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Abstract 

The aim of the paper is to prove a fixed point theorem for four mappings in b- metric space by utilising 

the concept of common (E.A) property. In this paper if we have prove that if E,H,L and M are 

mappings on a b- metric space, then the pairs (E,H) and (L,M) have a point of coincidence in γ. Also if 

these pairs are weakly compatible then they have a unique common fixed point. This is also explains 

with the help of example.    
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1. Introduction  

The famous Banach contraction principle introduced by Banach [1], secure the existence and 

uniqueness of fixed points for a contraction mapping in metric space. One of the significant 

generalizations of metric space is called b- metric space. The concept of b- metric space was 

introduced by Bakhtin [2].  The E.A property was introduced by Aamri and Moutawakil [3]. Roshan 

[4] et.al used the notion of almost observe contractive mappings in ordered complete b- metric spaces 

and established some fixed and common fixed point results. Czerwik [5] first produce a generalization 

of Banach fixed point theorem in b- metric space. Berinde [6] explained the concept of weak 

contraction from the case of single-valued mappings is extended to multi-valued mappings and then 

corresponding convergence theorems for the Picard iteration associated to a multi-valued weak 

contraction. Aydi et al. [7] proved a common fixed point results for single valued and multi-valued 
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mapping satisfying a weak φ- contraction in b- metric spaces. After that, several interesting results 

about the existence of a fixed point for single- valued and multi- valued operators in b- metric spaces 

have been obtained ([8], [9], [10], [11], [12], [13]. 

Definition 1.1 [2]:- let   be a non- empty set and s ≥ 1 be a given real number. A function 

:d R  is called a b- metric space provided that for all , , ,     

I.  , 0,d   
    

if and only if ,  (Identification)                                  

II. d( , ) d( , ),       (Symmetry)               

III. d( , ) [d( , ) d( , )].s           (Triangular Inequality)   

A pair ( , d) is called a b- metric space. 

Example 1.2 [11]:- Let ( , d) be a metric space and ( , ) (d( , )) ,p     where 1p  is a real 

number. Then  is a b- metric with 12 .ps   

Definitions 1.3 [11]:- Let ( , d) be a b- metric space. Then a sequence  n in   is called a Cauchy 

sequence if and only if for all 0   there exist ( ) Nn    such that for each , ( )n m n  we have 

( , ) .n md     

Definition 1.4 [11]:- Let ( , d) be a b- metric space then a sequence  n in   is called convergent 

sequence if and only if there exist   such that for all there exists ( ) Nn   such that for all 

( )n n   we have ( , )nd    . In this case we write lim .n n    

Definition 1.5 [11]:- The b- metrics space is complete if every Cauchy sequence is convergent. 

Definition 1.6 [12]: A pair of maps E and H is called weakly compatible pair if they commute at 

coincidence points.  

2. Main Result 

Definition 2.1: Let E, H, L, M:     be mappings on b- metric space ( , d). The pairs (E, L) and 

(H, M) satisfy the common (E.A) property, if there exist sequences n and  n such that  

lim lim lim lim ,n n n n n n n nE L H M k         
 
for some k .

 

In the following result, the notion the control functions , :[0, ) [0, )     is used which are 

continuous, non decreasing function with (t) 0   and (t) 0  if and only 0t  . 
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Theorem 2.2:- Let E, H, L, M:     be mappings on b- metric space ( , d) with s ≥ 1 and 

satisfying the following conditions:- 

I. 2(s (E ,H )) (N ( , )) ( ( , ))S Sd N                                                               

Where   

(E ,M ) (L ,H )
( , ) max (L ,M ), (E ,L ), (H ,M ), ,

2
S

d d
N d d d

s

   
       

 
  

 
    

II. The pairs (E, L) and (H, M) share the common (E.A) property. 

III. If L(Г) and M(Г) are closed subsets of .  

Then, the pairs (E, L) and (H, M) have a point of coincidence in .  Further, E, H, L and M have a 

unique common fixed point provided that both the pairs (E, L) and (H, M) are weakly compatible. 

Proof:-  The  pairs (E, L) and (H, M) share the common (E. A) property, there exist sequences  

 n and  n in   such that  

lim lim lim lim ,n n n n n n n nE L H M k           for some .k                     (1.1)             

Since  L  is a closed subset of   therefore, there exists a point 1m    

such that 1 .Lm k
                                                                                                                (1.2)

 

We put 1m  and n  in equation (  ), one have 

2

1 1 1(s (E ,H )) (N (m , )) ( (m , )),n s n S nd m N      
                                                         (1.3) 

where, 
1 1

1 1 1 1

(E ,M ) (L ,H )
(m , ) max (L ,M ), (E ,L ), (M ,H ), .

