Algebra of α - Fuzzy Subgroup and Lagrange’s Theorem

R.K. Verma1, Rakesh Tiwari2, Pratik Singh Thakur3

1Department of Mathematics, Govt. Chandulal Chandrakar Arts and Science College, Patan, Dist.- Durg (C.G.) India 491111,
2,3Department of Mathematics, Govt. V.Y.T. PG Autonomous College, Durg (C.G.) India 491001.

Abstract
In this paper, we use the concept of α — fuzzy subgroup and introduces Lagrange’s theorem for the α — fuzzy subgroup, order of an element in the α — fuzzy subgroup, and order of the α — fuzzy subgroup. Defined the intersection of α — fuzzy subgroups on different domain.

MSC(2020) : Primary 20N25; Secondary 03E72.

Keywords : fuzzy subgroup, fuzzy sets, α — fuzzy subgroup, fuzzy Lagrange’s theorem.

1 Introduction
L.A. Zadeh used the term fuzzy set in 1965[8]. He introduced basic set operations, namely the union of fuzzy sets, the intersection of fuzzy sets, and the complement of a fuzzy set. In 1971[6], Rosenfeld used the concept of the fuzzy set given by Zadeh to develop the theory of fuzzy group and basic properties of a fuzzy group. In 1979[2], Anthony and Sherwood redefined the concept given by Rosenfeld. In 1981[4], P.S. Das proposed level fuzzy subset and level fuzzy subgroup. In 1992[3], Bhakat and Das used the concept of fuzzy subgroup and defined fuzzy cosets. In 1994[5], J. Kim and D. Kim introduced the notion of fuzzy p* subgroups and defined the order of an element in a fuzzy subgroup. In 2009[1], Abraham and Sebastian fuzzify the famous theorems of Cayley and Lagrange in group theory differently. In 2013[7], Sharma defined the α — fuzzy subgroup.

We defined the order of the α — fuzzy subgroup by using the order of fuzzy subgroup given by J.kim in [5]. Lagrange’s theorem for α — fuzzy subgroup is defined using concept of Abraham and Sebastian in [1].

2 Preliminaries

Definition 2.1 (fuzzy set) [8] Let X be any set, then a fuzzy set \tilde{A} of X is a set of ordered pairs:

$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) : x \in X\}$

here $\mu_{\tilde{A}} : X \rightarrow [0,1]$ is called membership function.

Let \tilde{A} and \tilde{B} be two fuzzy subsets of a set X. Then the following expression are defined in

1. $\tilde{A} \subseteq \tilde{B}$ if and only if $\mu_{\tilde{A}}(x) \leq \mu_{\tilde{B}}(x), \forall \ x \in X$
2. $\tilde{A} = \tilde{B}$ if and only if $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$
3. The complement of the fuzzy set \tilde{A} is \tilde{A}^c and is defined as $\mu_{\tilde{A}^c}(x) = 1 - \mu_{\tilde{A}}(x)$
4. $\mu_{\tilde{A} \cap \tilde{B}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall \ x \in X$
5. $\mu_{\tilde{A} \cup \tilde{B}}(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall \ x \in X$
Definition 2.2 (fuzzy subgroup) [6] Let G be any group. \tilde{A} is a fuzzy set of G, then \tilde{A} is called fuzzy subgroup (FSG) of G if

1. $\mu_{\tilde{A}}(xy) \geq \min(\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)) \quad \forall \ x, y \in G$
2. $\mu_{\tilde{A}}(x^{-1}) \geq \mu_{\tilde{A}}(x), \forall \ x \in G$

Proposition 2.3 A fuzzy set \tilde{A} of a group G is a FSG if and only if $\mu_{\tilde{A}}(xy^{-1}) \geq \min(\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)) \forall \ x, y \in G$

Proposition 2.4 If \tilde{A} is a FSG of group G, then

1. $\mu_{\tilde{A}}(x) \leq \mu_{\tilde{A}}(e), \forall \ x \in G$, where e is the identity element of group G
2. $\mu_{\tilde{A}}(xy^{-1}) = \mu_{\tilde{A}}(e) \Rightarrow \mu_{\tilde{A}}(x) = \mu_{\tilde{A}}(y), \forall \ x, y \in G$

Definition 2.5 (left fuzzy coset) [3] Let \tilde{A} be a FSG of group G. For any $x \in G$, the fuzzy set $x\tilde{A}$ defined by $\mu_{x\tilde{A}}(y) = \mu_{\tilde{A}}(x^{-1}y) \quad \forall \ y \in G$ is called a left fuzzy coset of \tilde{A}.

