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Abstract:  Machine learning has emerged in conjunction with high-performance computing and big data technologies to open up 

new avenues for data-intensive science in the multidisciplinary agri-technologies domain. In this paper, we present a comprehensive 

review of research on machine learning applications in agricultural crop production management systems. The works analyzed on 

crop production management systems were categorized into (a) yield prediction (b) disease detection (c) weed detection (e) species 

recognition, and (f) crop quality. The filtering and classification of the presented articles demonstrate how machine learning 

technologies will benefit the crop production management system of agriculture. Farm management systems are evolving into real-

time artificial intelligence-enabled programs that provide rich recommendations and insights for farmer decision support and action 

by applying machine learning to sensor data. 

Index Terms - Yield prediction, disease detection, weed detection, crop quality, and species recognition 

I. INTRODUCTION 

Agriculture is crucial to the global economy. With the continued expansion of the human population, pressure on the agricultural 

system will increase. Agri-technology and precision farming, also known as digital agriculture, have emerged as new scientific 

fields that use data-intensive approaches to boost agricultural productivity while reducing environmental impact. Modern 

agricultural operations generate data from a variety of sensors, allowing for a better understanding of the operational environment 

(an interaction of dynamic crop, disease, weed, and quality conditions) and the operation itself (machinery data), resulting in more 

accurate and faster decision making. 

Machine learning (ML) has emerged alongside high-performance computing and big data technologies to open up new avenues 

for unraveling, quantifying, and comprehending data-intensive processes in agricultural operational environments. ML is defined, 

among other things, as the scientific field that allows machines to learn without being strictly programmed (Samuel, 2000). ML is 

being used in an increasing number of scientific fields, including agriculture, bioinformatics, biochemistry, medicine, meteorology, 

robotics, aquaculture, food security, and climatology. The adoption of Information and Communication Technology (ICT), which 

is promoted by policymakers all over the world, is unquestionably a necessary prerequisite for modern agriculture. 

In this paper, we present a comprehensive review of the use of machine learning in the crop production management system of 

agriculture. A number of relevant papers are presented, emphasizing key and distinguishing characteristics of popular ML models. 

Below are listed abbreviations used in related scientific works due to the large number of them. the abbreviations used in this work 

are classified as ML models and algorithms, statistical measures, and general abbreviations, respectively. 

The remainder of this paper is organized as follows. The second section briefly describes the fundamentals and overview of ML. 

The third section includes the related work on the subject of the five generic categories for a better understanding of the scope of 

the current study. The fourth section examines the methodology used, as well as the inclusive criteria and search engines. This 

section also includes the main performance metrics that were used in the selected articles. The main results are shown in the fifth 

section in the form of bar and pie charts, while the main conclusions are drawn in the sixth section by also discussing the results 

from a broader perspective. Finally, all of the selected journal papers are summarized in Tables A1–A5 based on their field of 

application and presented in Appendix A, along with Tables A6 and A7 containing commonly used abbreviations, to avoid 

disrupting the flow of the main text. 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882 

IJCRT2204688 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g44 
 

AN OVERVIEW OF MACHINE LEARNING 

Machine learning: Terminology and Definition 

ML methodologies typically involve a learning process with the goal of learning to perform a task from "experience" (training 

data). In machine learning, data is made up of examples. Individual examples are typically described by a set of attributes, also 

known as features or variables. Nominal (enumeration), ordinal (e.g., A+ or B-), binary (i.e., 0 or 1), or numeric features are all 

possible (integer, real number, etc.). A performance metric that improves with experience is used to assess the ML model's 

performance in a specific task. Various statistical and mathematical models are used to calculate the performance of ML models 

and algorithms. The trained model can then be used to classify, predict, or cluster new examples (testing data) based on the 

experience gained during the training process. Figure 1 depicts a typical machine learning approach. 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 1. A typical machine learning approach 

 
ML tasks are typically classified into broad categories based on,  

(1) The type of learning (supervised/unsupervised),  

(2) Learning models (classification, regression, clustering, and dimensionality reduction), or 

(3) Learning models used to implement the selected task. 

 

Task and Analysis of Machine Learning 

ML tasks are divided into two categories based on the learning signal of the learning system: supervised learning and unsupervised 

learning.  

(1) Supervised learning: The data is presented with example inputs and outputs, and the goal is to build a general rule that maps 

inputs to outputs. In some cases, inputs may only be partially available, with some target outputs missing or provided only as 

feedback to actions in a dynamic environment (reinforcement learning). The acquired expertise (trained model) is used in the 

supervised setting to predict the missing outputs (labels) for the test data.  

(2) Unsupervised learning: There is no distinction between training and test sets, and the data is unlabelled. The learner processes 

input data in order to discover hidden patterns. 

 

Dimensionality reduction (DR) is a type of analysis used in both supervised and unsupervised learning families to provide a more 

compact, lower-dimensional representation of a dataset in order to preserve as much information as possible from the original data. 

To avoid the effects of dimensionality, it is usually performed prior to applying a classification or regression model. The following 

are some of the most common DR algorithms: Principal Component Analysis (Pearson, 1901), Partial Least Squares Regression 

(Wold, 1985), and Linear Discriminant Analysis (Fisher, 1936). 

 

II. REVIEW 

On a first level, the reviewed articles on the crop applications of ML were classified into four generic categories: (a) yield prediction 

(b) disease detection (c) weed detection (e) crop quality, and (f) species recognition.  

