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ABSTRACT 

Generalised classes of estimator in regression model with prior information deals with developing generalised classes mixed 

regression type estimator of the classes than existing ones under different criterion of choosing better estimators expected loss 

or concentration probabilities. Generalised mixed regression model, estimator is more efficient than other estimators. 
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                                                    INTRODUCTION 

   In social, chemical, physical, biological and medical sciences engineering, business, planning and another fields of practical 
importance, we require the analysis of causes and effects involved in the mechanism of various intricate phenomena under 
our study. On the basis of best experience or some theoretical justification, the relationship between causes and effects are 
specified. This specified relationship between causes and effects together with certain other assumptions constitutes the 
theoretical framework in the form of providing the data generating mechanism of the phenomena under our study. The 
simple well known theoretical frame-work representing the complex mechanism underlying various intricate phenomena is 
the linear regression model which is linear in parameters in its basic nature. Linear regression model under certain 
assumptions contains some unknown parameters which are to be estimated on the basis of apriori information. 

In the context of linear restricted regression model, Srivastava and Srivastava (1984), proposed two families of shrinkage 
estimators by synthesizing Stein rule estimator with the restricted regression estimator in an appropriate manner, discussed 
their properties with respect to bias vectors, mean squared error matrices and the risks under quadratic loss function when 
the disturbances are assumed to be small and 1ater on, Srivastava and Chandra (1991) studied these two families of 
estimators when disturbances are not necessarily normal. we consider the following generalised families of estimators There 
are several methods of obtaining estimators in the literature but the question now arises whether some of many possible 
estimators are better in some sense, than the others. To solve this problem, we present some criteria of judging the 
performance of an estimator that will help us in deciding whether one estimator is better than another. 

Let the classical linear regression model be 

                                   
𝑦

𝑇 × 1
=  

𝑥
𝑇 × 𝑝

𝛽
𝑝 × 1

+
𝑢

𝑇 × 1
                             (1)          

where u follows a multivariate normal distribution with mean vector 

E(u) = 0    and dispersion matrix    E (u u') = 2IT   ,  2 being unknown variance of disturbances. 

Let the available prior stochastic information on coefficient vector  be in the form 

     q = Q +                                         (2) 

where E(q) = Q, q is a J  1 vector, Q is known (J  p) matrix of full row rank and  is a (J  1) vector of disturbance, u and 

v are uncorrelated  
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where u follows a multivariate normal distribution with mean vector 

E(u) = 0 

and dispersion matrix 

E (u u') = 2IT 

2 being unknown variance of disturbances. 

 

For u following the multivariate normal distribution with mean vector zero and dispersion matrix 2IT, we know that the 

ordinary least square (OLS) estimator 

  b  =  (x 'x )– 1x 'y                                                                      (3) 

is the best linear unbiased estimator of  and dispersion matrix 2 (x' x)–1. 

 Mixed Regression  Model 

Theil and Goldberger (1961) developed the mixed regression model using the linear restrictions RB r stochastically. Thus, 
we have the linear restrictions on the parameter vector β as       

                                               r   =   R + β v                                                                                                        (4) 

                where r is a Jx1 vector of j (s p) random variables, R is a Jxp matrix with known elements and v is a Jx1 vector of 
stochastic elements having mean vector null dispersion matrix and the elements of v are un correlated with those of u , that 
is 

 E (v)    =   0           And   E (u v') = 0. 

           Noting E (v)   =   0   , we see that the restrictions may be written as which shows that r contains the unbiased 
estimator of J linear parametric functions. Incorporating the available a priori stochastic information Theil and Goldberger 

(1961) introduced the mixed regression estimator given by 

       bTG = [(x'x) + 2Q'–1Q]–1(x'y + 2Q'–1q)                             (5) 

which is an unbiased estimator of  and has the dispersion matrix 

              V(bTG) = 2[(x'x) + 2Q'–1Q]–1                      (6) 

When the disturbance variance 2 is known, it may be replaced by its unbiased estimator 

           𝑠2 =  
1

𝑇−𝑝
 (𝑦 − 𝑥𝑏)′(𝑦 − 𝑥𝑏)                (7) 

and thus, the adaptive version of the mixed regression estimator bTG is 

                                   bT = (x'x + s2Q'–1Q)–1(x'y + s2Q'–1q)                       (8) 

Srivastava and Srivastava (1983) considered the following two families of estimators 

                                     𝑏𝑇𝑆 =  [1 − 
𝑘(𝑦−𝑥𝑏𝑇)′(𝑦−𝑥𝑏𝑇)

𝑏′𝑇𝐶𝑏𝑇
] 𝑏𝑇                        (9) 

and 

                                    𝑏𝑆𝑇 =  [𝑥′𝑥 + 
(𝑦=𝑥𝑏𝑠)′(𝑦−𝑥𝑏𝑠)𝑄′Ψ−1𝑄

𝑇−𝑝
]

−1

 

                                                  ×  [𝑥′𝑦 +  
(𝑦=𝑥𝑏𝑠)′(𝑦−𝑥𝑏𝑠)

𝑇−𝑝
 𝑄′Ψ−1𝑞]                                        (10) 

 

 

        bgT = g(z*)bT                                            (11) 

 

                           𝑏ℎ𝑇 =  [𝑥′𝑥 + (𝑦 − 𝑥ℎ(𝑧)𝑏)′(𝑦 − 𝑥ℎ(𝑧)𝑏)𝑄′Ψ−1𝑄]−1 

                                       ×  [𝑥′𝑦 + 
(𝑦−𝑥ℎ(𝑧)𝑏)′(𝑦−𝑥ℎ(𝑧)𝑏)𝑄′Ψ−1𝑞

𝑇−𝑝
]                               (12) 

