ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makes pan

¹Author: Mubeen Shaikh, a research Scholar and ²Author: Dr. Dhananjay Yadav, Professor

At Department of Mechanical Engineering at SSSUTMS, Sehore-MP

Abstract A discrete variant of the PSO algorithm is suggested in this paper to reduce the makespan of a job-shop. To create active timetables, an unique schedule builder was used. The discrete PSO is put to the test with well-known benchmark problems from the literature. The proposed algorithms' solution is compared to the best known solution in the literature, as well as the hybrid particle swarm method and variable neighbourhood search PSO algorithm. The methodology used in this study was found to be effective in delivering high-quality solutions for a variety of benchmark job-shop scheduling challenges.

1.Introduction

The most difficult combinatorial optimization issue is job-shop scheduling [1]. Scheduling entails allocating jobs to available machines on the shop floor. A typical schedule contains information about the jobs that will be loaded onto the machines and when they will be loaded. As the number of jobs and machines grows, so does the difficulty of fixing the problem. Jobs are scheduled on the machines in accordance with a certain goal, which can be considered independently or in combination. Researchers and practical engineers created schedules based on some of the most significant objectives, such as decreasing make-span, minimising flow-time, and minimising tardiness.

The make-span criterion is used to build schedules in this research. of all the jobs in all the machines in the shop-floor. Throughput is improved when the make-span is reduced. For a 'n'job'm' machine problem, the make-span (C*max) is calculated using the equation 1 expression [2]. Each work 'ji' on the shop floor must go through 'O' operations on'm' machines before being completed. Jobs must be scheduled in accordance with the process plans, taking into account prioritisation and resource restrictions. The algorithm receives as input the processing time'ik'of job 'j' in machine'm'. The job'j's start time, 'tik,' is calculated 3 To whom should all correspondence be sent? Following priority and resource capacity limitations, with the goal of reducing the make-span criteria.

It is also believed that jobs would not be revisited and that each work will be processed just once in the machine.

Various optimization strategies have been used to solve the shop scheduling problem over the years. Exact methods, branch and bound algorithms, heuristics based on dispatching rules, Tabu search, Simulated annealing algorithm, Genetic algorithm, Local search techniques, Particle swarm algorithms, Differential evolution

algorithms, and hybrid techniques are some of the techniques available. The researchers conducted a comprehensive survey on jobshop scheduling. Mckay et al. [3], Holthaus and Rajendran [4], Yamada et al. [5], Baewicz et al. [6,7], Jain and Meeran [2], Jones et al. [8], and Wang and Zou [9] conducted an extensive survey on jobshop optimization processes of mathematical formulations, and future directions. Simulation based approaches for minimizing makes pan in a job-shop has been studied by Thenarasu et. al [10].

Kennedy and Eberhart [11] introduced particle swarm optimization, which is based on the intelligent behaviour of swarms and has been applied to a number of issues in science and engineering including continuous and discrete variables. For travelling salesman situations, Clerc [12] implemented a discrete version of PSO. Tasgetiren et al. [13] developed a continuous version of PSO for permutation flow shop scheduling problems. Tasgetiren et al. [14] and Xia and Wu [15] attempted to handle job shop scheduling difficulties with the PSO algorithm with the goal of lowering the makespan.By translating position values to its permutation of operations, Tasgetiren et al. [13,14] presented a lowest position value rule (SPV) to enable the continuous particle-swarm optimization algorithm to tackle permutation flowshop scheduling problems and job shop scheduling problems. A new hybrid particle swarm optimization approach suggested by Xia and Wu [15] combines a continuous particle swarm algorithm with a simulated annealing algorithm. For the flow-shop scheduling problem, Ramesh kumar et al. [16, 17, 18] suggested a PSO method. For data clustering challenges, Karthi et al. [19] created discrete and continuous version PSO algorithms. For the challenge of supply chain network optimization, Kadadevaramath et al.[20] suggested an intelligent PSO model. PSO was implemented by Sun For better performance, Meng et al. [23] merged GA and SA in PSO. The proposed novel discrete version of the PSO algorithm is used to tackle job-shop scheduling problems in this paper. By minimising the makespan criterion, optimal / near-optimal schedules were constructed. The suggested algorithm's solution quality is assessed by solving a benchmark issue and comparing it to the best-known solution in the literature.

