IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

On $(g\alpha r)^{**}$ -Closed Sets in Topological Spaces

¹J Shaini Melina, ²Dr M Trinita Pricilla

¹PG Scholar, ²Assistant Professor ¹Department of Mathematics, ¹Nirmala College For Women, Coimbatore, India

Abstract: The purpose of this paper is to introduce a new class of sets called generalized α regular-star-star-closed sets (briefly $(g\alpha r)^{**}$ -closed set) in topological spaces. We compare $(g\alpha r)^{**}$ -closed sets with the other existing sets and also their characterizations are analyzed.

I. INTRODUCTION

The concept of generalization of closed set was introduced by Levine [3] in 1970. Further investigation on generalization closed set has lead to significant contribution to the theory of separation axiom, generalization of continuity and covering properties. The concepts of generalized b-closed sets in topological spaces was introduced by A.A.Omari and M.S.M.Noorani [1]. In this paper the non-empty topological space is denoted by (X,τ) , (Y,σ) , and (Z,η) or X, Y and Z on which no separation axioms are assumed unless otherwise explicitly stated. In this paper we introduce a new class of sets called generalized α regular-star-star-closed sets in topological spaces. Also their characterizations are analyzed and it is compared with the other existing sets.

II. PRELIMINARIES

Definition 2.1

- Let A be an subset of topological space (X, τ) . Then A is called
 - 1. α -open set [6] if A \subseteq int(cl(intA)).
 - 2. generalized closed set (briefly g-closed set) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
 - 3. generalized * closed set (briefly g*-closed set) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.
 - 4. generalized α -closed set (briefly g α -closed set) [5] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open.
 - 5. α -generalized closed set (briefly α g-closed set) [4] if α cl(A) \subseteq U whenever A \subseteq U and U is open.
 - 6. generalized pre regular-closed set (briefly gpr-closed set) [2] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
 - 7. generalized a regular-closed set (briefly gar-closed set) [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
 - 8. regular closed set [10] if A = cl(int(A)).
 - 9. gsp-closed set [11] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
 - 10. generalized α regular-star-closed set (briefly (g α r)*-closed set) [8] if cl(A) \subseteq U whenever A \subseteq U and U is (g α r)-open in X.

III. GENERALIZED α REGULAR-STAR-STAR-CLOSED SETS IN TOPOLOGICAL SPACES

Definition 3.1

A subset A of a topological space (X,τ) is called generalized α regular-star-closed set (briefly $(g\alpha r)^{**}$ -closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(g\alpha r)^{*}$ -open in X.

Definition 3.2

A subset A of a topological space (X,τ) is called $(g\alpha r)^{**}$ -open set if and only if A^{C} is $(g\alpha r)^{**}$ -closed in X.

Theorem 3.3:

Every $(g\alpha r)^{**}$ -closed set is g-closed set.

www.ijcrt.org

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X such that $A \subseteq U$, where U is open. Since every open set is $(g\alpha r)^{*}$ -open in X. Therefore A is $cl(A) \subseteq U$. Hence A is g-closed set in X.

The converse of above theorem need not to true as shown from the following example.

Example 3.4:

Let $X = \{a,b,c,d\}$ with $\tau = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$. Here, g-closed set= $\{X,\emptyset,\{c\},\{d\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\{b,c,d\},\{a,c,d\},\{a,c,d\},\{a,b,d\}\}$ and $(g\alpha r)^{**}$ -closed set= $\{X,\emptyset,\{c\},\{d\},\{a,c\},\{a,d\},\{b,c\},\{c,d\},\{a,b,c\},\{b,c,d\},\{a,c,d\},\{a,b,d\}\}$. Then the set $\{b,d\}$ is g-closed set but not $(g\alpha r)^{**}$ -closed set.

Theorem 3.5:

Every $(g\alpha r)^{**}$ -closed set is ga-closed set.