The search engines such as Google Scholar, Shodhganga, ScienceDirect, and Krishikosh were used. The chosen articles are 

based solely on works presented in journal research papers, articles, and review papers. Climate prediction, despite its importance 

for agricultural production, has not been included in the presented review, owing to the fact that ML applications for climate 

prediction are a separate field in and of themselves. Finally, all of the articles presented here cover the time period from 2000 to the 

present.  

Crop management encompasses a wide range of aspects derived from the combination of farming techniques aimed at managing 

the biological, chemical, and physical crop environments in order to achieve both quantitative and qualitative goals (Yvos et al, 

2020). Using advanced crop management techniques, such as yield prediction, disease detection, weed detection, crop recognition, 

and crop quality, contributes to increased productivity and, as a result, financial income. Precision agriculture's key goals are as 

follows. 

 

2.1 Yield Prediction 

In general, one of the most important and difficult topics in modern agriculture is yield prediction. An accurate model can assist 

farm owners in making informed management decisions about what to grow in order to match the crop to the current market's 

demands (Van et al. 2020). However, this is not a simple task, it entails several steps. Several factors, including environment, 

management practices, crop genotypic and phenotypic characteristics, and their interactions, can influence yield prediction. As a 

result, a fundamental understanding of the relationship between these interactive factors and yield is required. In turn, identifying 

such relationships necessitates large datasets as well as powerful algorithms such as ML techniques (Khaki and Wang, 2019). 

 

 

Labeled and 

unlabeled 

training data 

Algorithm of machine 

learning 

Classification or 

prediction criteria 

New examples 

Predicted output 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882 

IJCRT2204688 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g45 
 

2.2 Disease Detection 

Crop diseases are a significant threat to agricultural production systems, reducing yield quality and quantity at the production, 

storage, and transportation levels. Reports of yield losses caused by plant diseases are common at the farm level (Harvey et al, 

2014). Crop diseases are also a major threat to global food security. Identification of plant diseases at the right time is critical for 

effective management. Bacteria, fungi, pests, viruses, and other agents can all cause plant diseases. Wilting and color change, leaf 

and fruit spots, leaf curling, and other disease symptoms include physical evidence of pathogen presence and changes in plant 

phenotype (Jim isleib, 2012). Historically, disease detection was carried out by expert agronomists through field scouting. This 

process, however, is time-consuming and solely based on visual inspection. Recent technological advances have resulted in 

commercially available sensing systems that can detect diseased plants before symptoms appear. A large dataset of both healthy 

and diseased plant images is required for accurate image classifiers for disease diagnosis. In the case of large-scale cultivations, 

such automated processes can be combined with autonomous vehicles to detect phytopathological problems in real-time through 

regular inspections. Furthermore, maps of the plant disease's spatial distribution can be created, depicting the zones in the farm 

where the infection has spread. Furthermore, computer vision has made remarkable progress in recent years, particularly through 

the use of deep learning.  

2.3 Weed Detection 

Weeds typically grow and spread invasively over large areas of the field very quickly as a result of their prolific seed production 

and longevity, competing with crops for resources such as space, sunlight, nutrients, and water availability. Furthermore, weeds 

frequently emerge earlier than crops without having to contend with natural enemies, which has a negative impact on crop growth 

(Su et al, 2020). Weed control, either mechanical treatment or herbicide application, is an important management task to prevent 

crop yield reduction. Mechanical treatment is often difficult to perform and ineffective if not done correctly, so herbicide application 

is the most commonly used operation. Using large quantities of herbicides, on the other hand, proves to be both costly and harmful 

to the environment, particularly when a uniform application is made without regard for the spatial distribution of the weeds. 

Surprisingly, long-term herbicide use is very likely to make weeds more resistant, resulting in more difficult and costlier weed 

control. In recent years, significant progress has been made in the differentiation of weeds from crops on the basis of smart 

agriculture, with herbicide application becoming the most widely used operation. 

2.4 Species Recognition 

Crop recognition has gotten a lot of attention in a variety of scientific fields, including plant taxonomy, botanical gardens, and the 

discovery of new species. Plant species can be identified and classified through the examination of various organs such as leaves, 

stems, fruits, flowers, roots, and seeds (Bonnet et al, 2016; Seeland et al, 2017). The most common method appears to be leaf-based 

plant recognition, which involves examining specific leaf characteristics such as color, shape, and texture (Zhang et al, 2020). With 

the increased use of satellites and aerial vehicles for sensing crop properties, crop classification via remote sensing has grown in 

popularity.  

2.5 Crop Quality 

Crop quality has a significant impact on the market and is generally related to soil and climate conditions, cultivation practices, and 

crop characteristics, to name a few. High-quality agricultural products are typically sold at higher prices, providing farmers with 

higher earnings. For example, in terms of fruit quality, flesh firmness, soluble solids content, and skin colour are among the most 

commonly used maturity indices for harvesting (Papageorgiou et al, 2020). Harvesting timing has a significant impact on the quality 

characteristics of harvested products in both high-value crops and arable crops. As a result, developing decision support systems 

can assist farmers in making appropriate management decisions for increased production quality. Selective harvesting, for example, 

is a management practice that can significantly improve quality. Furthermore, crop quality is closely related to food waste, which 

is an additional challenge that modern agriculture must overcome, because if the crop deviates from the desired shape, colour, or 

size, it may be discarded. Similarly, to the preceding section, ML algorithms combined with imaging technologies can yield 

promising results. 