Definition 2.6 (right fuzzy coset) [3] Let \tilde{A} be a FSG of group G. For any $x \in G$, the fuzzy set $\tilde{A}x$ defined by $\mu_{\tilde{A}x}(y) = \mu_{\tilde{A}}(yx^{-1}) \quad \forall \ y \in G$ is called a right fuzzy coset of \tilde{A}.

Definition 2.7 (fuzzy normal subgroup) [6] If \tilde{A} is a FSG of group G, then \tilde{A} is called a fuzzy normal subgroup (FNSG) of G if $\mu_{\tilde{A}}(xyx^{-1}) \geq \mu_{\tilde{A}}(y) \quad \forall \ x, y \in G$

Definition 2.8 (t-level subset) [4] Let \tilde{A} be a fuzzy set of a group G. For $t \in [0,1]$, the t-level subset of \tilde{A} is the set $t_{\tilde{A}} = \{x \in G : \mu_{\tilde{A}}(x) \geq t\}$.

Definition 2.9 (t-level subgroup) [4] Let \tilde{A} be a FSG of group G. For $t \in [0,1]$ with $t \leq \mu_{\tilde{A}}(e)$ the subgroup $t_{\tilde{A}}$ of G is called t-level subgroup of \tilde{A}.

Definition 2.10 (α-Fuzzy Subset) Let A be a fuzzy subset of a group G. Let $\alpha \in [0,1]$. Then the fuzzy set \tilde{A}^α of G is called the α-fuzzy subset of G (with respect to fuzzy set \tilde{A}) and is defined as $\mu_{\tilde{A}^\alpha}(x) = \min(\mu_{\tilde{A}}(x), \alpha), \forall \ x \in G$

Definition 2.11 (α-Fuzzy Subgroup) If \tilde{A} is an α-fuzzy subset of group G. \tilde{A} is called α-fuzzy subgroup (FSG) of G if \tilde{A}^α is a fuzzy subgroup of G. i.e. if the following conditions hold

1. $\mu_{\tilde{A}^\alpha}(xy) \geq \min(\mu_{\tilde{A}^\alpha}(x), \mu_{\tilde{A}^\alpha}(y)), \forall \ x, y \in G$
2. $\mu_{\tilde{A}^\alpha}(x^{-1}) = \mu_{\tilde{A}^\alpha}(x), \forall \ x \in G$.

Definition 2.12 (fuzzy order of an element) [5] Let \tilde{A} be a fuzzy subgroup of a group G. Given $x \in G$, the smallest positive integer n such that $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e)$ is called the fuzzy order of x with respect to \tilde{A}. If no such n exists, x is said to have infinite fuzzy order with respect to \tilde{A}. The fuzzy order of x with respect to \tilde{A} is denoted by $FO_{\tilde{A}}(x)$.

Definition 2.13 (order of a fuzzy subgroup) [5] Let \tilde{A} be a fuzzy subgroup of a group G. The least positive integer n such that $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e), \forall \ x \in G$, is called the order of \tilde{A} and denoted by $O(\tilde{A})$. If no such n exists, \tilde{A} is said to have an infinite order.

