Differentiable Functions on Tensor Product of Locally Convex Spaces

Chandra Shekhar Prasad, Md Jahid ${ }^{*}$
Department of Mathematics, BRABU, Muzaffarpur

Abstract

Due to Grothendieck, the linear topological duat of the spaces of bounded operators $L(X, Y)$, equipped with the topology τ of uniform convergence on compact subsets of the space X. The continuous linear functional on tensor product space $L((X, Y), \tau)$ consists of all maps θ of the form $\theta(T)=\sum_{i=1}^{\infty}\left(y_{i}{ }^{*}, T x_{i}\right)$, where $x_{i} \in X, y_{i}{ }^{*} \in Y^{*}$ Satisfies the conditions $\sum_{i}^{\infty}\left\|x_{i}\right\| .\left\|y_{i}{ }^{*}\right\| \leq \infty$. On tensor product $E \otimes F$ of LCTVS X and $Y ; \pi$-topology is the strongest locally convex topology for which the canonical bilinear mapping $(x, y) w x \otimes y$ of $E \times F$ into $E \otimes F$ is continuous. The space $E \otimes F$ with τ will be denoted by $E \otimes_{\pi} F$, which is Hausdorff iff E and F both are Hausdorff. For LCTVS E, the space $\mathcal{L}^{\mathrm{m}}(X ; E)$ of m-times differentiable functions $f: X \rightarrow E ; X$ is either a locally compact topological space $(\mathrm{m}=0)$ or an open subset of R^{n}, and then m can be any integer. When X is an LCS, $\mathcal{L}^{0}(X ; E)$ is Banach space and then $\mathcal{L}^{0}(X) \otimes Y$ is dense in $\mathcal{L}^{0}(X ; E)$.

Keywords: Compact sets; Dense; Fréchet space ; Norms etc.

INTRODUCTION

Let f be a mapping of the open set X of R^{n} into the TVS E. Then f is differentiable at a point x^{0} of X if there are n vectors $e_{1}, e_{2}, \ldots \ldots \ldots e_{n}$ in E, such that

$$
\left|x-x^{0}\right|^{-1}\left\{f(x)-f\left(x^{0}\right)-\sum_{j=1}^{n}\left(x_{j}-x_{j}^{0}\right) e_{j}\right\}
$$

converges to zero in E as the number $\left|x-x^{0}\right|>0$ converges to zero. The vectors e_{j} are then called the first partial derivatives of f at the point x^{0}.(Francois Treves; 1967). The collection of all m-times differentiable functions $f: X \rightarrow E$, is also a vector space which is denoted by $\mathcal{L}^{\mathrm{m}}(X ; E)$. Given an arbitrary compact subset K of $X, \mathcal{L}_{\mathrm{c}}^{\mathrm{m}}(X ; E)$ is the subspace of $\mathcal{L}^{\mathrm{m}}(X ; E)$ consisting of the functions with support contained in K , provided with the topology induced by $\mathcal{L}^{\mathrm{m}}(X ; E)$.

A tensor product of two vector spaces E and F, denoted by $E \otimes F$, is a pair (M, θ) where M is another vector space and θ is a bilinear mapping $\theta: E \times F \rightarrow M$ which satisfied the following conditions:
I. The θ-image of $E \times F$ spans the whole space M.
II. E and F are θ - linearly disjoint. i.e., For the finite subsets of same order, $\left(x_{1}, x_{2}, \ldots \ldots x_{r}\right)$ and $\left(y_{1}, y_{2}, \ldots \ldots y_{r}\right)$ of E and F respectively; $\sum_{i=1}^{r} \theta\left(x_{i}, y_{i}\right)=0$.

Then if $x_{1}, x_{2}, \ldots \ldots \ldots x_{r}$ are linearly independent implies $y_{1}=y_{2}=\ldots \ldots \ldots=y_{r}=0$
And if $y_{1}, y_{2}, \ldots \ldots \ldots y_{r}$ are linearly independent implies $x_{1}=x_{2}=\ldots \ldots \ldots=x_{r}=0$.
When E and F are locally convex spaces, the projective tensor product topology on $E \otimes F$ is the strongest locally convex topology π on $E \otimes F$ for which the bilinear map(the canonical map) $\beta: E \times F$ $\rightarrow E \otimes F$ is continuous. The locally convex space $E \otimes F$, equipped with this topology, is called the projective tensor product of E and F and denoted by $\mathrm{E} \otimes_{\pi} \mathrm{F}$ (C. Perez-Garcia and W. H. Schikhof; 2010).

