ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION USED IN PHARMACEUTICAL FORMULATIONS FOR THE TREATMENT OF PNEUMONIA- A REVIEW.

¹Yogesh P. Jadhao*, ²Vaibhav S Janjal, ³Vaibhav S. Gadve, ⁴Mangesh Khillare, ⁵Shital G. Rathod,

¹Department of Quality Assurance and Technique

⁴Department of Pharmaceutics

Dr. D. Y. Patil College of Pharmacy, Akurdi, Pune, Maharashtra, India, 411044.

Abstract: Pneumonia is a form of acute respiratory infection that affects the lungs. Symptoms include a cough with phlegm or pus, fever, chills and difficulty breathing. Amoxicillin, azithromycin, ciprofloxacin, erythromycin, etc. are the drug that can be used to treat the pneumonia. In this review we have to study Analytical method such as HPLC, UV, LC-MC-MC, Spectrophotometric, HPTLC for this various drug used in Pneumonia. In addition with this the best hospitals and doctors are given in the list format. The main approaches of this review is to explore all the possible analytical methodology for this drug. The review is also helpful to choose better option for analytical method development for this drug. This article introduces a simple, specific, precise and robust HPLC method which has been developed and validated based on FDA guidance and the ICH guidelines Q2A and Q2B to measure the number of drugs in order to assess their release profiles from new floating-sustained release tablet formulations

Key Terms - Pneumonia, Amoxicillin, Ciprofloxacin, HPLC, UV.

1. Introduction:

Pneumonia is a Lung illness caused by an acute respiratory infection. When a healthy person breathes, tiny sacs called alveoli in the lungs fill up with air. When a person develops pneumonia, the alveoli get clogged with pus and fluid, making breathing difficult and restricting oxygen intake. Infection that causes the air sacs in one or both lungs to become inflamed and fill with fluid. Anyone, but especially newborns, children, and adults over 65, is at risk of contracting the illness, which can be fatal.[1]

1.1 Symptoms:

Coughing up phlegm or pus, fever, chills, and trouble breathing are all symptoms. Many types of pneumonia can be treated with antibiotics. Vaccines can help prevent some types of pneumonia.[1]

Fig. no.1 lungs with pneumonia

1.2 Pneumonia and your lungs Open pop-up dialog box:

Pneumonia is a lung infection that causes inflammation of the air sacs in one or both lungs. In these situations, various symptoms appear. When the air sacs fill with fluid or pus, it can cause a cough with phlegm or pus, a fever, chills, and difficulty breathing (purulent material). Pneumonia can be caused by bacteria, viruses, or fungi, among other things. Pneumonia can be mild or severe, and it can even be fatal. The most vulnerable are infants and young children, persons over 65, and people with health problems or weakened immune systems. .[2]

1.3 Sign and Symptoms:

The severity of pneumonia symptoms varies based on the type of bacteria that caused the sickness, as well as your age and overall health. Perplexity or changes in mental awareness are two examples of mental awareness shifts (in adults age 65 and older) A cough that generates phlegm is known as phlegm cough. Fatigue, Fever, perspiration, and shivering chills A lower-than-average body temperature (in adults older than age 65 and people with weak immune systems), Vomiting, nausea, or diarrhoea are all symptoms of a stomach bug. Breathing difficulties. In babies and infants, the signs of infection may go undiagnosed. They may also vomit, have a fever and cough, appear restless or tired and devoid of energy, or have breathing and feeding problems. [2]

1.4 Cause :

pneumonia can be caused by a variety of bacteria. Bacteria and viruses in the air we breathe are the most prevalent. These bacteria are typically prevented from invading your lungs by your body. Even if your health is typically strong, these bacteria can occasionally overwhelm your immune system.[2][3]

Sr. no.	Types of pneumonia	Causative agents
1.	Bacterial pneumonia.	Streptococcus pneumoniae
2.	Viral pneumonia	Influenza (flu) A and B viruses
3.	Mycoplasma pneumonia.	Mycoplasma genitalium
4.	Other pneumonias	Pneumocytic pneumonia
		Legionella pneumonia
		Aspiration pneumonia
		Hypostatic pneumonia
		Lipid pneumonia

Table no. 1.1 Pneumonia is classified [3]

Community-acquired pneumonia is the most common type of pneumonia. It occurs outside of hospitals or other health care facilities. It may be caused by:

Community-acquired respiratory disease is that the most common form of respiratory disorder. It happens outside of hospitals or alternative health care facilities. It's going to be caused by:

Bacteria: The foremost common reason for microorganism respiratory disease. The streptococcus pneumoniae this kind of respiratory disease will occur on its own or when you have a cold or the respiratory disease. It's going to have an effect on one part (lobe) of the respiratory organ, a condition known as lobar pneumonia.

Bacteria-like organisms: Mycoplasma pneumoniae can also cause pneumonia. It's usually producing milder symptoms than do different varieties of pneumonia. Walking pneumonia is an off-the-cuff name given to the present from of pneumonia, which generally is not sever enough to need bed rest.

Fungi: This kind of pneumonia is commonest in individual with chronic health issues or weakened immune systems, and in those who have inhaled massive doses of the organisms. The fungi that cause it is found in soil or birds dropping and vary depending upon geographical location.

Viruses: Are the foremost common reason behind respiratory disease in kids younger than five years. Viral infection is typically varied. However, in some because it will become terribly serious. Coronavirus 2019 (COVID-19) could cause respiratory disease, which might become severe.

Risk factors: Mainly pneumonia can be divided into two age group in high risk

- Children who are 2 years old or younger
- \blacktriangleright People who are age 65 or older

Several other factors includes :

- Being admitted to the hospital, having a chronic illness
- Being admitted to the hospital. If you're in a hospital intensive care unit, you're more likely to have pneumonia, especially if you're on a breathing machine (a ventilator).
- Long-term illness. If you have asthma, chronic obstructive pulmonary disease (COPD), or heart problems, you're more likely to have pneumonia.
- Smoking. Smoking weakens your body's natural defences against pneumonia-causing germs and viruses.
- Immune system that is weakened or inhibited. People with HIV/AIDS, organ transplant recipients, and those who get chemotherapy or long-term steroids are also at risk.[3]

Complications: Despite therapy, some persons with pneumonia, particularly those in high-risk categories, may develop complications such as:

- Bacteria in the bloodstream (bacteraemia). Bacteria from your lungs can enter your circulation and spread to other organs, potentially causing organ failure.
- Breathing problems. You may have problems breathing in adequate oxygen if your pneumonia is severe or if you have persistent underlying lung illnesses. While your lung recovers, you may need to be hospitalised and use a breathing machine (ventilator).
- A build-up of fluid around the lungs (pleural effusion). Fluid may accumulate in the small area between the layers of tissue that border the lungs and chest cavity as a result of pneumonia (pleura). If the fluid gets contaminated, it may be drained using a chest tube or surgically removed.
- Abscess in the lungs. When pus grows in a hollow in the lung, it is called an abscess. Antibiotics are frequently used to treat an abscess. To remove the pus, surgery or drainage with a long needle or tube inserted into the abscess may be required.