 

III. METHODOLOGY 

 

3.1 Screening of The Relative Review of Literature 

The search engines Google Scholar, ScienceDirect, Krishikosh, Shodhganga, and Web of Science were used to find relevant 

studies concerning ML in various aspects of agricultural management. Furthermore, keyword combinations of "machine learning" 

with each of the following: "crop management," "yield prediction," "disease detection," “weed detection”, “species recognition”, 

and “crop quality” were used. Our goal was to filter the literature using the same framework as, but only for the period 2015–2020.  

Once a relevant study was identified, the references of the paper in question were scanned to find studies that had not been 

discovered during the initial search procedure. This process was repeated until no relevant studies were found. Only journal papers 

were considered eligible at this stage. Non-English studies, conference papers, chapters, reviews, and Master's and Doctoral Theses 

were thus excluded. Following a discussion about the appropriateness of the selected papers, some were excluded if they did not 

meet the two main inclusion criteria, namely: (a) the paper was published between 2015- 2020, and (b) the paper referred to one of 

the categories and subcategories of field. In total, 510 journal papers were found. Figure 3 depicts the flowchart of the current 

review methodology, which is based on the PRISMA guidelines, as well as information about when each exclusive criterion was 

imposed, similar to recent systematic review studies such as [Akhigabe et al, 2021; Labarriere et al, 2020; Mostafa et al, 2019). 
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Figure 2: The methodology of the current systematic review, as well as the flow of information regarding the exclusive criteria, 

according to PRISMA guidelines 

 

3.2 Definition of the Performance Metrics Commonly Used in the Reviewed Studies 

In general, these metrics are used to provide a common metric for evaluating ML algorithms. The selection of appropriate 

metrics is critical because: (a) how the algorithm's performance is measured is dependent on these metrics, and (b) the metric itself 

can influence how the significance of several characteristics is weighted. 

The confusion matrix is one of the most intuitive metrics for determining the correctness of a model. It is used to solve classification 

problems with at least two types of classes. Consider a simple example in which a target variable is labeled "1" when a plant is 

infected with a weed and "0" otherwise. In this simplified case, the confusion matrix (Figure 3) is a two-dimensional table with two 

dimensions, "Actual" and "Predicted," and its dimensions contain the results of the comparison between the predictions and the 

actual class label. In the simplified example above, this result can have the following values: 

1. True Positive (TP): The plant has a weed infestation (1), and the model categorizes this case as weed infected (1). 

2. True Negative (TN): The plant is weed infestation-free (0), and the model classifies this case as healthy (0). 

3. False Positive (FP): Although the plant does not have a weed infestation, the model classifies this case as weed-infested (1). 

4. False Negative (FN): Although the plant has a weed infestation (1), the model classifies it as a weed-free plant (0). 
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Figure 3: Representative illustration of a simplified confusion matrix 
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Table 1. List of the tables appearing in the Appendix A related to: (a) the categories of the machine learning applications in 

agriculture (Tables A1–A5) and (b) the abbreviations of machine learning models and algorithms (Tables A6 and A7, respectively). 

 

Table Content 

A1 Yield prediction 

A2 Disease detection 

A3 Weed detection 

A4 Species recognition 

A5 Crop quality 

A6 Abbreviations of machine learning models/algorithms 

A7 Abbreviations of Statistical measures and general words 

 
 IV. RESULT 

4.1 Classification of The Studies Based on The Application Domain 

Graphical representation of data related to the reviewed studies, such as bar chart, can provide an efficient approach to 

demonstrating and interpreting data patterns. The current methodology's flowchart (Figure 3) shows that the literature survey on 

ML in agriculture yielded 97 journal papers. Following that, these studies were classified into the four generic categories, as 

previously mentioned. The majority of the studies (27.83 %) were intended for yield prediction, while disease detection (22.68 %), 

weed detection (19.58 %), species recognition (19.58 %) and crop quality (10.30%) had nearly equal contributions in the current 

bibliographic survey. The former research field arose as a result of farmers' growing interest in making decisions based on efficient 

management that can lead to the desired yield. Disease detection, on the other hand, is critical, as diseases are a major threat to food 

security and quality assurance. Equal percentages (19.58%) were observed for weed detection and crop recognition, both of which 

are essential in crop management at the farm and in agricultural policy making. 

Figure 4: The classification of the reviewed studies according to the field of application of crop management system 

 

4.2 Machine Learning Models Providing the Best Results 

The selected studies used a diverse set of ML algorithms; their abbreviations are listed in Table A6 and A7. In the last two 

columns of Tables A1–A5, the ML algorithms used by each study, as well as those that produced the best results, are listed.  

As shown in Figure 5, the most common ML model producing the best results was, by far, Artificial Neural Networks (ANNs), 

which appeared in nearly 32.72 % of reviewed studies. ANN models, in particular, produced the best results in the majority of 

studies involving all sub-categories. ANNs were inspired by the biological neural networks that comprise human brains (Chen et 

al, 2019), and they enable learning through examples from representative data describing a physical phenomenon.  

 
Figure 5: Contribution of different algorithms/models in review study 

 
ANNs are distinguished by their ability to develop relationships between dependent and independent variables and thus extract 

useful information from representative datasets. ANN models have several advantages, including the ability to handle noisy data 

(Sadiq et al, 2019), which is very common in agricultural measurements. Deep Neural Networks (DNNs), which use multiple hidden 

layers between input and output layers, are among the most popular ANNs. Unsupervised, semi-supervised, and supervised DNNs 
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are all possible. Convolutional Neural Networks (CNNs) are a common type of DNN, with layers that, unlike traditional neural 

networks, can arrange neurons in three dimensions (De Oliveira et al, 2018). In fact, CNNs were presented as the algorithms that 

produce the best results across all sub-categories, accounting for nearly half of the individual percentage of ANNs. 