Theorem 2.14 (Lagrange's theorem for fuzzy subgroups) [1] Let H be a subgroup of a group G and let n be the order of a fuzzy subgroup \tilde{A} of G. then $O(\tilde{A}|_H) \mid O(\tilde{A})$.
Proof. $O(\tilde{A}) = n$. Then $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e)$, $\forall \ x \in G$.
Now $\mu_{\tilde{A}|H}(x) = \mu_{\tilde{A}}(x)$, $\forall \ x \in H$
$\Rightarrow O(\tilde{A}|H) \leq O(\tilde{A})$.
If $O(\tilde{A}|H) = n$, then $O(\tilde{A}|H)|O(\tilde{A})$.
If $O(\tilde{A}|H) < n$, let $O(\tilde{A}|H) = m$. Then $\mu_{\tilde{A}|H}(x^m) = \mu_{\tilde{A}|H}(e)$, $\forall \ x \in H$
$\Rightarrow m|n$, i.e. $O(\mu_{\tilde{A}|H})|O(\mu_{\tilde{A}})$.

3 Lagrange’s theorem for α – fuzzy subgroups

Definition 3.1 (α – fuzzy order of an element) Let \tilde{A} be a fuzzy subset of a group G. Let $\alpha \in [0,1]$ such that \tilde{A}^α is a α – FSG of G with respect to \tilde{A}. Given $x \in G$, the smallest positive integer n such that $\mu_{\tilde{A}^\alpha}(x^n) = \mu_{\tilde{A}^\alpha}(e)$ is called the α – fuzzy order of x with respect to \tilde{A}. If no such n exists, x is said to have infinite α – fuzzy order with respect to \tilde{A}. The α – fuzzy order of x with respect to \tilde{A} is denoted by $FO_{\tilde{A}}(x)$.

Definition 3.2 (order of a α – fuzzy subgroup) Let \tilde{A} be a fuzzy subset of a group G. Let $\alpha \in [0,1]$ such that \tilde{A}^α is a α – FSG of G with respect to \tilde{A}. The least positive integer n such that $\mu_{\tilde{A}^\alpha}(x^n) = \mu_{\tilde{A}^\alpha}(e)$, $\forall \ x \in G$, is called the order of \tilde{A}^α with respect to \tilde{A} and denoted by $O(\tilde{A}^\alpha)$. If no such n exists, \tilde{A}^α is said to have an infinite order.

Some Results:
1. If \tilde{A} be a α – FSG of a group G and H be a subgroup of G, then $\tilde{A}|H$ is a α – FSG of H.
2. If \tilde{A} is a FSG of a group G, then \tilde{A} is also a α – FSG of G.
3. Intersection of two α – FSG’s of a group G is also α – FSG of G.
4. If \tilde{A} and \tilde{B} be two fuzzy subset of X. Then $(\tilde{A} \cap \tilde{B})^\alpha = \tilde{A}^\alpha \cap \tilde{B}^\alpha$

Theorem 3.3 Let H be a subgroup of a group G and let n be the order of a α – fuzzy subgroup \tilde{A} of G. then $O(\tilde{A}^\alpha|H)|O(\tilde{A}^\alpha)$.

Proof. $O(\tilde{A}^\alpha) = n$. Then $\mu_{\tilde{A}^\alpha}(x^n) = \mu_{\tilde{A}^\alpha}(e)$, $\forall \ x \in G$.
Now $\mu_{\tilde{A}^\alpha|H}(x) = \mu_{\tilde{A}^\alpha}(x)$, $\forall \ x \in H$
$\Rightarrow O(\tilde{A}^\alpha|H) \leq O(\tilde{A}^\alpha)$.
If $O(\tilde{A}^\alpha|H) = n$, then $O(\tilde{A}^\alpha|H)|O(\tilde{A})$.
If $O(\tilde{A}^\alpha|H) < n$, let $O(\tilde{A}^\alpha|H) = m$. Then $\mu_{\tilde{A}^\alpha|H}(x^m) = \mu_{\tilde{A}^\alpha|H}(e)$, $\forall \ x \in H$
$\Rightarrow m|n$, i.e. $O(\mu_{\tilde{A}^\alpha|H})|O(\mu_{\tilde{A}^\alpha})$.