2.Particle representation and proposed schedule builder

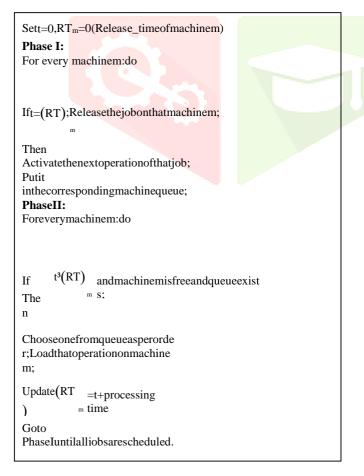
In this paper, the suggested PSO method for the job shop scheduling problem is implemented using the operation-based representation provided by Gen et al. [24]. All operations for a given job are represented as discrete values, which are subsequently inferred according to the sequence of occurrence. A particle in PSO is represented by 'nm' integers for a 'nm' job-shop problem. For a three-job (n), three-machine (m) problem, the representation would be as illustrated in figure 1, where 1 denotes job 1, 2 denotes job 2, and 3 denotes job 3. In the PSO algorithm, a particle will be represented by

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 3 March 2022 | ISSN: 2320-2882

nine integers.

ſ		3	2	2	1	1	2	3	1	3
	Particler epresent ation	erationf	erationf	doper	perati	Operati	ThirdO peration forjob2	dOper	peratio	ThirdO peratio nfor
				orjob 2	ob1	b1		or job 3	job 1	job3


Figure 1. Particle representation

2.1. Schedule builder

The schedule builder is a component of the evaluation technique that should be selected based on the optimization performance measure. The majority of significant work shop scheduling performance indicators are regular measurements, implying that best solutions are always semi-active [25]. The particle representation approach is used to provide an optimal solution for a performance objective such as minimising the makespan using semi-active scheduling methods. Computational experiments revealed that using a more powerful schedule builder, specifically an active scheduler, improves the minimal makespan job shop scheduling problem. To improve the quality of the solution, an active schedule builder performs a kind of local-search. Forcing is a tactic that was first utilised by Nakano and Yamada [26]. The strategy of left-shifting is utilised in the schedule builder to generate the schedule. To design the solution for the given sequence of operations, we explored a semi active schedule builder as well as a novel active schedule builder in this work.

2.2 Active schedule builder (proposed)

Left shifts and the forcing operation are performed by an active scheduler. The technique for creating the active schedules is based on a time-incrementing scheduling generating scheme. Figure 2 shows the algorithmic description of the schedule creation scheme that was utilised to construct the active schedules.

3.Benchmark problems

Bench-mark problems are used test the performance of proposed algorithms. These bench-mark problems were proposed by many researchers. These bench-mark problems were solved by many researchers by various approaches and techniques and reported their results in the literature. The bench-mark problems proposed by researchers are of wide range of sizes and also their difficulty level of solving also varies. There are many problems in the bench-mark where the optimal solutions are not found due to its combinatorial nature. These benchmark problems are formulated by various authors To illustrate the effectiveness and performance of the proposed algorithm, we have considered 40 problem instances (LA01 ~ LA40) of eight different sizes due to Lawrence [27], 5 problems (ABZ5 ~ ABZ9) of 2 different sizes due to Adams et al. [28], three problem instances called FT06, FT10 and FT20 due to Fisher and Thompson [29] and 10 problems (ORB1 ~ ORB10) used by Applegate and Cook [30]. We have solved all the 58-benchmark problems using the proposed PSO algorithm and the results were compared with the PSO algorithms proposed by Tasgetiren [13,14] and Xia and Wu [15].

4. Proposed discrete version PSO forjob-shop scheduling

4.1Structure of PSO algorithm for Job-shop scheduling problem

The main goal is to establish the job-shop problem's minimum makespan by determining the sequence of operations done on the jobs in the respective machines. Make-span is the total time it takes for all operations on all jobs in all machines to be completed. A series made up of nm integers. The number of jobs is represented as 'n,' and the number of machines is represented as'm.' Each integer in the series represents the order in which the jobs in the machines were completed. A particle in PSO is a series.