The cell structures of LSTM can control which parts of information are stored in long memory and which are discarded, resulting 

in memory optimization (Anagnostis et al, 2021). Furthermore, Multi-Layer Perceptron (MLP), Fully Convolutional Networks 

(FCNs), and Radial Basis Function Networks (RBFNs) appeared to perform the best in nearly 3–5% of ANNs. Finally, Back-

Propagation Neural Networks (BPNNs), Modular Artificial Neural Networks (MANNs), and Deep Belief Networks were ML 

algorithms that belonged to ANNs with a low frequency (DBNs). Support Vector Machine (SVM) came next, accounting for 

approximately 16.36% of the studies. The SVM's strength stems from its ability to accurately learn data patterns while 

demonstrating reproducibility. Despite the fact that it can also be used for regression applications, SVM is a widely used 

classification methodology in a variety of data science settings (Pisner et al, 2020), including agricultural research. 

 

V. DISCUSSION AND CONCLUSION 

The current systematic review study focuses on ML in agriculture, which is a growing topic around the world. To that end, a 

thorough examination of the current state of the four generic categories identified in the previous review by (Liakos et al, 2018) 

was carried out. These are the categories for crop, water, soil, and livestock management. As a result of reviewing the relevant 

literature from the previous three years (2018–2020), several aspects were analyzed using an integrated approach. In conclusion, 

the following major conclusions can be drawn: 

1. Several ML algorithms have been developed to deal with the heterogeneous data from agricultural fields. These algorithms can 

be divided into ML model families. ANNs were found to be the most efficient ML models. Nonetheless, in contrast to (Liakos 

et al, 2018), there has been a shift in interest toward EL, which can combine predictions from multiple models. SVM rounds 

out the top three most accurate ML models in agriculture due to several advantages, including its high performance when 

working with image data (Chandra and Bedi, 2021). 

2. In terms of the most studied crops, maize was the most extensively studied, followed by wheat, rice, and soybean. 

3. The demonstration of the input data used in the ML algorithms and the corresponding sensors was a significant outcome of the 

current review study. RGB images were the most popular choice, justifying the widespread use of CNNs due to their ability to 

handle this type of data more efficiently. Furthermore, a wide range of weather, soil, water, and crop quality parameters were 

used. Remote sensing, including imaging from satellites, UAVs, and UGVs, was the most common method of acquiring 

measurements for ML applications, though in situ and laboratory measurements were also used. As previously stated, UAVs 

are steadily gaining ground on satellites, owing to their adaptability and ability to provide high-resolution images in all weather 

conditions. Satellites, on the other hand, can provide time-series data over vast areas (Emilien et al, 2021). 

Following significant advancements in ICT systems in agriculture, the accelerating rate of research interest in ML in agriculture is 

a result of a number of factors. Furthermore, there is an urgent need to improve agricultural efficiency while reducing environmental 

impact. This necessitates both accurate measurements and the handling of large amounts of data in order to provide a comprehensive 

picture of agricultural processes. The current technological outbreak has the potential to significantly strengthen agriculture in the 

direction of improving food security and meeting rising consumer demands. However, the majority of ICT requires upfront costs, 

namely high infrastructure investment costs, which frequently prevent farmers from adopting these technologies. This will be a 

pressing issue, particularly in developing economies where agriculture is an important economic factor. Overall, given the growing 

recognition of the value of artificial intelligence in agriculture, machine learning (ML) will undoubtedly become a behind-the-

scenes enabler for the establishment of more sustainable and productive agriculture. It is expected that the current systematic effort 

will serve as a useful guide for researchers, manufacturers, engineers, ICT system developers, policymakers, and farmers, and thus 

contribute to more systematic research on ML in agriculture. 

 

A1: Yield Prediction 

 

Crop References Input data 
Functionality 

 
Algorithm 

/Model 
Output data 

Rice 

 

PS, 2019 

 

Irrigation, 

Weather data, 

Fertilization, Planting area 

Evaluation of feature 

subsets for prediction 

of rice crop yield 

ANN, SVR, 

KNN, RF 

RF: RMSE = 0.085; 

MAE = 0.055; 

R= 0.93 

Cotton 

 

(Haghverdi 

et al, 2018) 
Satellite spectral data 

Yield estimation of 

cotton 
ANN 

(R = -0.2-0.60); 

ANN (R = 0.68) 

Turmeric 

 

Akbar 

et al, 2018 

Soil fertility, Weather data 

 
Forecasting oil yield ANN 

Multilayer-feed-

forward NN: R2 = 0.88 

Wheat 

 

Cai et al, 

2019 
Satellite spectral data 

Prediction of wheat 

crop yield 
SVM, RF, ANN 

R2 value: SVM: 0.74; 

RF: 0.68;  

ANN: 0.68 

Rice 

 

Gopal 

et al, 2019 

Irrigation, 

Weather data, 

Fertilization, Planting area 

Prediction of rice crop 

yield 

ANN, SVR, 

KNN, RF 

ANN-MLR: R = 0.99; 

RMSE = 0.051; 

MAE = 0.041 

Sunflower 

 

Wenzhi 

et al, 2018 
Plant height and SPAD 

Prediction of seed 

yield of sunflower 
ANN, PLSR 

ANN: RMSE =  

0.66 t ha-1; R2 = 0.86 

PLSR: RMSE = 0.93 t 

ha-1; R2 = 0.69 

Rice 

 