1.5 Prevention

To help prevent pneumonia:

Vaccinate yourself. Some kinds of pneumonia and the flu can be prevented with vaccines. Make an appointment with your doctor to obtain these injections. Immunization requirements have changed over time, so check with your doctor about your vaccination status, even if you recall having a pneumonia vaccine earlier. Ascertain that your children are immunised. Children under the age of 2 and children aged 2 to 5 years who are at high risk of pneumococcal illness should receive a separate pneumonia vaccination, according to doctors. Vaccination is also recommended for children who attend a group child care centre. Children above the age of six months should also get flu vaccines, according to doctors. Maintain a healthy level of hygiene. Wash your hands often or use an alcohol-based hand sanitizer to protect yourself from respiratory infections that can lead to pneumonia. Please don't smoke. The natural defenses of your lungs against respiratory infections are harmed by smoking. Maintain a healthy immune system. Get enough of rest, exercise regularly, and eat a nutritious diet.[4]

Sr. no.	DIAGNOSIS	Image
1	Chest X-rays : This helps your doctor diagnose pneumonia and determine the extent and location of the infection. However, it can't tell your doctor what kind of germ is causing the pneumonia.[6]	
2	Blood tests : Blood tests are used to confirm an infection and to try to identify the type of organism causing the infection. However, precise identification isn't always possible.[6]	
3	Sputum test: A sample of fluid from your lungs (sputum) is taken after a deep cough and analysed to help pinpoint the cause of the infection. [7]	
4	Bronchoscopy: Bronchoscopy is a procedure to look directly at the airways in the lungs using a thin, lighted tube (bronchoscope). The bronchoscope is put in the nose or mouth. It is moved down the throat and windpipe (trachea), and into the airways[8]	Takes Left prinary barche

Table no. 2 Diagnosis and Treatment available for pneumonia [4]

Sr. no	Best Hospitals for Lung Transplant in India
1.	Fortis, Delhi
2.	Apollo Hospital, Delhi
3.	Sir Ganga Ram Hospital, Delhi
4.	Max Healthcare Hospital, Delhi
5.	Blk Super Speciality Hospital, Delhi
6.	Medanta Hospital, Gurgaon
7.	Kokilaben Dhirubhai Ambani Hospital, Mumbai
8.	Wockhard Hospital, Mumbai
9.	Jaslok Hospital, Mumbai
10.	Lilavati Hospital, Mumbai
11.	Jupiter Hospital, Thane, Maharashtra
12.	Sahyadri Hospital, Pune
13.	MaxCure Hospital, Hyderabad, Telangana
14.	KIMS Hospital, Hyderabad
15.	Continental Hospital, Hyderabad
16.	Narayana Health, Bangalore
17.	Manipal Hospital, Bangalore
18.	Paras Hospital, Patna
19.	Aster Medcity, Kochi Kerala
20.	Columbia Asia Hospital, Bangalore
21.	Amrita Hospital, Kochi
22.	Yashoda Hospital, Secunderabad
23.	Frontier Lifeline Hospital, Chennai, Tamil Nadu
24.	SIMS Hospital, Chennai, Tamil Nadu
25.	Global Hospital, Chennai, Tamil Nadu
26.	PSG Hospital, Tamil Nadu
27.	Kauvery Hospital, Chennai
28.	Billroth Hospital, Chennai, Tamil Nadu
29.	Sri Ramachandra Medical Centre, Chennai, Tamil Nadu

Sr no.	List of top transplant surgeon		
1.	Dr. Sandeep Attawar		
2.	Dr. P.V. Naresh Kumar		
3.	Dr. Sunil Agarwal		
4.	Dr. Nandkishore Kapadia		
5.	Dr. Prasanna Ratnakar Salvi		
6.	Dr. Manish Garg		
7.	Dr. Alla Gopala Krishna Gokhale		
8.	Dr. Thangaraj Paul Ramesh		
9.	Dr. Kirun Gopal		
10.	Dr. Sanjog Rawtani		
11.	Dr. K R Balakrishnan		
12.	Dr. Naresh Trehan		

Table no.4 List of top transplant surgeon[9]

2. Analytical prospective of drugs used in pneumonia

Validation parameters or characterization of methods of analysis

Accuracy, specificity, selectivity, limit of detection, limit of quantification, linearity, recovery, repeatability, sensitivity.

Sensitivity: "The change in response on a measuring instrument divided by the corresponding change in stimulus."

Specificity: "The ICH documents define specificity as the ability to assess unequivocally the analyte in the presence of components that may be expected to be present, such as impurities, degradation products, and matrix components."

Limit of detection: "The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample, which can be detected but not necessarily quantitatively determined as an exact value." Based on the standard deviation of the response and the slope, detection limit may be expressed as follow.

(LOD) may be expressed as:

LOD=3.3 x standard deviation of the regression line (σ) /Slope(S)

Limit of quantitation: "The quantification limit of an individual analytical procedure is the lowest amount of analyte in a sample, which can be quantitatively determined with suitable precision and accuracy." Based on the standard deviation of the response and the slope, the quantitation limit (LOQ) may be expressed as

LOD=10 S & where:

LOD=10 x standard deviation of the regression line (σ) /Slope(S)

Linearity and range:

Linearity: the linearity of an analytical procedure is its ability to elicit test results that are directly, or by a well-defined mathematical transformation, proportional to the concentration of analyte in samples within a given range. Thus, in this section, "linearity" refers to the linearity of the relationship of concentration and assay measurement. **Range:**

the range of an analytical procedure is the interval between the upper and lower levels of analyte (including these levels) that have been demonstrated to be determined with a suitable level of precision, accuracy, and linearity using the procedure as written. The range is normally expressed in the same units as test results (e.g., percent, parts per million) obtained by the analytical procedure.

Determination of linearity and range:

linearity should be established across the range of the analytical procedure. It should be established initially by visual examination of a plot of signals as a function of analyte concentration of content. If there appears to be a linear relationship, test results should be established by appropriate statistical methods (e.g., by calculation of a regression line by the method of least squares). Data from the regression line itself may be helpful to provide mathematical estimates of the degree of linearity. The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares.

Precision: "Degree of conformity between independent measurement results obtained under prescribed conditions."

Repeatability: "Repeatability expresses the precision under the same operating conditions over a short interval of time. Repeatability is also termed intra-assay precision."

Robustness/ruggedness: The degree of independence of the method of analysis from minor deviations in the experimental conditions of the method of analysis.

Selectivity: "The selectivity of a method of analysis refers to the degree to which the method of analysis is usable for determining the presence of specific analytical parameters in a complex mixture (matrix) without interference from other analytical parameters in the mix."