In PSO, the solution is built by taking into account the particle's present position (Cs,n), the best position obtained by the particle at a specific point in time throughout the evolution (Bs,n), and the overall best position among all the particles (Gn). Cs,n, Bs,n, and Gn are updated after a new sequence is created by computing the sequence's makespan. The letter's' stands for the sequence, and 'n' stands for the number of dimensions. The proposed form of PSO is not the same as the general PSO that is utilised to solve problems involving continuous function optimization. The structure of the proposed discrete PSO is given as follows:

Step1: Generate the sequences randomly. No. of sequences(SwarmSize)Say'S'.i.e.,

 $(C_{s,n}, n=1,2,...,N)$ for s=1,2,...,S.

Step2: Generate the feasible sequence proposed by Genetal.[24].

Step3: For all $\{C_{s,n}\}$, find the make-span of the sequence (objective function value)

 $(i.e., f((C_{s,n})))$. [Active schedule builder and Semi active schedule

builder are used for construction the schedule]

Step 4: Initialize $\{B_{s,n}\}$ and $\{G_n\}$

Step5: While(No.of iterations/ No.of solutions generated is not reached) do for each particle

Build a new sequence(particle);

Step6: Update{ $C_{s,n}$ },{ $B_{s,n}$ } and{ G_n }

Step6 :Report the best sequence/solutionfound.

4.2Building a new sequence

A new sequence of the particle 's' is built using the current position of the particle is $\{C_{s,n}\}$, best position reached by the particle say at an iteration 't' is $\{B_{s,n}\}$ and over-all best positionamong all the particles is $\{G_n\}$. $\{B_{s,n}\}$ and $\{G_n\}$ are identified based on the make-span value arrived by evaluating the sequences(particles).

A random number in the range U[0,1] is generated and compared with the set weights wc, wband wg. The set weights wc, wband wg corresponds to the sequences (particle) { $C_{s,n}$ }, { $B_{s,n}$ } and { G_n } for building the new sequence. The weights are generated in such a way thatwc+wb+wg=1.

To demonstrate the sequence building procedure, It is assumed that

Figure2.Schedulegenerationscheme

www.iicrt.org

© 2022 IJCRT | Volume 10, Issue 3 March 2022 | ISSN: 2320-2882 20x15 666694

ProblemsprovidedbyFisherandThompson[28]

Table3.Performanceofalgorithms-Problems provided by Apple

S.No	o Probler	Size n (n×m)	BKS	H-PSC	RPID-			
•							PSO,%	
01	FT06	6x6	55	55	55	55	0.00	
02	FT10	10x10	930	930	930	938	0.86	
03	FT20	20x5	1165	5 1178	1165	1165	0.00	

that there is a sequence of four operations for a3-job3-machine problem (i.e., particles) in the swarm as given below:

 $\{C_{s,n}\}$ $= \{1, 2, 1, 3, 2, 3, 2, 1, 3\};$

 $= \{2,1,2,1,3,3,2,1,3\};$ and $\{B_{s,n}\}$

 $=\{1,3,2,1,3,2,2,1,3\}.$ $\{G_n\}$

Let w_c,w_bandw_gare the relative importance, which is similar to the

coefficient sc1andc2used in generic PSO equation for calculating velocity as shown in the equation 1. Velocity of the particle is denoted by 'v', 't' is the iteration counter, 'c1' and 'c2' are the relative significance of the 'social' and 'cognitive' coefficients which is used to find the velocity toupdate the new position. 'X(t)' is the current position of the particle and 'Pbest' and 'Gbest' areparticle's best and global best positions. Two uniformly distributed random numbers 'r1' and r2' are in the range [0,1]. New position is updated after calculating the velocity. New position of the particle is given in the equation2.

For the demonstration of constructing the new solution, Let us consider wc=0.2,wb=0.3and

wg=0.5(wc, wband wgare sampled in the rangeU[0,1] in a such way that wc+wb+wg=1). The building of a new sequence starts with a null set, i.e. $\{C\} = \{\phi\}$. Corresponding to the

sequence of operations, nine random numbers are generated in the range U[0,1]. Let the random numbers are 0.98, 0.45, 0.35, 0.24, 0.64, 0.04, 0.95, 0.17 and 0.10. Corresponding to the random numbers, by following the construction procedure, the new sequence

5. Performance analysis of discrete PSO algorithm

The bench-mark problems are solved by the proposed discrete version of the PSO algorithm. Swarmsize considered in this study is 20 and max number of iterations allowed to report the results using the proposed algorithm is 50. The make-span reported by the algorithm is indicated in the Table 1. The make-span of the proposed algorithm is compared with best known solution available in the literature and two PSO algorithms proposed by Tasgetiren et al. [13] and Xia and Wu [14]. Tasgetiren et al. [13] hybridized their PSO algorithm with local search with a variable neighbourhood search method. Xia and Wu [14]hybridized their PSO with simulated annealing technique. The relative performance increase (RPI) over the best known solution is also presented in the Table 1-4. The relative percent increase in makespan over the best-known solution is calculated using the equation 3 for the proposed algorithm.