Yang 

et al, 2019 

RGB and multispectral 

images from UAV 

Estimation of rice 

grain yield 
CNN 

RGB images R2 

values: 0.424–0.499; 

Maize 

 

Kayad 

et al, 2019 
Satellite spectral data 

Prediction of maize 

crop yield 
MLR, RF, SVM 

RF: Yield: R2 = 0.6; 

NDVI: R2 = 0.48 
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Sugarcane 

 

 

Murali 

et al, 2020 

Monthly 

precipitation 

data 

Forecasting of 

sugarcane yield 
RNN 

RMSE = 0.31 t ha-1 

MAE = 0.39 t ha-1 

MAPE = 5.18% 

Soybean 

 

Eugenio 

et al, 2020 

Multispectral images from 

UAV 

Yield estimation of 

soybean 
MLP R = 0.92 

Maize, 

Soybean 

 

Sayago 

et al, 2018 
Satellite spectral data 

Estimation of corn and 

soybean yield 
MLR, ANN 

Maize R2 values: 

ANN: 0.92 

Soybean R2 values: 

ANN: 0.90 

Potato 

 

Abrougui 

et al, 2019 

Soil parameters and tillage 

treatments 

Forecasting of organic 

potato yield 
MLR, ANN 

MLR: R2 = 0.894, 

RMSE = 0.431, 

MAE = 0.327; 

ANN: R2 = 0.95, 

RMSE = 0.431, 

MAE = 0.327 

Rice, 

Millet 

Khosla 

et al, 2020 
Weather data 

Prediction of various 

kharif crops yield 
MANN, SVR 

Overall RMSE = 

79.85% 

Maize, 

soybean 

 

Saranya 

et al, 2020 
Satellite spectral data 

Forecasting of maize 

and soybean yield 
MLR, ANN 

Corn:  

RMSE = 4.83-8.41,  

R = 0.91- 0.99; 

Soybean:  

RMSE = 5.1-7.7,  

R = 0.79-0.99 

Maize 

 

Kim 

et al, 2020 

Satellite spectral and 

weather data 

Prediction of maize 

yield 
DNN 

Drought case:  

R = 0.954; 

Heatwave case:  

R = 0.8-0.9 

Maize 

 

Mwaura 

et al, 2021 

Satellite spectral and 

weather data 

Estimation of maize 

yield 
DLS 

R2 = 0.76; 

RMSE = 0.038 t ha-1 

Cotton 

 

Leo 

et al, 2021 

Topographic, weather, 

soil, satellite spectral data 

Within-field yield 

prediction 
RF, GB 

RF: RMSE = 

 0.20 t ha-1;  

CCC = 0.50–0.66 

Rice 

 

Wan 

et al, 2020 

Multispectral images from 

UAV 

Prediction of rice grain 

yield 
RF 

RMSE =  

62.77 kg ha-1;  

MAPE =0.32 

Potato 

 

Salvador 

et al, 2020 

Weather, irrigation, and 

satellite spectral data 

Forecasting of yield in 

potato fields at 

municipal level 

RF, SVM 

Winter cycle:  

R2 = 0.757,  

RMSE = 18.9; 

Sugarcane 

 

Rahman 

et al, 2020 
Satellite spectral data 

Prediction of 

sugarcane yield 
MLR R2 = 0.92–0.99 

Cotton 

 

Ashapure 

et al, 2020 

Multispectral images from 

UAV 

Estimation of cotton 

yield 
ANN, SVR, RFR ANN: R2 = 0.9 

Rice 

 

Elavarasan 

et al, 2020 
Soil and weather data 

Forecasting paddy 

yield 
RF, DT, GBM 

RF: MSE = 0.07, 

R2 = 0.67 

Maize 

 

Guo 

et al, 2020 

Multispectral images from 

UAV 

Yield prediction of 

maize 
SVM, RF 

SVM: RMSE = 1.099, 

MAE = 0.886 

Wheat 

 

Zhou 

et al, 2021 

Multispectral images from 

UAV 

Prediction of wheat 

grain yield 

LR, RF, SVM, 

ANN 

LR: RMSE =  

972 kg ha-1,  

R2 = 0.62 

Soybean 

 

Da Silva 

et al, 2021 

Multispectral images from 

UAV 

Prediction of wheat 

grain yield 
DT RMSE = 196 kg ha-1 

Potato 

 

Li 

et al, 2020 

Hyperspectral data from 

UAV 

Yield prediction at two 

growth stages 
RF, PLSR 

R2 values: 

RF: 0.63; 

PLSR: 0.81 

Carrot 

 

Wei 

et al, 2020 
Satellite spectral data Carrot yield mapping RF 

R2 = 0.82, 

RMSE = 2.64 Mg ha-1 
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A2: Disease Detection 

 