I. Amoxicillin :

AMO is an antibacterial medication that is semi-synthetic and generated from a fermentation product. In terms of chemistry, it is (2S,5R,6R) -6-[[(2R) - 2-Amino-2-(4-hydroxyphenyl) acetyl] amino] -3,3-dimethyl -7-oxo-4- thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid trihydrate having a molecular formula of C16H19N3 O5 S.3H2 O and its molecular weight is 419.4. AMO is a crystalline powder that appears white or almost white. Water is marginally soluble, ethanol is very barely soluble (96 percent), and fatty oils are essentially insoluble. It dissolves in dilute acids and alkali hydroxide solutions.[10]

Structure :

Table no.2.1	Analytical	method for	Amoxicillin
--------------	------------	------------	-------------

Sr. no.	Title of paper	Journal name	Methods	Instrumental parameter	Result of validation	Author and year
				_		of publication
1.	Development and	Journal of	RP-HPLC	COLUMN : Whatman Partisil 5 ODS-3	Retention time : 3.2 min.	Naser Tavakoli and
	validation of a	Pharmaceutical		column (100 mm × 4.6 mm) 5µm particle size,	Linearity equation :	et al.
	simple HPLC	and Biomedical		plus Whatman guard cartridge (RP cartridge).	$v = 1013.78 (\pm 25.12)x + 700.82$	(2006)
	method for	Analysis		MOBILE PHASE: The mobile phase was a	(±46.08)	[11]
	simultaneous in vitro			degassed and filtered (0.45µm; Millipore)	$(n = 54, R^2 = 0.9992)$	
	determination of			mixture of phosphate buffer solution (pH 4.7;	RSD = <2.7%	
	amoxicillin and			0.05 M)-methanol (95:5, v/v) with final pH	$LOO = 0.15 \mu g/ml$	
	metronidazole at			adjusted to approximately 4.0.	LOD = 0.05 µg/ml	
	single wavelength			FLOW RATE ; 1.5 ml/min.	$LOD = 0.00 \ \mu g m$	
				DETECTOR : The UV detector wavelength		
				was set at 254 nm.		
				SOFTWARE: Millenium32® software.		
2.	Validation of HPLC-	Annals of	RP-HPLC	COLUMN: column hypersil reverse phase c-	Retention time : 3 5+0 02 min	Sendanyoye
	UV method for	Advances in	(HPLC cecil)	18 column 250 mm x 4.6 mm i.d. particle size	Linearity equation :	Marcel [*] and et al.
	determination of	Chemistry		5um	v = 1.6517x + 5.8667	(2018)
	amoxicillin			MOBILE PHASE: potassium dihydrogen	$r^2 = 0.9998$	[12]
	Trihydrate in capsule			phosphate and methanol in the ratio $(95:05v/v)$.	RSD = 1.166442%	
	v 1	1		FLOW RATE: 1.5ml/minute	LOO = 4.784979 µg/ml	
				DETECTOR : UV detector wavelength at 254	LOQ = 1.579043 µg/ml	
				nm		
				SOFTWARE : power stream		
3.	Development and	American Journal	HPLC	COLUMN : Inertsil C18 column (250 \times 4.0	Retention time: 7.8 min	Durga
	Validation of	of Analytical		mm, 4 µm)	Linearity equation :	Mallikarjuna Rao
	Stability Indicating	Chemistry		MOBILE PHASE: sodium dihydrogen	y = 39.323x + 40.197	Tippa* and et al.
	HPLC Method for			phosphate monohydrate and methanol.(95:5	$r^2 = 0.9998$	(2010)
	Simultaneous			v/v) pH 5.0 buffer	RSD = 1.81	
	Estimation of			FLOW RATE: 1 ml/minute	$LOQ = 12.06 \ \mu g/ml$	
	Amoxicillin and			DETECTOR : UV detection at 220 nm,	$LOD = 3.98 \mu g/ml$	[13]
	Clavulanic Acid in			photodiode array detector	10	
	Injection			SOFTWARE : Chem station		
	А					
4.	A simple, sensitive	Enzyme and	UV	UV-visible spectrophotometer (Agilent, USA)	Linearity $(n=3; 0-100\mu M)$	Theerasak
	and green	Microbial		using a semi-micro quartz cuvette type (1cm	Slope±S.D. =0.0185±0.0001	Rojanarataa and
	bienzymatic UV-	Technology		path length)	r2 =0.9998	et.al.

	spectrophotometric assay of amoxicillin formulations			230nm.	LOD = 0.77μM LOQ = 2.55μM	(2009)
5.	Simultaneous determination of Amoxicillin and Clavulanate in combined tablets by non-derivative and derivative UV spectrophotometric techniques	International Journal of PharmTech Research	UV	A UNICAM UV 300 double beam spectrophotometer (Thermo Spectronic, USA) with a fixed slit width (1.5 nm) 270.4 nm	Linearity= 60.0 - 160.0 Slope±S.D. = 0.0011 Intercept±S.D. Y = 0.0024CAMO + 0.0185 r2 =0.9999 LOD= 0.80um LOQ= 3.11um	Vu Dang Hoang and Vu Thi Huong [15]
6.	Comparative Study of RP-HPLC and UV Spectrophotometric Techniques for the Simultaneous Determination of Amoxicillin and Cloxacillin in Capsules	Pharmaceutical Analysis	HPLC and UV derivative spectrophotometry	COLUMN: Inertsil C18 column (250 × 4.0 mm, 4 μm) MOBILE PHASE: sodium dihydrogen phosphate monohydrate and methanol.(95:5 v/v) pH 5.0 buffer FLOW RATE: 1 ml/minute DETECTOR : UV detection at 220 nm, photodiode array detector SOFTWARE A UNICAM UV 300 double beam spectrophotometer (Thermo Spectronic, USA) Thermo Spectronic VISION32 software	Linearity= 60.0 - 140.0 Slope±S.D. = Intercept Y = 31.244CAMO - 32.250 r2 = 0.9995 LOD= 0.70um LOQ= 2.89um	Giang Do T, Hoang Vu D [16]

II. AZITHROMICIN

Azithromycin is a15-membered ring, semi-synthetic macrolide antibiotic with two deoxy-sugars, derived from erythromycin through a methyl-substituted nitrogen atom in the lactone ring. Its chemical name is 9-deoxy-9a-azo-9a-methyl-9ahomoerythromycin A, with molecular weight 748.88 and chemical formula C38H72N 2O12. Its chemical structure is shown below (USP 2012): Azithromycin is a bacteriostatic agent, which binds to the 50S ribosomal subunit of susceptible microorganisms and interferes with protein synthesis.