Makespan____BKS Relative percent increase in make span,% Make span

It is observed from the results that for 37 bench-mark problems PSO

C N	D 11	Size	DVG	II DGO		D DGO	DDI-
S.N	Problem	(n×m)	BKS	H-PSO	PSO-VNS	D-PSO	RPID-
0.							PSO,%
01	abz5	10x10	1234	1234	1234	1238	0.32
02	abz6	10x10	943	943	943	945	0.21
03	abz7	20x15	656	666	659	688	4.88
04	abz8	20x15	646	681	674	708	9.60

was able to achieve the best known solution available in the literature. This shows that the proposed discrete version PSO is able to produce good quality solutions for the job-shop scheduling problems. Swarm size considered in thisstudyis20.Max number of iterations allowed to report the results using the proposed algorithmis50.

Table1.Performance of algorithms- Problems provided by Adamsetal.[27]

		Size					
S.No.	Problem	(n×m)	BKS	H-PSO	PSO-VNS	D-PSO	RPI _{D-PSO} ,%
01	orb01	10x10	1059	1059	1059	1059	0.00
02	orb02	10x10	888	889	889	889	0.11
03	orb03	10x10	1005	1020	1005	1027	2.19
04	orb04	10x10	1005	1006	1005	1006	0.10
05	orb05	10x10	887	887	887	887	0.00
06	orb06	10x10	1010	1010	1013	1010	0.00
07	orb07	10x10	397	397	397	397	0.00
08	orb08	10x10	899	899	899	899	0.00
09	orb09	10x10	934	934	934	934	0.00
10	orb10	10x10	944	944	944	944	0.00

688

713

Conclusions

05

7.70

abz9

gate and Cook[29]

Table2.Performanceofalgorithms-

In this paper, a novel discrete version of particle swarm algorithm (PSO) is presented. The algorithm is tested using well-known benchmark problem available in the literature. The solution obtained from the proposed algorithm is compared with best-known solution published in the literature. The performance of the algorithm is found to be good and able to achieve the best-known solution to 37problems among 58 problems considered in this study. The success of this proposed algorithm is due to the novel solution construction procedure employed in this study. The weights assigned to the current, particle's best and global best particles is equivalent to the social and cognitive coefficients used in the conventional PSO algorithms used for solving the continuous function optimization problems. Further, the algorithm proposed in this study will be modified to suit the multi-objective optimization of the job-shops.

References

- Garey MR, and JohnsonD S1979 Computers and Intractability: [1] a Guide to Theory of NP-Completeness Freeman, San Francisco,
- [2] JainAS, and MeeranS 1999Astate of the artreview of jobshop scheduling techniques European Journal of OperationalResearch.113390-434.
- [3] McKayKN,SafayeniFR,andBuzacottJA1988Jobshopschedulingtheory: Whatisrelevant? Interfaces. 18(4) 84-90.
- [4] Holthaus O, and RajendranC 1997 New dispatching rules for scheduling in a jobshop-An experimental study The International Journal of Advanced Manufacturing Technology. 13(2)148–153.
 - [5] Yamada Tand NakanoR1997 Jobshop scheduling IEE control Engineering series.134-134.
 - Błażewicz J, Domschke W, and Pesch, E., 1996 The job shop scheduling problem: Conventional and new solution techniques Europea njournal of operational research.93(1)1-33.
 - [7] Błażewicz J,Ecker K H,Pesch E,SchmidtG, and WeglarzJ 2007 Handbook on scheduling: from theory to applications. Springer Science & Business Media.
- [8] Jones A, RabeloL C, and Sharawi AT 1999 Survey of job shop scheduling techniques Wiley encyclopedia of electrical and electronics engineering.
- [9] Wang S F, and Zou Y R2003 Techniques for the job shop scheduling problem: a survey Systems Engineering-Theory & Practice. 23(1) 49-55.
- [10] Thenarasu M, Ramesh kumar K, and Marimuthu P (in press) Simulation Modeling and Development of Analytic Hierarchy Process(AHP) based Priority

Dispatching Rule(PDR) for a Dynamic PressShop International Journal of Industrial and Systems Engineering.