2

n n
S n n n n

d m d m
N d m d m m d

s

 
   

 
  

 

Taking the limits as n→∞ and by using (1.3), we have  

2

1 1 1(s (k,Em )) (d(k,Em )) (d(k,Em )).d     

Using the definition of ψ, one can easily get  

2

1 1s (k,Em ) d(k,Em ).d 
 

This implies, d(k, Em1) = 0, hence Em1 = k.                                                                        (1.4) 

From equation (1.2) and (1.4), we get 1 1 .Em Lm k   

Therefore, m1 is a coincidence point of the pair (E, L). 

If M( ) is a closed subset of  . Therefore, there exists a point 1w   such that  
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1Mw .k                                                                                                                               (1.5) 

Now, we assert that, 1Hw = 1 .Mw  

Let us put 1m  and 1w  in equation (  ), we have  

2

1 1 1 1 1 1(s (E ,Hw )) (N (m , w )) (N (m , w )),S Sd m   
                                                        (1.6)

 

where, 

 
1 1 1 1

1 1 1 1 1 1 1 1

(E ,Mw ) (L ,Hw )
(m , w ) max (L ,Mw ), (E ,L ), (Mw ,Hw ), .

2
S

d m d m
N d m d m m d

s

 
  

 
By using 

equation (1.6), we have                                                                 

 

2

1 1 1(s (k,Hw )) (d(k,Hw )) (d(k,Hw )).d   
 

Using the definition of ψ, one can have 

2

1 1s (k,Hw ) d(k,Hw ).d 
 

Hence 1 .Hw k                                                                                                           
          (1.7)

 

From equation (1.5) and (1.7), we get 1 1 .Hw Mw k   

Therefore, w1 is a coincidence point of the pair (H, M). 

Thus, 1 1 1 1Em Lm Hw Mw k    .  

The weak compatibility of the pairs (E, L) and (H, M) implies Ek Lk and .Hk Mk  We will show 

that k is a common fixed point of E, H, L and M from equation (1) 

We put k  and 1w   in equation (  ) 

2

1 1 1(s (Ek,Hw )) (N (k, w )) ( (k, w )),s Sd N   
                                                              (1.8)

 

where, 

1 1
1 1 1 1

(Ek,Mw ) (Lk,Hw )
(k, w ) max (Lk,Mw ), (Ek,Lk), (Mw ,Hw ),

2
S

d d
N d d d

s

 
  

                                                  

                  
(Ek,k) d(Ek,k)

max (Ek,k),d(Ek,Ek),d(k,k),
2

d
d

s

 
  

   

                  (Ek,k)d  
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From equation (1.8), we get  

( (Ek,k)) (d(Ek,k)) ( (Ek,k)).d d   

 

So .Ek Lk k   Similarly it can be shown that .Hk Mk k 

 
To prove the uniqueness of fixed point, suppose r is another fixed point of E, H, L and M. 

We put k  and r  in equation (  ) we have 

2(s (Ek,Hr)) (N (k, r)) ( (k, r)),s Sd N   
                                                                      (1.9)

 

where, 

(Ek,Mr) (Lk,Hr)
N (k, r) max (Lk,Mr), (Ek,Lk), (Mr,Hr),

2
S

d d
d d d

s

 
  

 

 

              

(k, r) d(k, r)
max (k, r),d(k,k),d(r, r),

2

(k, r).

d
d

s

d

 
  

 



 
Hence we have ( (k, r)) ( (k, r)) (d(k, r)),d d     

Which implies that d(k, r) 0, so .k r  

Hence, E, H, L and M have a common fixed point k. 

Example 2.3:- Let [ 1,1]   and define d : [0, )  as fallows  

2

0,
d( , ) .

( ) ,

 
 

   

 
  

  
 

The ( , d) is a b- metric space with s= 2, (t) √t and (t)
10

t
  for t [0, ).   

Let E,H,L,M : be defined by , , ,
3 3

E H L M
 

            for all .   

We take  
1

n
n


 

  
 

 and  
1

n
n


 

  
 

then we have  

lim lim lim lim 0.n n n n n n n nE L H M           

Therefore, both pairs (E, L) and (H, M) satisfy the common (E.A) property. 

Here,  L   and  M  are closed subsets of . Thus all the conditions of the theorem (2.2) are 

satisfied. Here, 0 is a unique common fixed point of the (E, L) and (H, M) 

The following results can easily prove with the help of this main theorem (2.2) 
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Corollary 2.4:- Let E, H, L, M:     be mappings on b- metric space ( , d) and satisfying the 

contractive condition (  ) of the theorem (2.2).Suppose that the pairs (E, L) and (H, M) are weakly 

compatible and share the common (E.A) property. Then the maps E, H, L and M have unique common 

fixed point, provided either of the following two conditions hold good: 

( )L  is complete and E( ) M( )    

M( ) is complete and H( ) ( ).L      
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