Structure :

Table no.2.2 Analytical method for Azithromycin

Sr no.	Title of paper	Journal name	Method	Instrumental parameter	Result of validation	Author and year of
						publication
1.	A rapid, developed and	SN Applied	HPLC	COLUMN: reversed phase column ODS-3	Retention time: 5.804 min.	Mostafa F. Al-Hakka
	validated RP-HPLC	Sciences		$(250 \text{ mm} \times 4.6 \text{ mm} \text{ x} 5 \mu \text{m})$	Linearity equation :	ni
	method for determination			MOBILE PHASE: Methanol: Phosphate	Y=1138.1x+9.0828.	(2019)
	of azithromycin			buffer (9:1, v/v)	$r^2 = 0.9996$	[17]
				FLOW RATE: 1.2 ml/min	RSD = 0.66%	
				DETECTOR : PDA detector 210	$LOQ = 28.7 \ \mu g/ml$	
				nm((Shimadzu)	$LOD = 86.9 \ \mu g/ml$	
2.	Analysis of Azithromycin	Journal of	RP-HPLC with	COLUMN: Reverse phase C18, 5mm, 25 cm	Retention time: 6.8 min.	Fuad AL-Rimawi and
	and its Related Compounds	chromatographi	UV detection	length, 4.6 mm diameter, column temperature	Linearity over the range : 0.3- 2.0	Maher Kharoaf
	by RP-HPLC with UV	c science		50°C.	mg/ml	(2010)
	Detection			MOBILE PHASE: Methanol- Phosphate	$r^2 = 0.99999$	[18]
				buffer, pH 7.5 (80:20,v/v)	std error: 23,798	
				FLOW RATE: 2.0 mL/min	RSD = 0.2 %	
				DETECTOR : UV detector 210 nm	LOO = 0.0005 mg/ml	
					LOD = 0.0008 g/m	
					Accuracy of the method : 100 5%	
3.	Development and	Journal of	reversed-nhase	COLUMN: Xterra RP18 (250mm x 4 6mm 5	Retention time: 11.5 min	K A Shaik S D Patil
	validation of a reversed-	Pharmaceutical	HPLC	um) Analytical column	Linearity equation :	and A.B. Devkhile
	phase HPLC method for	and Biomedical		MOBILE PHASE : acetonitrile-dipotassium	y = 50451x - 50173	(2008)
	simultaneous estimation of	Analysis		phosphate (30 mM) (50:50 v/v) (pH 9 0)	Linearity over the range · 250-	[19]
	ambroxol hydrochloride			FLOW RATE: 1.7 ml/min	1500 mg/ml	
	and azithromycin in tablet			DETECTOR : photodiode array detector	$r^2 = 0.99$	
	dosage form	1		DETECTOR WAVELENGH : detector	% Recovery · 99 90 %	
				wavelength at 215 nm	RSD = 1.51%	
				SOFTWARE : Empower Software	LOO = 0.01 um/ml	
				bor i willing i Empower boltware.	LOQ = 0.01 mm/m	
					A_{courses} of the method \cdot	
4	A new HPI C method for	Journal of	HPLC	COLUMN . LiChroCAPT® 125×1.6 mm	Retention time: 10.3 min	Patricia Zubata and et
	azithromycin quantitation	Pharmaceutical	III LC	HPLC Cartridge LiChrospher® 100 RPS select	L inegrity equation .	al
	uziunomy om quantitation	and Biomedical		B (5 um) Merck Darmstadt column	$V = -1.17 \times 103 + 1.13 \times 104 X$	(2001)
		Analysis		MOBILE PHASE • buffer acetonitrile and	Linearity over the range • mg/ml	[20]
		j~>		methanol (60.20.20) adjusted to pH 8.0&0.1	$r^2 = 0.0004$	L ^J
				with phosphoric acid.	1 - 0.2274 0/ Decovery · 00 / 0/	
				FLOW RATE: 1.0 ml/min	70 Network y . 99.4 % DSD = 1.51.0/	
				DETECTOR • UV-Vis detector (model KNK-	KSD = 1.51 %	
				()29-757)	LOQ = 0.01 um/m	
				Model SP 4600	LOD = 2.3 um/m	

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 5 May 2022 | ISSN: 2320-2882

5.	Analysis of Azithromycin in Human Plasma by LC– MS–MS	Chromatographi c Supplement Vol. 66, 2007	LC-MS-MS	COLUMN: SunFire C18, 50 mm · 2.1, 3.5 um column MOBILE PHASE : 1.54 g ammonium acetate, 250 mL water, 570 mL acetonitrile, 180 mL methanol and 0.6 mL glacial acetic acid FLOW RATE: 0.2 mL min)1 DETECTOR : UV detector DESOLVATION GAS FLOW : 450 L/hr CONE GAS FLOW : 50 L /hr COLLISION ENERGY : 43 GAS PRESSOR (Argon) : 3.8 e ⁻³ mbar Black out temp. : 120 °C DISOLVAATION TEMP. : 350°C	Concentration range : 2- 1,000ng/ml Retention time : 0.9 min Accuracy : 91.83% Precision : 2.71-7.25% $r^2 = 0.98941$ % Recovery : 99.4 % RSD = 1.51 % LOQ = 2 ng mL ⁻¹ LOD = 2.3 um/ml Absolute recovery : 81.97 %	N. Yuzuak and et al. (2007) [21]
6.	Azithromycin assay in drug formulations: Validation of a HPTLC method with a quadratic polynomial calibration model using the accuracy profile approach	Elseview Masson France	HPTLC	Precoated silica gel 60 F254 TLC plates (20 × 10 cm) (Merck, Darmstad, Germany) were used as stationary phase. Mobile Phase: mobile phase consisting of chloroform — ethanol — 25% ammonia (6:14:0.2; v/v/v). Visualization : Visualization reagent was concentrated sulfuric acid (18 M) — ethanol (1:17; v/v) Software : TLC scanner 3 with winCATS software	RF value : 0.53- 0.54 Linearity : y = 8197x + 613.3. R² : 0.9937 RSD% : 0.72% LOD : 0.0463ug/ml LOQ : 0.141 ug/ml	Bouklouze A. & et al. (2016) [22]
7.	New Spectrophotometric Method for Azithromycin Determination	Analytical Letters	SPECTROPH OTOMETER	VARIAN Cary 50 spectrophotometer Software : Cary WinUV software	Linearity equation : $Y = 0.1276x + 0.01449$. $R^2 = 0.9996$ LOD : 2.54 x 10 ⁻⁷ M LOQ : 8.91x 10 ⁻⁷ M ANOVA DATA: P =0.943 at 5% level and F = 0.01	Rachadi M. and et al. (2007) [23]
8.	RP-HPLC method development and validation for the simultaneous estimation of azithromycin and ambroxol hydrochloride in tablets	International Journal of PharmTech Research	RP-HPLC	COLUMN: The column used was C18 phenomenex Gemini, 5m, 250cm x 4.6mm, MOBILE PHASE: acetonitrile: monobasic potassium phosphate buffer pH: 8.5 at the ratio of 65:35v/v. pH FLOW RATE: 2ml/min DETECTOR : PDA detection at 220nm.	Linearity range = $80-125 \text{ mg/ml}$ Correlation Co-efficient (r ²) = 0.9998 % RSD= 0.318 Accuracy= 99.58 ± 0.895 Resolution factor (RS)= 11.314 No.of theoretical plates (N)= 101000 Tailing factor= 1.314	Venkatesh, V &et al (2011) [24]