- [11] KennedyJ,and EberhartRC 1995 Particles warm optimization Proceedings of IEEE International Conference on Neural Networks. Piscataway,NJ,USA,1942-1948.
- [12] ClercM2004 Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem New Optimization Techniques in Engineering. Heidelberg GermanySpringer219-239.
- [13] Tasgetiren F M, Liang Y-C, Sevkli M, and Gencyilmaz G 2007 Particle Swarm optimization for makespan andTotal flowtime minimization in permutation flowshop sequencing problem *European Journal of OperationalResearch*.**177** 1930–1947.
- [14] Tasgetiren M F,SevkliM,Liang Y-C, and Yenisey M M 2006. A particle swarm optimization and differential evolution algorithms for jobshop scheduling problem *International Journal of Operations Research.3(2)*120-135.
- [15] XiaWJ,and WuZM2006A hybrid particle swarm optimization approach for the job-shop scheduling problem *The International Journal of Advanced Manufacturing Technology*.29(3)360-366.
- [16] Ramesh kumar K,Suresh R, and Mohana sundaramK2005 Discrete particle swarm optimization (DPSO)algorithm for permutation flowshop scheduling to minimize makespanLNCS - Advances in Natural Computation.3612572-581.
- [17] Rameshkumar K Rajendran C Mohana sundaram K M2011 Discrete particle swarm optimisation algorithms forminimising the completion-time variance of jobs in flowshops*International Journal of Industrial and SystemsEngineering*.7(3) pp.317-340.
- [18] Rameshkumar K,Rajendran C, and Mohana sundaram K M 2012. A novel particle swarm optimisation algorithm for continuous function optimisation *International Journal of Operational Research*. **13**(1)1-21.
- [19] Karthi R, Rajendran C, and Ramesh kumar K 2011 Neighborhood Search Assisted Particle Swarm Optimization(NPSO) Algorithm for Partitional Data Clustering ProblemsAdvances in Computing and Communications. 552-561.
- [20] Kadadevaramath R S, Chen JC,Shankar B L, andRamesh kumarK2012Application of particles warm intelligence algorithms in supply chain network architecture optimization *Expert Systems with Applications.* **39(11)**10160-10176.
- [21] Sun Y, and Xiong H 2012 Job-shop scheduling problem based on particle swarm optimization algorithm Sensors & Transducers. 16116.
- [22] Gao H, Kwong S,Fan B, andWang R 2014 A hybrid particle-swarm tabu search algorithm for solving job shop scheduling problems *IEEE Transactions on IndustrialInformatics*.10(4)2044-2054.
- [23] Meng Q,ZhangL, and Fan Y2016 A Hybrid Particle Swarm Optimization Algorithm for Solving Job Shop Scheduling Problems Asian Simulation Conference.71-78Springer Singapore.
- [24] Gen M, Tsujimura Y, and Kubota E 1994 Solving jobshop scheduling problems by genetic algorithm *Systems, Man ,and Cybernetics.***2**1577-1582.
- [25] French H1982 Sequencing and Scheduling- An introduction to the mathematics of the job shop. Ellis Hoewood John Wiley & Sons New York.
- [26] Nakano R ,and YamadaT 1991 Conventional genetic algorithm for job shop problems *ICGA*.91474-479.
- [27] Lawrence S 1984 Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques GSIA .Carnegie Mellon University Pittsburgh PA.
- [28] AdamsJ, Balas E, and ZawackD1988The Shifting bottleneck procedure for job shop schedulingManagementScience.34, 391-401.
- [29] Fisher H, and Thompson GL1960 Probabilistic learning combinations of local jobshop scheduling rules MuthJF

ThompsonGL(Eds.) *Industrial scheduling*.Prentice Hall EnglewoodCliffsNJ225-251.

[30] Applegate D, and CookW 1991 Acomputational study of the jobshop scheduling problem, ORSA Journal on Computing. 3149-156