 

                                                     𝑧∗ =  
(𝑦−𝑥𝑏𝑇)′(𝑦−𝑥𝑏𝑇)

𝑏′𝑇𝑥𝐶𝑏𝑇
,                                (13) 

and 

                                                          𝑧 =  
(𝑦−𝑥𝑏)′(𝑦−𝑥𝑏)

𝑏′𝐶𝑏
,                               (14) 
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g(z*) and h(z) satisfying the validity conditions of Taylor's series expansion with appropriate finite expectations and having 

first two derivatives bounded, are the functions of z* and z such that 

g(z*=0) =1, h (z = 0) = 0 

and 

g(z*) =O(1), h(z)=O(1) 

as   0 respectively and z*, z have least first k ( 4) moments finite. Here an attempt has been made to analyse the properties 

of the estimator bgT by Singh et al. (1995) and bhT with respect to the criterion of the concentration probability around the true 

parameter. 

Concentration Probabilities of Estimators, we derive the small  asymptotic expression for the sampling distributions of the 

estimators  

                                     y = x +                                                    (15) 

so that  follows multivariate normal distribution with mean vector zero and dispersion matrix IT. 

   𝑍 =  (𝑥′𝑥)−
1

2𝑥′𝜔

�̅�𝑥 = [𝐼 − 𝑥(𝑥′𝑥)−1𝑥′]
}                                                  (16) 

we observe that (i)Z follows multivariate p normal distribution with mean vector zero and dispersion matrix Ip, (ii) 𝜔′�̅�𝑥𝜔 

follows a chi square distribution with  

                               n = T – p                                                                           degrees of freedom     (17) 

 

                               

.  

The estimation error of bgT {see Singh et al. (1995)} may be written a 

 (bgT – ) = 1 + 22 + 33 + 44 + O(5)                                                                         (18) 

    

 

Standardizing the estimation error (bgT - ), we have 

                                                     𝑟𝑔 =
1

𝜎
 (𝑥′𝑥)−

1

2(𝑏𝑔𝑇 − 𝛽)                                     (19) 

                                                         =A0 + A1 + A2 + 2A2 + 3A3 +O (4)                    (20)     

The characteristic function of rg is given by    

             𝜙𝑔(ℎ) = 𝐸(𝑒𝑖ℎ′𝑟𝑔) 

               = 𝐸(𝑒𝑖ℎ′𝐴0𝑒(𝑖ℎ′𝐴1+2𝑖ℎ′𝐴2+3𝑖ℎ′𝐴3+𝑂(4))                    (21) 

  

 

 By using the results in (17) , the characteristic function of the vector rg to order O(3), is 

                                 ∅𝑔(ℎ) =  (1 + 𝜎∅1 + 𝜎2∅2 + 𝜎3∅3)𝑒−
1

2
ℎ′ℎ

                             (22) 

                                       ∅1 =  −
𝑖𝑔′(0)𝑛

∅
 (𝛼′1ℎ) 

                                         ∅2 =  −𝑛(ℎ′𝐺ℎ) −
(𝑛+2)

2𝑛
 (ℎ′𝐴ℎ) − {𝑔′(0)}2  

𝑛(𝑛+2)

2∅2  (𝛼′1ℎ)2   

        for in similar manor other terms for above equation, by the inversion theorem, the joint probability density function of the 

elements of rg is given by 

                                        𝑔(𝑟𝑔) =  
1

(2𝜋)𝑝 ∫ 𝑒𝑖ℎ′𝑟𝑔∅𝑔(ℎ)𝑑ℎ.
∞

−∞
                                (23) 

Substituting g (h) from (18) in (19) and utilizing the following results for a fixed vector a and a fixed matrix A: 

 

 Noting the concentration probability of the estimator bgT around  for the region bounded by the constants 

�̅�1, �̅�2 … … . �̅�𝑝 in the p-dimensional Euclidean space to be   

                               𝐶𝑃(𝑏𝑔𝑇) = ∫ …
𝑚𝑝

−𝑚𝑝
∫ 𝑔(𝑟𝑔)𝑑𝑟𝑔1

𝑚1

−𝑚1
… 𝑑𝑟𝑔𝑝                             (24) 
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 Proceeding on the same lines for the generalized estimator bhT as in case of generalized estimator bgT, we have 

with 𝑒𝑗 =  
𝑚𝑗𝑒

−
1
2𝑚𝑗

2

∫ 𝑒
−

1
2𝑟ℎ𝑗

2
𝑑𝑟ℎ𝑗

𝑚𝑗
0

; 𝑗 = 1, 2, … . . 𝑝  

∅ (𝑚) = ∫ …
𝑚𝑝

−𝑚𝑝

∫ 𝜉(𝑟ℎ)𝑑𝑟ℎ1𝑑𝑟ℎ2 … . 𝑑𝑟ℎ𝑝.

𝑚1

−𝑚1

 

Generalised classes of estimator in regression model, mixed regression estimator is better estimator from Shukla, also 
all the estimator is particular case of mixed regression estimator. Extending the results of Srivastava and Srivastava (1984), 

Srivastava and Chandra (1991) (and and many others, Singh (1994) proposed a generalized class of restricted regression 
estimators which includes some improved efficient estimators than the existing ones. Further Singh et al. (1995) considered 

a generalized class of mixed regression estimators containing an improved subclass of estimators over the existing mixed 
mixed or mixed type regression estimators with respect to a general quadratic loss function in linear regression model 

under constraints.                                                                                                
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