© 2022 IJCRT | Volume 10, Issue 5 May 2022 | ISSN: 2320-2882

					Slope = 9.52 Intercept = 20.42 Lod = 31.91 ug/ml LOQ = 96.7 ug/ml	
9.	Spectrophotometric estimation of Azithromycin in tablets	ijps	Spectrophotom etry	UV/VIS Spectrophotometer with 10 mm matched quartz cells were used for absorbance measurement	λ max = 547 nm beers limit =2-2- ug/ml molar absorptivity = 2.1994x10 ⁴ (l/mol/cm) r ² = 0.99343 %RSD = 0.612	Jayanna, et al (2012) [25]

III. CIPROFLOXACIN

Ciprofloxacin (CPX) is a fluorinated quinolone antibacterial which is chemically 1-cyclopropyl-6- fluoro-4-oxo-7- (piperazin-1-yl)-quinoline-3-carboxylic acid. Ciprofloxacin is a broad spectrum antibiotic active against both Gram-positive and gram-negative bacteria. It functions by inhibiting DNA Gyrase, a type-II Topoisomerase, and topoisomerase IV enzymes necessary to separate bacterial DNA, thereby inhibiting cell division

Structure:

Table no. 2.3 Analytical method for ciprofloxacin.

Sr no.	Title of paper	Journal name	Method	Instrumental parameter	Result of validation	Author and year of publication
1.	A First-Derivative Spectrophotometric Method for the Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution	Article <i>in</i> Physical Chemistry · December 2013	UV	A Shimadzu UV-1601 PC, UV- visible, double beam spectrophotometer with matched quartz cells with path-length of 10 mm (Shimadzu Corp., Kyoto, Japan) UVPC version 3.1 personal spectroscopy software	Linearity range = 50.0- 100ug/Iml Slope±S.D. = - 0.0002x-0.0009 r2 =0.9999 RSD % = 2.92% LOD= 0.18mg/1 LOQ= 0.60mg/1	Edith C. L. Cazedey and et al. (2013) [26]
2.	A simple HPLC-UV method for the determination of ciprofloxacin in human plasma	Journal of Chromatography	HPLC-UV	COLUMN: ACE® 5 C18 column (250 x 4.6 mm, 5 μm; Agilent Pursuit 5 C18 Meta Guard® column (10 x 4.6 mm, 5 μm; Agilent Technologies, Amstelveen, Netherlands). MOBILE PHASE : A 0.02 M phosphate buffer and acetonitrile 77:23 (v/v) at pH 2.7 FLOW RATE: 1.5 ml/min. DETECTOR : UV detector was set at 277 nm.	Retention time = 3.26 min. Linearity conc. Range = 0.05-8 um/ml. RF value : 0.53- 0.54 Linearity : y = 32.6508x + 0.0337. R ² : 0.999 RSD% : 0.72% LOD : 0.01 ug/ml LOQ : 0.05 ug/ml	Janis Vella and et al. (2015) [27]
3.	Analysis of Ciprofloxacin by a Simple High-Performance Liquid Chromatography Method	Journal of Chromatographic Science	HPLC	Column : Alltima C ₁₈ (4.6 × 150 mm; 5 μ m) analytical column and a Nova-Pak C ₁₈ (4 μ m) guard column (Waters) Mobile phase : mixture of 2% acetic acid aqueous solution and ACN (84:16, v/v) Flow rate : 1.0 mL/min. Injection volume : 10 uL. Detector : UV detector seet at 280nm.	Retention time = 6.5 min. Linearity conc. Range = 0.51- 130 uM. R ² : 0.999 RSD% : 3.39 % LOD : 0.25 uM LOQ : 0.009 uMB	Shihn-sheng Wu and et al. (2008) [28]
4.	Development and Validation of a Stability- Indicating HPLC Method for Determination of Ciprofloxacin Hydrochloride	Chromatographia Supplement Vol. 66, 2007	HPLC	 Column : reversed phase Inertsil ODS3 C8 column (250 · 4.6 mm; 5 mL particle size). Mobile phase : The optimized mobile phase consisted of phos- phoric acid solution: acetonitril. Flow rate : 1.5 mL/min. 	Retention time = 3.26 min. Linearity conc. Range = 250- 750 um/ml. Slope = 40.999 Intercept = 105.18 . R ² : 0.999	B. Aksoy and s. rollas and et al. (2007).[29]

© 2022 IJCRT | Volume 10, Issue 5 May 2022 | ISSN: 2320-2882

	and its Related Compounds in Film-Coated Tablets			Injection volume : 10 uL. Detector : Inertsil ODS3 column using UV detection.	SD : 497.04 +-1.69 mg RSD% : 0.34% LOD : 5.159 ug/ml LOQ : 15.632 ug/ml	
5.	Determination of ciprofloxacin in plasma and urine by HPLC with ultraviolet detection	Drug Monitoring and Toxicology	HPLC	Column : A stainless steel column packed with ymc pack A-312 (octadecylsilane; beaad size, 5um; 150mm x 6mm i.d., Yamamura chemical laboratory) was used. Column was protected with a pre- column (Guard-pak TM) filled with uBondapak TM C ₁₈ cartridge. Mobile phase : consisted of a mixture of 900 mL of 50 mL/L acetic acid, 50 mL of acetonitrile, and 50 mL of methanol per liter Flow rate : 1 ml/min. Detector : The UV detector was set at 280 nm. Sensitivity : set at 0.02 absorbance unit full scale.	Retention time : 12 min. Linearity conc. Range : 0.01- 2.5 mg/L (plasma) 0.5 - 500 mg/L (urine). R ² : 0.999 LOQ : 0.01 mg/L (plasma) 0.5 mg/L (urine)	Marika Kamberi and et al. (1998) [30]
6.	Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC	© Springer-Verlag 2003	HPLC	Column : A kromasil 10 c18 250mm x 4mm, 5um particle, purchased by MZ Analysentchnik (Mainz, Germany). Injector : Rheodyne (Cotati California, USA 7125 ijection valve with a 20 uL loop. Mobile phase : The isocratic eluent system consisted of CH ₃ CN– CH ₃ OH–citric acid 0.4 mol L ⁻¹ (7:15:78, % v/v). Flow rate : 1.2 mL/min. Injection volume : 20 uL. Detector : SSI 500UV-Vis detector at wavelength of 275nm Sensitivity : 0.002 AUFS	Retention time = 8.566 min. Linearity conc. Range = 0.01-8 ng/uL. Linearity Y=(0.03439±0.04023)+(0.5448 3±0.01728)X R ² : 0.998 LOD : 0.01 ng/uL. LOQ : 0.03 ng/uL.	V. F. Samanidou and et al. (2003)[31]
7.	High Performance Liquid Chromatography (HPLC) Method Development and	Journal of Applied Pharmaceutical science	HPLC	Column : A column oven L- 2300, packed with silica C18, 5µm particle	Retention time = 1.750-1.753 min.	Sani A. Ali and et al. (2011).[32]