Crop References Input data Functionality 
Algorithm 

/Model 
Output data 

Tomato 
Fuentes 

et al, 2018 
RGB images 

Recognition of 

diseases and pests in 

tomato 

CNN 
Recognition rate = 

96% 

Avocado 
Abdulridha 

et al, 2018 
Hyperspectral images 

Detection of 

Laurel wilt disease  
DT, MLP Accuracy = 100% 

Maize 
Wu 

et al, 2019 
RGB images from UAV 

Detection of leaf 

blight in maize 
CNN Accuracy = 95.1% 

Wheat 
Zhang 

et al, 2019 

Hyperspectral images 

from UAV 

Detection of yellow 

rust in wheat plots 
CNN Accuracy = 0.85 

Rice 
Ramesh 

et al, 2020 
RGB images 

Classification of rice 

infected leaves 
ANN, KNN 

Accuracy = 90%, 

Recall = 88% 

Onion 
Kim 

et al, 2020 
RGB images 

Detection of downy 

mildew in onion  
WSL 

mAP@0.5 = 

74.1–87.2% 

Cotton 
Wang 

et al, 2020 

Hyperspectral images 

from UAV 

Disease classification 

of cotton root rot 
KM Accuracy = 88.39% 

Soybean 
Karlekar 

et al, 2020 
RGB images 

Diagnosis of soybean 

leaf diseases 
CNN Accuracy = 98.14% 

Papaya 
Habib 

et al, 2020 
RGB images 

Diagnosis of five 

papaya diseases 
SVM 

Accuracy = 90%, 

Precision = 85.6% 

Potato 
Abdu 

et al, 2020 
RGB images 

Identification of early 

and late blight disease 
NB, KNN, SVM Accuracy = 99.67% 

Tomato 
Lu, 

et al, 2018 

Spectral measurements 

form spectroradiometer 

Detection of bacterial 

spots and late blight in 

tomato 

KNN 

Accuracy values: 

Healthy leaves: 100%, 

Asymptomatic: 100%, 

Late stage: 100% 

Citrus 
Sharif 

et al, 2018 
RGB images 

Detection and 

classification of citrus 

diseases 

SVM 

Accuracy values: 

1st dataset: 97%; 

1st & 2nd dataset: 89%; 

Soybean 
Kaur 

et al, 2018 
RGB images 

Detection and 

classification of three 

leaf diseases in 

soybeans 

SVM 

Accuracy 

Downy mildew =79%;  

Frog eye = 95.9%; 

leaf blight = 90% 

Millet 

 

Coulibaly 

et al, 2019 
RGB images 

Identification of 

fungal disease 

(mildew) in pearl 

millet 

CNN 

Accuracy = 95.00%, 

Precision = 90.50%, 

Recall = 94.50%, 

F1 score = 91.75 

Grape 
Cruz 

et al, 2019 
RGB images 

Detection of grapevine 

yellows in red grapes 
CNN 

Sensitivity = 98.96% 

Specificity = 99.40% 

Maize 

 

Wiesner 

et al, 2019 
RGB images from UAV 

Detection of northern 

leaf blight in maize 
CNN 

Accuracy = 0.9979, 

F1 score = 0.7153 

Sugar 

beet 

Ozguven 

et al, 2019 
RGB images 

Detection of diseased 

leaf spots in sugar beet 
CNN Accuracy = 95.48% 

Grape 
Pantazi 

et al, 2019 
RGB images 

Detection of diseased 

vine on leaves 
SVM Accuracy = 95% 

Wheat 
Picon 

et al, 2019 
RGB images 

Identification of three 

leaf diseases in wheat 
CNN 

Accuracy values:  

(1) Septoria: 100%; 

(2) Tan Spot: 99.32%; 

(3) Rust: 99.29% 

Tomato 
Agarwal 

et al, 2020 
RGB images 

Identification of 

various diseases in 

tomato 

CNN 

Accuracy values:  

(1) PV dataset: 98.4%; 

(3) Field data: 86.27% 

Rice 
Li 

et al, 2020 
RGB images, videos 

Video detection of 

brown spot in rice 
CNN 

Brown spot:  

Recall = 75.0%, 

Precision = 90.0%;  

Tomato 

 

Karthik 

et al, 2020 
RGB images 

Detection of early 

blight 
CNN Accuracy = 98% 
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A3: Weed Detection 

 

Reference Input data 
Functionality 

 
Algorithm 

/Model 
Output data 

Ahmad 

et al, 2018 
RGB images 

Classification of monocots 

and dicot weeds 

AdaBoost with 

NB 

Accuracy values: 

Original dataset: 98.40% 

expanded dataset: 94.72% 

Bah 

et al, 2018 

RGB images from 

UAV 

Detection of weeds in bean, 

spinach fields 
CNN 

Accuracy values: 

Bean field: 88.73%  

Spinach field: 94.34% 

Barrero 

et al, 2018 

 

RGB images from 

UAV, multispectral 

images 

Detection of Gramineae 

weed in rice fields 
ANN 

Best system: 80% < M/MGT < 

108%, 70% < MP < 85% 

De Castro 

et al, 2018 

Multispectral and RGB 

images from UAV 

Weed mapping between and 

within crop rows, 

cotton and sunflower 

RF 

Accuracy: 

Cotton: 84% 

Sunflower: 87.9% 

Sabzi 

et al, 2018 
RGB images 

Classification of potato 

plant and three weed species 
ANN Accuracy = 98.1% 

Teimouri 

et al, 2018 
RGB images 

Estimation of weed growth 

stage (18 species) 
CNN 

Maximum Accuracy = 78%  

Minimum Accuracy = 46%  

Average Accuracy = 70%  

Kounalakis 

et al, 2019 

Grayscale images from 

UGV 

Recognition of Broad-

leaved dock in grasslands 
CNN, SVM Accuracy = 96.8% 

Partel 

et al, 2019 

 

RGB images 

Evaluation of weed 

detection and spraying 

system. Two Scenarios: 

(1) artificial weeds, 

(2) real weeds 

CNN 

Scenario: 

(1) Accuracy = 91%, Recall = 

91%; 

(2) Accuracy=71%, Precision 

=78% 

(for plant detection and spraying 

Accuracy) 