The projective tensor product $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is the completion of the tensor product space $(E \otimes F, \pi)$. Every element $\mathrm{z} \in \mathrm{E} \otimes_{\pi} \mathrm{F}$ admits a representation

$$
z=\sum_{i=1}^{\infty} x_{i} \otimes y_{i} \text { such that } \sum_{i=1}^{\infty}\left\|x_{i}\right\|\left\|y_{i}\right\|<\infty
$$

where, without any loss of generality, $\left\{\left\|x_{i}\right\|\right\}_{i=1}^{\infty} \in c_{0}$ and $\left\{\left\|y_{i}\right\|\right\}_{i=1}^{\infty} \in \ell_{1}$ and
$\pi(\mathrm{z})=\inf \left\{\sum_{i=1}^{\infty}\left\|x_{i}\right\|\left\|y_{i}\right\|: z=\sum_{i=1}^{\infty} x_{i} \oplus y_{i}\right\}$ (P. H'ajek, R.J. Smith; 2012).
Tensor product of $\mathcal{L}^{\mathrm{m}}(X)$ and E is denote by $\mathcal{L}^{\mathrm{m}}(X) \otimes E$, which the subspace of $\mathcal{L}^{\mathrm{m}}(X ; E)$, consisting of the functions whose image is contained in a finite dimensional subspace of E . Let $\theta \in \mathcal{L}^{\mathrm{m}}(X) \otimes E$, $e_{1}, e_{2}, \ldots \ldots, e_{d}$ be linearly independent vectors of E such that the image of θ is contained in the linear subspace of E they span. Thus we may write, for all $x \in X, \theta(x)=\theta_{1}(x) e_{1}+\theta_{2}(x) e_{2}+\cdots \ldots \ldots+$ $\theta_{d}(x) e_{d} ;$ where $\theta_{1}, \theta_{2}, \ldots \ldots, \theta_{d}$ are complex-valued functions, m times continuously differentiable.

Theorem-1 If \boldsymbol{E} is complete, so is $\mathcal{L}^{\mathrm{m}}(\boldsymbol{X} ; \boldsymbol{E})$.

Proof. As E is complete, a Cauchy filter \mathcal{F} on $\mathcal{L}^{\mathrm{m}}(X ; E)$. converges pointwise to a function $f: X \rightarrow E$. Since X is locally compact therefore the convergence of the filter \mathcal{F} is uniform on a neighborhood of every point because it is uniform on compact subsets of X. Thus the limit function $f: X \rightarrow E$ is continuous. This proves the result when $\mathrm{m}=0$.

Now, let us suppose that X is an open subset of R^{n} and that $m>0$. As a matter of fact, it suffices to show that gradient of $f: X \rightarrow E$ exists, and, is a continuous function, and also, is the limit of gradient of $f: X \rightarrow E$, then, obviously, by induction on the order of differentiation easily completes the proof.

We may even suppose that we are dealing with only one variable, so as to simplify the notation. Extension to $n>1$ variables will be evident. We have, then, for all $e^{\prime} \in E^{\prime}, \theta \in \mathcal{L}^{\mathrm{m}}(X ; E)$,

$$
\left(\partial / \partial x_{1}\right)\left\langle e^{\prime}, \theta(x)\right\rangle=\left\langle\boldsymbol{e}^{\prime},\left(\frac{\partial}{\partial x_{1}}\right) \theta(x)\right\rangle
$$

Now, by the preceding argument, we know that $\left(\partial / \partial x_{1}\right) \mathcal{F}$ converges uniformly on the compact subsets of X , to a continuous function f_{1} (say). i.e., to say that $\left(\partial / \partial x_{1}\right)\left\langle e^{\prime}, \mathcal{F}\right\rangle$ converges to $\left\langle e^{\prime}, f_{1}\right\rangle$. Thus, we conclude that the complex valued continuous function $\left\langle e^{\prime}, f_{1}\right\rangle$ is the derivative of the function $\left\langle e^{\prime}, f\right\rangle$ and then, we find that
$\left\langle e^{\prime}, \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}-f_{1}\left(x_{1}\right)\right\rangle=\frac{1}{h} \int_{x_{1}}^{x_{1}+h}\left\langle e^{\prime}, f_{1}(t)-f_{1}\left(x_{1}\right)\right\rangle d t$, where $h \neq 0$.
Then, let us assume that U be a convex closed and balanced neighborhood of 0 in E and taking e', which is arbitrary in the polar U° of U. Because of the continuity of f_{1}, we may find $|h|$ so small that $f_{1}(t)$ $f_{1}\left(x_{1}\right) \in U$ for every t in the segment joining x_{1} to $x_{1}+h$; then the integrand, on the right-hand side, and, as a consequence, the left-hand side, have their absolute value less than and equal to 1 . Which implies $h^{-1}\left\{f\left(x_{1}+h\right)-f\left(x_{1}\right)\right\} \in U+f_{1}\left(x_{1}\right)$, therefore, we conclude that f_{1} is the first derivative of f. Which proves the desired.