	Validation Indicating Assay for Ciprofloxacin Hydrochloride			size, an organizer and diode Arrary Detector L-2455 Pump : HITACHI L- 2130 pump Injector : autosampler L-2200 syringe loading sample injector valve fitted with a 20µl sample loop of 200vials Mobile phase : Methanol: Buffer (Orthophosphoric acid + Triethylamine) 40:60 Flow rate : 2.0 mL/min. Injection volume : 20µl. Detector : UV-VIS detector L-2420 at 278nm.	Linearity conc. Range = 10- 50µg/ml Linearity equation : y=211063x - 6934.9 R ² : 0.9993 (n=5) SD: 5108.665 RSD%: 0.12 %(n=3)	
8.	Pharmacokinetics of fluoroquinolones in critical care patients: A bio- analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma	Journal of Chromatography B	HPLC	Column : A Waters 2695 HPLC system water Xbridge TM C18 HPLC (3.5um particle size, 150mm x 2.1mm) (Milford, Massachusetts, USA) with an Alltima C18 guard column (5um particle sixe, 7.5 mm x 2.1 mm) (Grace, Columbia, MD, USA). Column temp. : 30°c Flow rate : 1 mL/min. Injection volume : 20µl. Detector : Water 470 Scanning Fluorescence detector. Software : Water Millenium ³² (ver.3.2)	Retention time = 6.567 min. Linearity conc. Range = 0.02- 7.50 ug/ml. SD : 0.022 ug/mL. RSD% : 2.8 % R ² : 0.998 Accuracy : 109.4 % LOD : 3.4 ng/ml LOQ : 0.02 ug/ml	Julie De Smet and et al. (2009). [33]
9.	Development and validation of UV spectroscopic methods for simultaneous estimation of ciprofloxacin and tinidazole in tablet formulation	International Current Pharmaceutical Journal	UV spectroscopy	Absorbance measurements were made on Shimadzu 1800 UV/Visible spectrophotometer with a pair of 10 mm matched quartz cells, Shimadzu digital balance for weighing and Cintex sonicatorwere used.	Absorbtion wavelength : 271 nm. Absorptivity: (1%, 1cm) A = 924bC + 108bC Simultaneous equation method Molar Absorptivity : 30614 l/mol./cm. Shandell's sensitivity : 0.01 um/cm ² /0.001 Intercept (c) : 0.0418 Slope(m) : 0.0895	Sowjanya Gummadi and et al. (2012)[34]

			Correlation coefficient (r ²) : 0.9992 Q-Analysis Molar Absorptivity : 6779 Shandell's sensitivity : 0.046 um/cm ² /0.001 Intercept (c) : 0.004 Slope(m) : 0.02 Correlation coefficient (r ²) : 0.999	

IV. ERYTHROMYCIN:

Erythromycin is an macrolide antibiotic that has an antimicrobial spectrum similar to slightly wider than that of penicillin. Erythromycin was discovered in 1952 by Mc Guire and coworkers from a strain of *streptomyces erythreus*. It is often used for people who have allergy to penicillin. Its is poorly soluble in water, bactericidal, particularly at higher concentrations. The trade name for Erythromycin was E-Mycin or Erythrocin. Erythromycin contain three characteristics part in the molecule, A highly substituted macrocyclic lactone – Aglycone , A ketone group , and An amino desoxysugar . chemically it is $C_{37}H_{67}N_1O_{13}$.

Structure:

Table no. 2.4 Analytical method for Erythromycin

Sr no.	Title of paper	Journal name	Method	Instrumental parameter	Result of validation	Author and year of publication
1.	Analysis of Erythromycin and Benzoyl peroxide in combined Dosage form by UV- visible spectrometry	International Journal of Pharmacy and Pharmaceutical Sciences	UV- visible spectrometry	UV/Visible spectrophotometer with a pair of 10 mm matched quartz cells SOLVENT : Acetonitrile : water (1:1)	Absorbtion wavelength : 480 nm Linearity range : 5-25 ug/ml LOD : 1.4358 LOQ : 3.7341 Regression equation : y= 0.039X + 0.005 R ² : 0.9991 %RSD : 0.94(intraday), 0.96 (interday) % Accuracy : 101.01	ROHINI WANKHADE and et al (2012) [35]
2.	Analysisoferythromycinandoleandomycinresidues in food by high- performance liquidchromatographywithfluorometric detection	Food Additives and Contaminants	high-performance liquid chromatography with fluorometric	Column: Inertsil 150-5 ODS-2(125 x4mm) analytical column with a Lichrospher 100-5 RP-18ec (8x4mm) precolumn. Mobile Phase :HPLC elunet A was 0.03mol/L Phosphate buffer pH 7.0/CAN 36:64 v/v and HPLC elunet B is CAN. Flow rate : 1.0ml/min. Detector : fluorometric detection at 260nm excitation and a 305nm emission wavelength Precolumn derivatization : 9- Fluromethylchloroformate (FMOC).	Linearity range : 5-50 ug/mL Signal/noise ratio : n= 3 LOD : 50 ug/kg LOQ : 100 ug/kg R ² : 0.998	P. Edder and et al (2010) [36]
3.	High-Performance Liquid Chromatographic Determination of Erythromycin	Journal of Chromatography	Isocratic RP-HPLC	Column : Rbeo- dyne injector (Model 71-20, Berkeley, Calif., U.S.A.) with a 10O-~1 fixed loop. A reversed-phase column @Bondapak CL8. Waters Assoc., Milford, Mass., U.S.A.), 300 x 3.9 mm I.D., with a 50 x 2.1 mm I.D. stainless-steel pre-column packed with PBondapak C,,	Linearity range : 10-100ug/ml % RSD : 0.64% Retention time : 0.72 min. R ² : 0.997	KIYOSHE TSUJI and et al. [37]

