ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Differentiable Functions on Tensor Product of Locally Convex Spaces

Chandra Shekhar Prasad, Md Jahid*

Department of Mathematics, BRABU, Muzaffarpur

ABSTRACT

Due to Grothendieck, the linear topological dual of the spaces of bounded operators L(X,Y), equipped with the topology τ of uniform convergence on compact subsets of the space X. The continuous linear functional on tensor product space $L((X,Y),\tau)$ consists of all maps θ of the form

 $\theta(T) = \sum_{i=1}^{\infty} (y_i^*, Tx_i)$, where $x_i \in X, y_i^* \in Y^*$ Satisfies the conditions $\sum_{i=1}^{\infty} ||x_i|| \cdot ||y_i^*|| < \infty$.

On tensor product $E \otimes F$ of LCTVS X and Y; π -topology is the strongest locally convex topology for which the canonical bilinear mapping $(x, y) \rightsquigarrow x \otimes y$ of $E \times F$ into $E \otimes F$ is continuous. The space $E \otimes F$ with τ will be denoted by $E \otimes_{\pi} F$, which is Hausdorff iff E and F both are Hausdorff. For LCTVS E, the space $\mathcal{L}^{m}(X; E)$ of m-times differentiable functions $f: X \to E$; X is either a locally compact topological space(m = 0) or an open subset of \mathbb{R}^n , and then m can be any integer. When X is an LCS, $\mathcal{L}^0(X; E)$ is Banach space and then $\mathcal{L}^0(X) \otimes Y$ is dense in $\mathcal{L}^0(X; E)$. 10

Keywords: Compact sets; Dense; Fréchet space ; Norms etc.

INTRODUCTION

Let f be a mapping of the open set X of \mathbb{R}^n into the TVS E. Then f is **differentiable** at a

point x^0 of X if there are n vectors e_1, e_2, \dots, e_n in E, such that

$$|x - x^{0}|^{-1} \{ f(x) - f(x^{0}) - \sum_{j=1}^{n} (x_{j} - x_{j}^{0}) e_{j} \}$$

converges to zero in E as the number $|x - x^0| > 0$ converges to zero. The vectors e_i are then called the first partial derivatives of f at the point x^0 . (Francois Treves; 1967). The collection of all m-times differentiable functions $f: X \to E$, is also a vector space which is denoted by $\mathcal{L}^{m}(X; E)$. Given an arbitrary compact subset K of X, $\mathcal{L}_{c}^{m}(X; E)$ is the subspace of $\mathcal{L}^{m}(X; E)$ consisting of the functions with support contained in K, provided with the topology induced by $\mathcal{L}^{m}(X; E)$.

A tensor product of two vector spaces E and F, denoted by $E \otimes F$, is a pair (M, θ) where M is another vector space and θ is a bilinear mapping $\theta: E \times F \to M$ which satisfied the following conditions:

- I. The θ –image of $E \times F$ spans the whole space M.
- E and F are θ linearly disjoint. i.e., For the finite subsets of same order, II. (x_1, x_2, \dots, x_r) and (y_1, y_2, \dots, y_r) of E and F respectively; $\sum_{i=1}^r \theta(x_i, y_i) = 0$.

Then if x_1, x_2, \dots, x_r are linearly independent implies $y_1 = y_2 = \dots = y_r = 0$

And if y_1, y_2, \dots, y_r are linearly independent implies $x_1 = x_2 = \dots = x_r = 0$.

When *E* and *F* are locally convex spaces, the **projective tensor product topology** on $E \otimes F$ is the strongest locally convex topology π on $E \otimes F$ for which the bilinear map(the canonical map) $\beta: E \times F$ $\rightarrow E \otimes F$ is continuous. The locally convex space $E \otimes F$, equipped with this topology, is called the projective tensor product of E and F and denoted by $E \otimes_{\pi} F(C)$. Perez-Garcia and W. H. Schikhof; 2010).

The projective tensor product $E \bigotimes_{\pi} F$ is the completion of the tensor product space ($E \bigotimes F, \pi$). Every element $z \in E \bigotimes_{\pi} F$ admits a representation

$$z = \sum_{i=1}^{\infty} x_i \bigotimes y_i$$
 such that $\sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty$

where, without any loss of generality, $\{\|x_i\|\}_{i=1}^{\infty} \in c_0$ and $\{\|y_i\|\}_{i=1}^{\infty} \in \ell_1$ and

 $\pi(z) = \inf \{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : z = \sum_{i=1}^{\infty} x_i \bigoplus y_i \} (P. H'ajek, R.J. Smith; 2012).$

Tensor product of $\mathcal{L}^{m}(X)$ and E is denote by $\mathcal{L}^{m}(X) \otimes E$, which the subspace of $\mathcal{L}^{m}(X; E)$, consisting of the functions whose image is contained in a finite dimensional subspace of E. Let $\theta \in \mathcal{L}^{m}(X) \otimes E$, e_1, e_2, \dots, e_d be linearly independent vectors of E such that the image of θ is contained in the linear subspace of E they span. Thus we may write, for all $x \in X$, $\theta(x) = \theta_1(x)e_1 + \theta_2(x)e_2 + \dots + \theta_d(x)e_d$; where $\theta_1, \theta_2, \dots, \theta_d$ are complex-valued functions, m times continuously differentiable.

Theorem-1 If *E* is complete, so is $\mathcal{L}^{m}(X; E)$.

<u>Proof.</u> As *E* is complete, a Cauchy filter \mathcal{F} on $\mathcal{L}^{\mathbf{m}}(X; E)$. converges pointwise to a function $f: X \to E$. Since X is locally compact therefore the convergence of the filter \mathcal{F} is uniform on a neighborhood of every point because it is uniform on compact subsets of X. Thus the limit function $f: X \to E$ is continuous. This proves the result when $\mathbf{m} = 0$.

