6. 

DnCNN exhibits smoothing over and overfitting for the same data set during training and testing. And 

the DUDnCNN loss change curve shows that the training loss has basically converged at 20 iterations, 

and the peak signal-to-noise ratio has also improved significantly before and after iteration, but even 

though we try to alleviate the problem of effective information being removed by adjusting the learning 

rate and Batch size several times, the problem of effective information being removed persists. Graphic 

7 shows that the DUDnCNN algorithm's noise reduction result still loses more effective information than 

the original seismic data figure (a). As a result, the next problem to overcome is assuring DUDnCNN 

integrity while ensuring noise reduction efficiency. 

 

(a) DUDnCNN noise reduction effect 

 

 
(b) DnCNN noise reduction effect 

Figure. 6 Comparison of noise reduction effect of DUDnCNN and DnCNN 

 

(a) Original seismic data (b) Seismic data after noise addition (c) Seismic data after noise 

reduction by DUDnCNN 

Figure. 7 Test set data noise reduction results 
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5. CONCLUSION 

   To solve the issue of excessive noise reduction network depth affecting training efficiency, 

this research recommends using a DUDnCNN with a reduced depth to reduce seismic data noise. 

DUDnCNN combines the benefits of DnCNN batch normalisation with an end-to-end U-Net neural 

network, and the network's skip-connection operation prevents shallow information from being lost 

during the feature learning process, allowing it to successfully extract feature information. The dilation 

convolution operator is introduced to the kernel, allowing the perceptual field to be increased 

throughout the convolution process. The training data set for the network consists of 6,000 101101 

seismic data points, with 3000 noise-free and 3000 noise-containing data points. The difference 

between the network output and the initial noise-free data is back-propagated and tweaked to reduce 

the difference, and the optimised network model demonstrates a good noise reduction effect after being 

tested using test samples. The DUDnCNN algorithm has a higher noise reduction efficiency, but it still 

has fidelity issues, according to the results. Although the algorithm achieved near-optimal noise 

reduction in the BSD300 dataset, more network tuning and better parameter selection are urgently 

needed to obtain ideal noise reduction in the application of noise reduction in seismic datasets. 
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