4.	Development and validation of UV spectrophotometric method for estimation of erythromycin in bulk drug and pharmaceutical formulation	INTERNATIONA L JOURNAL OF RECENT ADVANCES IN PHARMACEUTI CAL RESEARCH	UV- spectrophotometric method	Mobile phase: acetonitrile-methanol- O.2 M ammonium acetate-water (45:10:10:25). pH 7.0- 7.8 Flow rate : 1 ml/min. Detector : a variable- wavelength detector (SpectroMonitor I) at 215 MI was used A shimadzu model 1800 (Japan) double beam UV/Visible spectrophotometer with spectral width of 2 nm, wavelength accuracy of 0.5 nm and a pair of 10 mm matched quartz cell was used to measure absorbance of all the solutions. Spectra were automatically obtained by UV- Probe system software.	Amax: 285 nm Beer's-Lambert's range (μ g/ml) : (1-9) ug/m Regression equation : Y=0.0109x+0.3469 Slope (m) : 0. 0.0109 0.3469 Intercept (c) : 0.3469 Correlation coefficient (r2) : 0.9873 Recovery + S. D. (n = 3) : 99.59 + 0.13 LOD (μ g/ml) : 0.96 LOQ (μ g/ml) : 2.92 Intermediate Precision(%RSD) Interday (n = 3): 0.7661 - 1.7811 Interday (n = 3): 0.1967	ANINDYA BAGCHI and et al. (2015) [38]		
					Intraday (n = 3): 0.1967 - 1.5121			

Conclusion :

Pneumonia is a common acute respiratory infection that affects the alveoli and distal airways; it is a major health problem and associated with high morbidity and short-term and long-term mortality in all age groups worldwide. In general, we have listed antibiotic drugs and their mechanism of action in the treatment of pneumonia. We have included epidemiology and drug used in the treatment of pneumonia one of the most important advantages of making this review article is that we have listed best hospitals and surgeons available for transportation of lungs in India. The above data is the collective data regarding analytical prospective for the drugs that can be used in Pneumonia. These drugs are majorly used in treatment of pneumonia. These analytical methods are validated as per ICH Q2 guidelines. We have enlisted HPLC method since 1998 to 2021 for the quantitative and qualitative analysis of Drugs used in Pneumonia, meanwhile we have also listed existing Analytical method named as UV, LC-MC-MC, Spectrophotometric, HPTLC for the same.

References

- [1] 'Lobar pneumonia Wikipedia'. https://en.wikipedia.org/wiki/Lobar_pneumonia (accessed Sep. 08, 2021).
- [2] 'Pneumonia Symptoms and causes Mayo Clinic'. https://www.mayoclinic.org/diseasesconditions/pneumonia/symptoms-causes/syc-20354204 (accessed Sep. 08, 2021).
- [3] 'Pathophysiology of Community Acquired Pneumonia'. https://www.japi.org/u2e474b4/pathophysiology-ofcommunity-acquired-pneumonia (accessed Sep. 18, 2021).
- [4] 'Pneumonia Diagnosis and treatment Mayo Clinic'. https://www.mayoclinic.org/diseasesconditions/pneumonia/diagnosis-treatment/drc-20354210 (accessed Sep. 08, 2021).
- (KD TRIPATHI- CLASSIFICATION OF DRUGS Crp 5'. https://studfile.net/preview/16372024/page:5/ (accessed Sep. 08, 2021).
- [6] D. R. Murdoch *et al.*, 'Laboratory Methods for Determining Pneumonia Etiology in Children', *Clin. Infect. Dis.*, vol. 54, no. suppl_2, pp. S146–S152, Apr. 2012, doi: 10.1093/CID/CIR1073.
- [7] H. Fukuyama, S. Yamashiro, K. Kinjo, H. Tamaki, and T. Kishaba, 'Validation of sputum Gram stain for treatment of community-acquired pneumonia and healthcare-associated pneumonia: A prospective observational study', *BMC Infect. Dis.*, vol. 14, no. 1, Oct. 2014, doi: 10.1186/1471-2334-14-534.
- [8] 'Bronchoscopy in pneumonia Google Search'. https://www.google.com/search?q=Bronchoscopy+in+pneumonia&bih=565&biw=967&rlz=1C1CHBF_enIN914IN91 4&hl=en&sxsrf=AOaemvInWq_erp888LuPcC1ME0XFowuvQQ%3A1631715271028&ei=x_9BYc2oAe2p3LUPaK7oAc&oq=Bronchoscopy+in+pneumonia&gs_lcp=Cgdnd3Mtd2l6EAMyBQgAEIAEMgYIABAFEB4yBgAEAU QHjIGCAAQCBAeMgYIABAIEB4yBggAEAgQHjoECAAQQzoKCAAQgAQQhwIQFDoGCAAQBxAeSgQIQRg AUMG_Clje2gxgkuYMaABwAngAgAH-AYgB1gOSAQMyLTKYAQCgAQGgAQLAAQE&sclient=gwswiz&ved=0ahUKEwiNqOqIIYHzAhXtFLcAHXnRDnQQ4dUDCA4&uact=5 (accessed Sep. 15, 2021).
- [9] 'Top Lung Transplant Hospitals in India | Lung Transplant Cost in India'. https://www.indiaorgantransplant.com/lung-transplant-low-cost-best-hospitals-top-surgeons-india.php (accessed Sep. 08, 2021).
- [10] H. MEM and M. MA, 'Development and validation of RP-HPLC method for determination of amoxicillin residues and application to NICOMAC coating machine', J. Anal. Pharm. Res., vol. 7, no. 5, 2018, doi: 10.15406/japlr.2018.07.00287.
- [11] N. Tavakoli, J. Varshosaz, F. Dorkoosh, and M. R. Zargarzadeh, 'Development and validation of a simple HPLC method for simultaneous in vitro determination of amoxicillin and metronidazole at single wavelength', J. Pharm. Biomed. Anal., vol. 43, no. 1, pp. 325–329, 2007, doi: 10.1016/j.jpba.2006.06.002.
- [12] S. Marcel, U. Tito, I. Ines, and N. J. Pierre, 'Validation of HPLC-UV method for determination of amoxicillin Trihydrate in capsule', pp. 55–72, 2018.
- [13] D. M. R. Tippa and N. Singh, 'Development and Validation of Stability Indicating HPLC Method for Simultaneous Estimation of Amoxicillin and Clavulanic Acid in Injection', Am. J. Anal. Chem., vol. 01, no. 03, pp. 95–101, 2010, doi: 10.4236/ajac.2010.13013.
- [14] T. Rojanarata, P. Opanasopit, T. Ngawhirunpat, C. Saehuan, S. Wiyakrutta, and V. Meevootisom, 'A simple, sensitive and green bienzymatic UV-spectrophotometric assay of amoxicillin formulations', *Enzyme Microb. Technol.*, vol. 46, no. 3–4, pp. 292–296, 2010, doi: 10.1016/j.enzmictec.2009.11.011.
- [15] V. T. Huong and V. D. Hoang, 'Simultaneous determination of amoxicillin and clavulanate in combined tablets by nonderivative and derivative UV spectrophotometric techniques', *Int. J. PharmTech Res.*, vol. 1, no. 4, pp. 1173–1181, 2009.
- [16] D. T. Giang and V. D. Hoang, 'Comparative study of RP-HPLC and UV spectrophotometric techniques for the simultaneous determination of amoxicillin and cloxacillin in capsules', J. Young Pharm., vol. 2, no. 2, pp. 190–195, 2010, doi: 10.4103/0975-1483.63168.