4 some results on α fuzzy subgroup

Theorem 4.1 Let \tilde{A} be a FSG of a group G. For $\alpha \in [0,1]$ with $\mu_{\tilde{A}}(e) \leq \alpha$, $\tilde{A}^\alpha = \tilde{A}$

Proof. For $\alpha \in [0,1]$ and $\mu_{\tilde{A}}(e) \leq \alpha$. Since \tilde{A} is a FSG, therefore $\mu_{\tilde{A}}(xy) \geq \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)\}$ and
$\mu_{\tilde{A}}(x^{-1}) \geq \mu_{\tilde{A}}(x)$ for all $x, y \in G$.
Now for any $x \in G$
$\mu_{\tilde{A}}(xx^{-1}) \geq \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(x^{-1})\}$
$\Rightarrow \mu_{\tilde{A}}(e) \geq \mu_{\tilde{A}}(x)$
Thus
\[
\mu_{\tilde{A}}(x) \leq \mu_{\tilde{A}}(e) \quad \forall \ x \in G
\]

(1)

\[
\Rightarrow \mu_{\tilde{A}}(x) \leq \alpha \quad \forall \ x \in G
\]

(2)

Now for any \(x \in G \)

\[
\mu_{\tilde{A}^\alpha}(x) = \min\{\mu_{\tilde{A}}(x), \alpha\}
\]

(3)

\[
\Rightarrow \mu_{\tilde{A}^\alpha}(x) = \mu_{\tilde{A}}(x)
\]

therefore \(\mu_{\tilde{A}^\alpha}(x) = \mu_{\tilde{A}}(x) \quad \forall \ x \in G \). Thus

\[
\tilde{A}^\alpha = \tilde{A}
\]

Corollary 4.2 Let \(\tilde{A} \) be a FSG of a group \(G \). For \(\alpha \in [0,1] \) with \(\mu_{\tilde{A}}(e) \leq \alpha \), \(O(\tilde{A}^\alpha) = O(\tilde{A}) \).

Corollary 4.3 Let \(\tilde{A} \) be a FSG of a group \(G \). For any \(x \in G \) and \(\alpha \in [0,1] \) with \(\mu_{\tilde{A}}(e) \leq \alpha \), \(FO_{\tilde{A}^\alpha}(x) = FO_{\tilde{A}}(x) \).

5 \(\alpha \) — fuzzy subgroup on different domain

Definition 5.1 Let \(\tilde{A} \) and \(\tilde{B} \) are fuzzy set of any set \(X \) and \(Y \) respectively. If \(X \cap Y \neq \phi \), then \(\tilde{A} \cap \tilde{B} \) is a fuzzy set of \(X \cap Y \).

Here \(\mu_{\tilde{A} \cap \tilde{B}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall \ x \in X \cap Y \)

Theorem 5.2 Let \(G \) be any group. \(H \) and \(K \) are subgroups of \(G \) such that \(H \cap K \neq 0 \). If for \(\alpha \in [0,1] \), \(\tilde{A} \) and \(\tilde{B} \) are the \(\alpha \) — fuzzy subgroup of \(H \) and \(K \) respectively, then \(\tilde{A} \cap \tilde{B} \) is a \(\alpha \) — fuzzy subgroup of \(X \cap Y \).

Proof. For any \(x, y \in X \cap Y \)

\[
\mu_{(\tilde{A} \cap \tilde{B})^\alpha}(xy) \geq \min\{\mu_{(\tilde{A} \cap \tilde{B})^\alpha}(x), \mu_{(\tilde{A} \cap \tilde{B})^\alpha}(y)\}
\]

(4)

and

\[
\mu_{(\tilde{A} \cap \tilde{B})^\alpha}(x^{-1}) \geq \mu_{(\tilde{A} \cap \tilde{B})^\alpha}(x)
\]

(5)

Hence \(\tilde{A} \cap \tilde{B} \) is a \(\alpha \) — FSG of \(H \cap K \).

6 Conclusion

In this paper, we have introduced the concept of order of the \(\alpha \)-fuzzy subgroup, and Lagrange’s theorem for \(\alpha \) — fuzzy subgroup. Concept of the intersection of two \(\alpha \) — fuzzy subgroup defined on different domain is discussed.

Further work is based on the intersection of \(\alpha \) — fuzzy set in different domain.

References