Kamath 

et al, 2020 
RGB images 

Weed and crop 

discrimination in paddy 

fields 

MCS, SVM 

Accuracy values: 

Right channel (76.62%), 

Left channel (85.59%) 

Osorio 

et al, 2020 

Multispectral images 

from UAV 

Weed estimation on lettuce 

crops 
SVM, CNN 

F1 score values: 

(1) SVM: 88%; 

(2) CNN-YOLOv3: 94%; 

(3) Mask R-CNN: 94% 

Gao 

et al, 2018 
Hyperspectral images 

recognition of three weed 

species in maize crops 
RF 

Mean correct classification rate: 

(1) Zea mays: 1.0; 

(2) Convolvulus arvensis: 0.789 

Gao 

et al, 2018 

 

RGB images from 

UAV 

Detection of weeds in early 

season maize fields 
RF 

Overall Accuracy = 0.945, 

Kappa = 0.912 

Akbar 

et al, 2018 

 

Multispectral images 
Classification of corn (crop) 

and silver beet (weed) 
SVM 

Precision = 98%, 

Accuracy = 98% 

 

Knoll 

et al, 2019 

 

RGB images 
Classification of weeds in 

organic carrot production 
CNN 

Plant-based evaluation: 

Accuracy = 94.6%, 

Precision = 93.20%, 

Recall = 97.5%, F1 Score = 95.32 

Lambert 

et al, 2019 

 

Multispectral images 

from UAV 

Mapping of Black-grass 

weed in winter wheat fields 
CNN 

Baseline model: AUC = 0.78; 

Weighted kappa = 0.59; 

Average misclassification rate = 

17.8% 

Dadash 

et al, 2020 
Videos recordings 

Classification of two weeds 

species in rice field 
ANN, KNN 

Accuracy values: 

Right channel (76.62%),  

Left channel (85.59%) 

Kamath 

et al, 2020 

Gray-scale and RGB 

images 
discrimination in carrot field RF Accuracy = 94% 

Le 

et al, 2020 

Multispectral and RGB 

images 

Discrimination of weed and 

crops with similar 

morphologies 

CNN Accuracy = 98.6% 

Lam 

et al, 2021 

RGB images from 

UAV 

Weed mapping of Rumex in 

native grasslands 
CNN 

VGG16: Accuracy = 92.1%,  

F1 score = 78.7% 
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A4: Species Recognition 

 

Crop 

 
References Input data 

Functionality 

 
Algorithm 

/Model 
Output data 

Rice, 

Soybean 

 

Ji 

et al, 2018 

Satellite spectral 

data 

Classification of 

various crops 

CNN, 

SVM, 

KNN 

Overall accuracy = 0.939, 

Kappa = 0.902; 

Various crops 
Xu 

et al, 2018 

Satellite data, 

phenological, in 

situ data 

Classification of 

various crops 

NB, DT, 

KM 

KM: 

Overall accuracy = 92.04%, Kappa = 

0.7998 

Cabbage, 

Potato 

Kwak 

et al, 2019 

RGB images from 

UAV, in situ data 

Classification of 

potato and 

cabbage crops 

SVM, RF 
SVM: 

Overall accuracy = 90.85% 

Rice 
Cinar 

2019 

Morphological 

data 

Classification of 

two rice species 

LR, MLP, 

SVM 

LR: 

Accuracy = 93.02% 

Soybean 

 

Tan 

et al, 2019 

Hyperspectral 

data, seed 

properties 

Discrimination 

of 10 soybean 

seed varieties 

PLS-DA, 

BPNN 

TS-FFNN in terms of identification 

accuracy, stability, computational cost 

Cotton 
Zhu 

et al, 2019 

Hyperspectral 

data, seed 

properties 

Identification of 

seven cotton 

seed varieties 

PLS-DA, 

LGR, 

SVM, 

CNN 

(1) Full spectra: CNN-SoftMax: 

88.838%; 

(2) Effective wavelengths: CNN-SVM: 

84.260% 

Cotton, Rice 
Bhuyar 

2020 

Satellite spectral 

data 

Crop 

classification 
RF, KM 

RF: 

Accuracy = 95.06% 

Maize, 

Soybean 

Xu 

et al, 2020 

Satellite spectral 

data 

Crop 

classification 

RF, MLP, 

LSTM 
LSTM: confidence interval = 95% 

Rice 
Zhang 

et al, 2020 

Satellite spectral 

data 

Crop 

classification 

CNN, 

SVM, RF 

CNN: 

Accuracy = 93.14%,  

F1 score = 0.8552 

Various 

Crops 

Abad 

et al, 2018 

Satellite spectral 

data 

Classification of 

early-season 

crops 

RF 
Beginning of growth stage: 

Accuracy =97.1%, kappa = 93.5% 

Various 

Crops 

Nemmaoui 

et al, 2018 

Satellite spectral 

data, in situ data 

Identification of 

crops growing in 

greenhouses 

DT 
Overall Accuracy = 75.87%,  

Kappa = 0.63 

Various 

Crops 

Paul 

et al, 2019 

Satellite spectral 

data 

Classification of 

various crops 
SVM Overall Accuracy = 94.32% 

Various 

Crops 

Piedelobo 

et al, 2019 

Satellite spectral 

data, in situ data 

Classification of 

various crops in 

large areas 

EBT, DT, 

WNN 
EBT: Overall Accuracy = 87% 

Maize, 

Canola, 

Wheat 

Sun 

et al, 2019 

Satellite spectral 

data, in situ data 

Classification of 

various crops 

RF, ANN, 

SVM 

RF: Overall Accuracy = 0.93, Kappa = 

0.91 

Maize, 

Peanut, 

Soybeans, 

Rice 

Wei 

et al, 2019 

Satellite spectral 

data, in situ data 

Prediction of 

different crop 

types 

FCN, 

SVM, RF 

Best crop mapping: 