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X. Let $A \subseteq U$, where U is α -open set. Since every α -open set is $(g\alpha r)^{*}$ -open in X. Then U is gar-open. Therefore $\alpha cl(A) \subseteq cl(A) \subseteq U$. Hence A is ga-closed set.

Theorem 3.6:

Every $(g\alpha r)^{**}$ -closed set is αg -closed set.

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X. Let A \subseteq U and U is open set. Since every open set is $(g\alpha r)^{**}$ -open. Then U is $(g\alpha r)^{**}$ -open. Therefore $\alpha cl(A) \subseteq cl(A) \subseteq U$. Hence A is αg -closed set.

The converse of above theorem need not be true as shown from the following example.

Example 3.7:

Let $X = \{a,b,c,d\}$ with $\tau = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$. Then the set $\{b,d\}$ is αg -closed set but not $(g\alpha r)^{**}$ -closed set.

Theorem 3.8:

Every $(g\alpha r)^{**}$ -closed set is gpr-closed set.

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X and U be any regular open set containing A. Since every regular open set is $(g\alpha r)^{*}$ -open. Then pcl(A) \subseteq cl(A) \subseteq U.Therefore pcl(A) \subseteq U. Hence A is gpr-closed set.

Theorem 3.9:

Every $(g\alpha r)^{**}$ -closed set is g*-closed set.

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X and U be any g-open set containing A. Since every g-open set is $(g\alpha r)^{*}$ -open. Therefore $cl(A) \subseteq U$. Hence A is g^{*}-closed set.

Theorem 3.10:

Every regular closed set is $(g\alpha r)^{**}$ -closed set.

Proof:

Let A be any regular closed set in X such that $A \subseteq U$ where U is $(g\alpha r)^*$ -open. Since A is regular closed cl(int(A)) = A, Therefore $cl(A) \subseteq cl(int(A)) = A \subseteq U$. Therefore $cl(A) \subseteq U$. Hence A is $(g\alpha r)^{**}$ -closed set in X.

The converse of above theorem need not be true as shown from the following example.

Example 3.11:

Let X = {a,b,c,d} with $\tau = {X,\emptyset,{a},{b}}$. Then the set {c} is $(g\alpha r)^{**}$ -closed set but not regular closed set.

Theorem 3.12:

Every $(g\alpha r)^{**}$ -closed set is gsp-closed set.

Proof:

Let A be any $(g\alpha r)^{**}$ -closed set in X and U be any open set containing A. Since every open set is $(g\alpha r)^{*}$ -open, spcl(A) \subseteq cl(A) \subseteq U.Therefore spcl(A) \subseteq U. Hence A is gsp-closed set.

The converse of above theorem need not be true as shown from the following example.

Example 3.13:

Let $X = \{a,b,c,d\}$ with $\tau = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$. Then the set $\{b\}$ is gsp-closed set but not $(g\alpha r)^{**}$ -closed set. **Remark 3.14:**

From the above theorem and examples we have the following diagrammatic representation.

Theorem 3.15:

If A and B are $(g\alpha r)^{**}$ -closed set in X then AUB is $(g\alpha r)^{**}$ -closed set in X.

Proof:

Let A and B are $(g\alpha r)^{**}$ -closed set in X and U be any $(g\alpha r)^{*}$ -open set such that $A \cup B \subseteq U$. Therefore $cl(A) \subseteq U$, $cl(B) \subseteq U$. Hence $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$. Therefore $A \cup B$ is $(g\alpha r)^{**}$ -closed set in X.

Theorem 3.16:

If a set A is $(g\alpha r)^{**}$ -closed set then cl(A)-A contains no non empty $(g\alpha r)^{**}$ -closed set.

Proof:

Let F be $(g\alpha r)^*$ -closed set in X. Such that $F \subseteq cl(A) - A$. $F \subseteq cl(A) \cap A^c \Rightarrow F \subseteq cl(A)$ and $F \subseteq A^c$, $A \subseteq F^c$. Then $A \subseteq X - F$. Since A is $(g\alpha r)^*$ -closed set and X-F is $(g\alpha r)^*$ -open then $cl(A) \subseteq X - F$. (i.e.) $F \subseteq X - cl(A)$. So $F \subseteq (X - cl(A)) \cap (cl(A) - A)$. Therefore, $F = \emptyset$.