Proposition-1 If X is countable at infinity and E is a Fréchet space, then $\mathcal{L}^{\mathbf{m}}(X ; E)$ is a Fréchet space.

Proof. Obviously, by the definition of the topology defined on $\mathcal{L}^{\mathrm{m}}(X ; E)$, that it is
metrizable whenever X is countable at infinity as it is a countable union of compact subsets and E is metrizable. And, then, theorem-1 completes the required proof.

Proposition-2 If X is compact and E is a Banach space, then $\mathcal{L}^{\mathbf{m}}(X ; E)$, equipped with the norm defined as $\boldsymbol{f} \rightarrow \sup _{x \in X}\|f(x)\|$, where $\|\|$ being the norm on E, is a Banach space.(Francois Treves; 1967). Evident from above results.

Theorem-2 If X is a locally compact space, $\mathcal{L}_{c}^{\mathbf{0}}(X) \otimes E$ is dense in $\mathcal{L}^{\mathbf{0}}(X ; E)$.
Proof : When $m=0, X$ is locally compact space.
Now, let $f \in \mathcal{L}^{0}(X ; E)$, and p be a continuous seminorm on E, K is a compact subset of X. We may find a finite covering $U_{1}, U_{2}, \ldots \ldots, U_{r}$ of K, by relatively compact open subsets of X, such that, for each $j=1$, ..., r,

$$
p(f(x)-f(y))<\epsilon ; \epsilon>0 \text { and for each pair } x, y \in U_{j}
$$

By the general property of compact sets, we can find a continuous partition of unity subordinated to the above covering, i.e., r continuous functions in X, g_{j} for $1 \leq j \leq r$; such that: (i) for each j, support of $g_{j} \subset U_{j}$ and (ii) $\sum_{j=1}^{r} g_{j}(x)=1, \forall x \in K$. In each set U_{j}, taking a point x_{j}. Then, we have, for $x \in$ $K, f(x)=\sum_{j=1}^{r} g_{j}(x) f(x)$, and, thus,

$$
\mathrm{p}\left(f(x)-\sum_{j=1}^{r} g_{j}(x) f(x)\right) \leq \sum_{j=1}^{r} g_{j}(x) p\left(f(x)-f\left(x_{j}\right)\right) \leq \epsilon .
$$

since $p\left(f(x)-f\left(x_{j}\right)\right) \leq \epsilon$ if $x \in$ support of g_{j}. Hence we find the proof.
On the same, we have
Theorem-3 If X is an open subset of $R^{n}, \mathcal{L}_{c}^{m}(X) \otimes E$ is dense in $\mathcal{L}^{\mathbf{m}}(X ; E)$ for any positive integer m, would be positive infinite.

REFERENCES

[1]. C. Perez-Garcia and W. H. Schikhof; Tensor product and p-adic vector valued continuous functions; DGICYT, PS90-100, 1991.
[2] C. Perez-Garcia and W. H. Schikhof ; Locally Convex Spaces over Non-Archimedean Valued Fields; Cambridge University Press; ISBN 978-0-521-19243-9 Hardback, 2010 .
[3]. Francois Treves; Topological vector spaces, distributions and kernels; Academic press; ISBN 0-12-699450-1, 1967.
[4]. Gottfried Köthe; Topological vector spaces II; Springer-Verlag, New York; ISBN 0-387-90440-9, 1967.
[5] Helge Glöckne; Examples of differentiable mappings into non-locally convex spaces; Classification: 58C20 (main); 26E20, 46A16, 46G20, 2003.
[6] JOHN HORVÂTH; Topological vector spaces and distributions I;Addison-Wesley Publishing company, London; 1966.
[7] P. Hâjek, R.J. Smith; Some duality relations in the theory of tensor products;Elsevier, Expo. Math. 30 (2012) 239-249; 2012.