FCN: Accuracy = 85%, 

Kappa = 0.82 

Various 

Crops 

Zhao 

et al, 2019 

Satellite spectral 

data, in situ data 

Classification of 

early growth 

crops 

CNN, 

RNN, RF 
Highest Kappa: 1D CNN: 0.942 

Zea mays, 

Canola, 

radish 

Le 

et al, 2019 

Grayscale testbed 

data 

Classification of 

the crops 
SVM 

Precision = 91.87%, 

Recall = 91.85%, 

F1 score = 91.83 

Various crops 
Shelestov 

et al, 2019 

Satellite spectral 

data 

Crop 

classification 
SVM 

SVM (RBF): Accuracy values: 

(1)2016: 88.3%; 

(2) 2017: 91% 

Banana, 

Sugarcane 

Cotton  

Mandal 

et al, 2020 
Satellite spectral 

and in situ data 

Crop 

classification 
SVM Overall Accuracy = 89% 
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A5: Crop Quality 

 

Crop references Input data 
Functionality 

 
Algorithm 

/Model 
Output data 

Apple 

 

Papageorgiou 

et al, 2018 

Flesh firmness, 

soluble solids, 

fruit mass, and 

skin color 

Classification of 

quality: very poor, 

poor, medium, good 

and excellent 

ANFIS, 

FIS 

FIS: 

Accuracy values: 

(1) 2005: 83.54%; 

(2) 2006: 92.73%; 

Soybean 

 

Wolanin 

et al, 2019 

Satellite spectral 

and soil data 

Estimation of gross 

primary productivity 
ANN, RF 

ANN: R2 = 0.92, 

RMSE = 1.38 gC dm−2 

Pepper 

 

Tu 

et al, 2018 

RGB images, 

Color, mass and 

density of 

peppers 

Recognition of 

pepper seed quality 

MLP, 

BLR 

Predicted germination = 79.1%, 

Predicted selection rate = 90.0% 

Millet, rye 

 

Genze 

et al, 2020 

RGB images 

captured in 

laboratory 

Assessment of grain 

crops seed quality 
CNN 

(1) Millet: mAP =94.3%; 

(2) rye: mAP = 94.2% 

Wheat 

 

Yang 

et al, 2019 

RGB images 

captured 

by UAV 

Estimation of 

aboveground nitrogen 

content combining 

PSO- 

SVR, 

PLSR 

PSO-SVR: R2 = 0.9025,  

RMSE = 0.3287 

Various 

legumes 

Baath 

et al, 2020 

Spectral data 

from 

spectroradiometer 

Estimation of legume 

forage quality 

SVM, GP, 

PLS 

Accuracy 

SVM: = 0.92–0.99,  

IVTD: = 0.42–0.98 

Forage 

grass 

Medeiros 

et al, 2020 
X-ray imaging 

Prediction of vigor 

and seed germination 

RF, NB, 

SVM, 

LDA 

Germination accuracy 

Fast: 82.08%, 

Slow: 76.00%, 

Jatropha 

 

De Medeiros 

et al, 2020 
X-ray imaging 

Prediction of vigor 

and seed germination 
LDA 

Accuracy values: 

Vigor: FT-NIR: 0.61, 

X-ray: 0.68, 

Germination: FT-NIR: 0.82,  

X-ray: 0.86, 

Tomato 
Lee 

et al, 2020 
RGB images 

Dimensions for 

quality inspection 
CNN Precision = 99.7% 

Peach 
Yang 

et al, 2020 

Hyperspectral 

images 

Estimation of soluble 

solids content 
SAE-RF 

R2 = 0.9184, 

RMSE = 0.6693 

 
Table A6: Abbreviations of Machine Learning Models/ Algorithms 

 

Abbreviation Models/ algorithms  

ANFIS Adaptive-Neuro Fuzzy Inference Systems 

ANN Artificial Neural Networks 

BLR Binary Logistic Regression 

BPNN Back-Propagation Neural Networks 

CNN Convolutional Neural Network 

DLS Damped Least Squares 

DNN Deep Neural Networks 

DT Decision Trees 

EBT Ensemble Bagged Trees 

FCN Fully Convolutional Network 

FIS Fuzzy Inference System 

GBM Gradient Boosting Model 

GP Gaussian Processes 

KM K-Means 

KNN k-Nearest Neighbor 

LDA Linear Discriminant Analysis 

LGR LoGistic Regression 

LR Linear Regression 

LSTM Long-Short Term Memory 

MANN Modular Artificial Neural Network 

MCS Multiple Classifier System 

MLP Multi-Layer Perceptron 

MLR Multiple Linear Regression 

NB Naïve Bayes 

PLS-DA Partial Least Squares Discriminant Analysis 

PLSR Partial Least Squares Regression 

RF Random Forest 

SAE Stacked AutoEncoder 
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SVM Support Vector Machine 

SVR Support Vector Regression 

WNN Weighted Nearest Neighbors 

WSL Weakly Supervised Learning 

 
Table A7: Abbreviations of Statistical Measures and General Words 

 

Abbreviation Statistical measures  

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

RMSE Root Mean Squared Error 

CI Crop Indices 

mAP mean Average Precision 

NDVI Normalized Difference Vegetation Index 
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