Theorem 3.17:

If B is $(g\alpha r)^{**}$ -closed set and $B \subseteq A \subseteq cl(B)$ then A is $(g\alpha r)^{**}$ -closed.

Proof:

Let B be $(g\alpha r)^{**}$ -closed and O be any $(g\alpha r)^{*}$ -open set such that A \subseteq O. Then B \subseteq O which implies $cl(A) \subseteq cl(B) \subseteq O$. Hence A is $(g\alpha r)^{**}$ -closed.

Theorem 3.18:

A is any $(g\alpha r)^{**}$ -open set if and only if $B \subseteq int (A)$ where B is $(g\alpha r)^{**}$ -closed and $B \subseteq A$.

Proof: Let A be any $(g\alpha r)^{**}$ -open set. Let B be $(g\alpha r)^{*-}$ -closed and $B \subseteq A$. Then $A^c \subseteq B^c$ which implies $cl(A^c) \subseteq B^c$. Since A^c is $(g\alpha r)^{**}$ -closed set and B^c is $(g\alpha r)^{*-}$ -open. Therefore we have $B \subseteq$ int (A). Conversely, assume that $B \subseteq$ int (A). Whenever B is $(g\alpha r)^{**}$ -closed and $B \subseteq A$. Let O be any $(g\alpha r)^{*-}$ -open. The O^c is $(g\alpha r)^{**}$ -closed. Therefore by assumption, $O^c \subseteq$ int (A) which implies $cl(A^c) \subseteq O$. Hence A is $(g\alpha r)^{**}$ -open.

Theorem 3.19:

If int(A) \subseteq B \subseteq A and A is $(g\alpha r)^{**}$ -open then B is $(g\alpha r)^{**}$ -open.

Proof:

int(A) \subseteq B \subseteq A implies A^c \subseteq B^c \subseteq cl(A^c). Since A is $(g\alpha r)^{**}$ -open, A^c $(g\alpha r)^{**}$ -closed. Therefore by theorem 3.17, B^c is $(g\alpha r)^{**}$ -closed. Hence B is $(g\alpha r)^{**}$ -open.

REFERENCES

- [1] Ahmad Al-Omari, Mohd. Salmi Md. Noorani, On generalized b-closed sets, Bull. Malays. Math. Sci. Soc., 32, NO. 1 (2009), 19-30.
- [2] J. Dontchev. On generalizing semi pre open sets, Mem. Fac. Sci. Kochiser.a. Math., 16(1995), 35-48
- [3] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, India J.Pure Appl., 28 (1997), 351-36.
- [4] N.Levine, Generalized closed sets in topology, Tend Circ., Mat. Palermo, 19, No. 2(1970), 89-96.
- [5] H. Maki, R. Devi, K. Balachandran, associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ., Ser A:Math., 15 (1994),51-63.
- [6] H. Maki, R. Devi, K. Balachandran, Generalized closeds sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- [7] K. Mariappa, S. Sekar, On regular generalized b-closed set, Int. Journal of Math. Anal-ysis., 7, No. 13 (2013), 613-624.800 S. Sekar, G.Kumar.
- [8] Meena K and Ramachandran S.2019, On (gαr)*closed Sets In Topological Spaces. Int J Recent Sci Res. 10(11), pp.36068-36070.
- [9] M.K.R.S. Veerakumar, Betweeen closed sets and g-closed sets, Mem. Fac. Sci. Kochi.Univ., Ser. A: Math.,21(2000), 1-19.
- [10] S. Sekar §, G. Kumar International Journal of pure and applied Mathematics Volume 108 No. 4 2016, 791-800 on $g\alpha r$ Closed set In topological spaces.
- [11] Stone. M Application of theory of Boolean rings to general topology, Trans. Amer. Math.soc., 41, (1973),374-481.