www.ijcrt.org

- [17] M. F. Al-Hakkani, 'A rapid, developed and validated RP-HPLC method for determination of azithromycin', *SN Appl. Sci.*, vol. 1, no. 3, pp. 1–8, 2019, doi: 10.1007/s42452-019-0237-6.
- [18] JEAN-F. TOMB et al., 'Enhanced Reader.pdf', Nature, vol. 388. pp. 539–547, 1997.
- [19] K. A. Shaikh, S. D. Patil, and A. B. Devkhile, 'Development and validation of a reversed-phase HPLC method for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosage form', *J. Pharm. Biomed. Anal.*, vol. 48, no. 5, pp. 1481–1484, 2008, doi: 10.1016/j.jpba.2008.09.031.
- [20] P. Zubata, R. Ceresole, M. A. Rosasco, and M. T. Pizzorno, 'A new HPLC method for azithromycin quantitation', *J. Pharm. Biomed. Anal.*, vol. 27, no. 5, pp. 833–836, 2002, doi: 10.1016/S0731-7085(01)00554-4.
- [21] N. Yüzüak, T. Özden, S. Eren, and S. Toptan, 'Analysis of azithromycin in human plasma by LC-MS-MS', *Chromatographia*, vol. 66, no. SUPPL. 1, pp. 115–118, 2007, doi: 10.1365/s10337-007-0294-7.
- [22] A. Bouklouze, M. Kharbach, Y. Cherrah, and Y. Vander Heyden, 'Dosage de l'azithromycine dans des formulations pharmaceutiques : validation de la méthode CCMHP avec le modèle quadratique en utilisant le profile d'exactitude', *Ann. Pharm. Fr.*, vol. 75, no. 2, pp. 112–120, 2017, doi: 10.1016/j.pharma.2016.08.004.
- [23] M. Rachidi, J. Elharti, K. Digua, Y. Cherrah, and A. Bouklouze, 'New spectrophotometric method for azithromycin determination', *Anal. Lett.*, vol. 39, no. 9, pp. 1917–1926, 2006, doi: 10.1080/00032710600721720.
- [24] V. Venkatesh, A. E. Prabahar, P. V. Suresh, C. U. Maheswari, and N. R. Rao, 'RP-HPLC method for simultaneous estimation of azithromycin and ambroxol hydrochloride in tablets', *Asian J. Chem.*, vol. 23, no. 1, pp. 312–314, 2011.
- [25] A. H. H. Bakheit, B. M. H. Al-Hadiya, and A. A. Abd-Elgalil, *Azithromycin*, vol. 39. 2014.
- [26] E. C. L. Cazedey, R. Bonfilio, M. B. Araújo, and H. R. N. Salgado, 'A First-Derivative Spectrophotometric Method for the Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution', *Phys. Chem.*, vol. 2, no. 6, pp. 116–122, 2013, doi: 10.5923/j.pc.20120206.06.
- [27] J. Vella *et al.*, 'A simple HPLC-UV method for the determination of ciprofloxacin in human plasma', *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.*, vol. 989, pp. 80–85, 2015, doi: 10.1016/j.jchromb.2015.01.006.
- [28] S. S. Wu, C. Y. Chein, and Y. H. Wen, 'Analysis of ciprofloxacin by a simple high-performance liquid chromatography method', *J. Chromatogr. Sci.*, vol. 46, no. 6, pp. 490–495, 2008, doi: 10.1093/chromsci/46.6.490.
- [29] B. Aksoy, I. Küçükgüzel, and S. Rollas, 'Development and validation of a stability-indicating HPLC method for determination of ciprofloxacin hydrochloride and its related compounds in film-coated tablets', *Chromatographia*, vol. 66, no. SUPPL. 1, pp. 57–63, 2007, doi: 10.1365/s10337-007-0287-6.
- [30] M. Kamberi, K. Tsutsumi, T. Kotegawa, K. Nakamura, and S. Nakano, 'Determination of ciprofloxacin in plasma and urine by HPLC with ultraviolet detection', *Clin. Chem.*, vol. 44, no. 6, pp. 1251–1255, 1998, doi: 10.1093/clinchem/44.6.1251.
- [31] V. F. Samanidou, C. E. Demetriou, and I. N. Papadoyannis, 'Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC', *Anal. Bioanal. Chem.*, vol. 375, no. 5, pp. 623–629, 2003, doi: 10.1007/s00216-003-1749-9.
- [32] S. A. Ali *et al.*, 'High performance liquid chromatography (HPLC) method development and validation indicating assay for ciprofloxacin hydrochloride', *J. Appl. Pharm. Sci.*, vol. 1, no. 8, pp. 239–243, 2011.
- [33] J. De Smet *et al.*, 'Pharmacokinetics of fluoroquinolones in critical care patients: A bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma', *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.*, vol. 877, no. 10, pp. 961–967, 2009, doi: 10.1016/j.jchromb.2009.02.039.
- [34] S. Gummadi, D. Thota, S. V. Varri, P. Vaddi, and V. L. N. S. Rao, 'Development and validation of UV spectroscopic methods for simultaneous estimation of ciprofloxacin and tinidazole in tablet formulation', *Int. Curr. Pharm. J.*, vol. 1, no. 10, pp. 317–321, 2012, doi: 10.3329/icpj.v1i10.11849.
- [35] R. Wankhade, S. Bhalerao, H. Panchory, A. Pundir, and R. Pradhan, 'Analysis of erythromycin and benzoyl peroxide in combined dosage form by UV-visible spectrophotometry', *International Journal of Pharmacy and Pharmaceutical Sciences*, vol. 4, no. SUPPL. 4. pp. 527–531, 2012.
- [36] P. Edder, L. Coppex, A. Cominoli, and C. Corvi, 'Analysis of erythromycin and oleandomycin residues in food by highperformance liquid chromatography with fluorometric detection', *Food Additives and Contaminants*, vol. 19, no. 3. pp. 232–240, 2002, doi: 10.1080/02652030110083702.
- [37] K. Tsuji and J. F. Goetz, 'High-performance liquid chromatographic determination of erythromycin', *Journal of Chromatography A*, vol. 147, no. C. pp. 359–367, 1978, doi: 10.1016/S0021-9673(00)85147-X.
- [38] A. Bagchi, P. Mukherjee, I. Kaur, R. Singh, and A. Semwal, 'Development and validation of UV spectrophotometric method for estimation of deflazacort in bulk drug and pharmaceutical formulation', *International Journal of Drug Development and Research*, vol. 4, no. 3. pp. 369–373, 2012.