Now, let us suppose that X is an open subset of \mathbb{R}^n and that m > 0. As a matter of fact, it suffices to show that gradient of $f: X \to E$ exists, and, is a continuous function, and also, is the limit of gradient of $f: X \to E$, then, obviously, by induction on the order of differentiation easily completes the proof.

We may even suppose that we are dealing with only one variable, so as to simplify the notation. Extension to n > 1 variables will be evident. We have, then, for all $e' \in E'$, $\theta \in \mathcal{L}^m(X; E)$,

$$(\partial/\partial x_1)\langle e', \theta(x)\rangle = \langle e', \left(\frac{\partial}{\partial x_1}\right)\theta(x)\rangle.$$

Now, by the preceding argument, we know that $(\partial/\partial x_1)\mathcal{F}$ converges uniformly on the compact subsets of X, to a continuous function $f_1(say)$. i.e., to say that $(\partial/\partial x_1)\langle e', \mathcal{F} \rangle$ converges to $\langle e', f_1 \rangle$. Thus, we conclude that the complex valued continuous function $\langle e', f_1 \rangle$ is the derivative of the function $\langle e', f \rangle$ and then, we find that

$$\langle e', \frac{f(x_1+h)-f(x_1)}{h} - f_1(x_1) \rangle = \frac{1}{h} \int_{x_1}^{x_1+h} \langle e', f_1(t) - f_1(x_1) \rangle dt$$
, where $h \neq 0$.

Then, let us assume that U be a convex closed and balanced neighborhood of 0 in *E* and taking e', which is arbitrary in the polar U° of *U*. Because of the continuity of f_1 , we may find |h| so small that $f_1(t) - f_1(x_1) \in U$ for every t in the segment joining x_1 to $x_1 + h$; then the integrand, on the right-hand side, and, as a consequence, the left-hand side, have their absolute value less than and equal to 1. Which implies $h^{-1}{f(x_1 + h) - f(x_1)} \in U + f_1(x_1)$, therefore, we conclude that f_1 is the first derivative of f. Which proves the desired.

www.ijcrt.org

Proposition-1 If X is countable at infinity and E is a Fréchet space, then $\mathcal{L}^{\mathbf{m}}(X; E)$ is a Fréchet space.

<u>Proof.</u> Obviously, by the definition of the topology defined on $\mathcal{L}^{m}(X; E)$, that it is

metrizable whenever X is countable at infinity as it is a countable union of compact subsets and E is metrizable. And, then, theorem-1 completes the required proof.

Proposition-2 If X is compact and E is a Banach space, then $\mathcal{L}^{\mathbf{m}}(X; E)$, equipped with the norm defined as $f \rightsquigarrow \sup_{x \in X} ||f(x)||$, where || || being the norm on E, is a Banach space.(Francois Treves; 1967). Evident from above results.

Theorem-2 If X is a locally compact space, $\mathcal{L}_c^0(X) \otimes E$ is dense in $\mathcal{L}^0(X; E)$.

<u>Proof</u>: When m = 0, X is locally compact space.

Now, let $f \in \mathcal{L}^0(X; E)$, and p be a continuous seminorm on *E*, *K* is a compact subset of *X*. We may find a finite covering U_1, U_2, \dots, U_r of *K*, by relatively compact open subsets of *X*, such that, for each $j = 1, \dots, r$,

$$p(f(x) - f(y)) < \epsilon; \epsilon > 0$$
 and for each pair $x, y \in U_i$.

By the general property of compact sets, we can find a continuous partition of unity subordinated to the above covering, i.e., r continuous functions in X, g_j for $1 \le j \le r$; such that: (i) for each *j*, support of $g_j \subset U_j$ and (ii) $\sum_{j=1}^r g_j(x) = 1$, $\forall x \in K$. In each set U_j , taking a point x_j . Then, we have, for $x \in K$, $f(x) = \sum_{j=1}^r g_j(x)f(x)$, and, thus,

$$p(f(x) - \sum_{j=1}^r g_j(x)f(x)) \le \sum_{j=1}^r g_j(x)p(f(x) - f(x_j)) \le \epsilon.$$

since $p(f(x) - f(x_i)) \le \epsilon$ if $x \in$ support of g_i . Hence we find the proof.

On the same, we have

Theorem-3 If X is an open subset of \mathbb{R}^n , $\mathcal{L}_c^m(X) \otimes E$ is dense in $\mathcal{L}^m(X; E)$ for any positive integer m, would be positive infinite.

REFERENCES

[1]. C. Perez-Garcia and W. H. Schikhof; Tensor product and p-adic vector valued continuous functions; DGICYT, PS90-100, 1991.

[2] C. Perez-Garcia and W. H. Schikhof ; Locally Convex Spaces over Non-Archimedean Valued Fields; Cambridge University Press; ISBN 978-0-521-19243-9 Hardback, 2010 .

[3]. Francois Treves; Topological vector spaces, distributions and kernels; Academic press; ISBN 0-12-699450-1, 1967.

[4]. Gottfried Köthe; Topological vector spaces II; Springer-Verlag, New York; ISBN 0-387-90440-9, 1967.

[5] Helge Glöckne; Examples of differentiable mappings into non-locally convex spaces; Classification: 58C20 (main); 26E20, 46A16, 46G20, 2003.

[6] JOHN HORVÂTH; Topological vector spaces and distributions I;Addison-Wesley Publishing company, London; 1966.

[7] P. Hâjek, R.J. Smith; Some duality relations in the theory of tensor products; Elsevier, Expo. Math. 30 (2012) 239–249; 2012.