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ABSTRACT

Disaster management platforms like emergency services
offer important information to help respond to disasters.
Machine learning could help identify this information.
Using social media data for emergency response has
challenges like reliability, performance measurement,
deception, attention focus, and turning observations into
usable information. During the Haiti earthquake, many
technical volunteers tried to help by sending mapping
and translation services via text messages. However, the
systems couldn't handle the high volume of information.
Despite good intentions, organizations weren't prepared
to handle data from outside their networks. They lacked
technical staff and tools to use the data effectively. To
solve this, we propose using a domain adaptation
approach, which learns from available data with labels.
Our approach uses the Linear SVC Algorithm with Self-
Training. Experimental results show that our method
can identify emergency messages relevant to disasters.

1. INTRODUCTION

Natural disasters are unavoidable events that have a
significant impact on the economy, environment, and
human lives. They result in the collapse of buildings, the
spread of diseases, and can devastate entire nations. Events
like tsunamis, earthquakes, and forest fires can cause
widespread destruction. For instance, earthquakes can lead
to the collapse of millions of buildings due to seismic
activity.

Since the 1990s, various machine learning methods have
been used for predicting wildfires. A recent study in Italy
utilized the random forest technique for mapping wildfire
susceptibility. Floods, being one of the most damaging
natural disasters, cause destruction to properties, human
lives, and infrastructure. To predict flood susceptibility, a
combination of machine learning techniques including
random forest (RF), random subspace (RS), and support
vector machine (SVM) was used.

With the rapid growth of the population, there is an
increased demand for land, leading to disturbances in the

ecosystem, which in turn contribute to global warming and the
rise in natural disasters. This particularly affects
underdeveloped countries, where populations cannot afford the
damages caused by disasters to their infrastructure.

After disasters, humans often find themselves in dire situations,
with rescue operations hampered by geographical factors and
victims often left unidentified. Disasters like forest fires spread
rapidly in dense areas, making firefighting challenging. Hence,
developing strategies to predict such circumstances is crucial
for preventing disasters. As technology advances, aviation
systems are incorporating smart technologies to develop
unmanned aerial vehicles (UAVS) equipped with cameras.
These UAVs can reach remote areas to assess the impact of
disasters on human life, infrastructure, and transmission lines
by capturing images and videos.

Problem statement

Temporally, the above problems arise at the stage when

emergency responders and organizations begin engaging their
organizational mechanisms to respond to the crises in question
(Munro, 2011). For decades, these organizations have
operated with a centralized command structure, standard
operating procedures, and internal vetting standards to
ascertain appropriate responses to emergencies. While not
optimized to current expectations of speed, efficiency and
knowledge, these mechanisms have been successful at
bringing rescue, response and recovery to millions.
1.1 Objective

Towards optimizing current organizational mechanisms in
terms of speed, efficiency and knowledge, machine
learning algorithms have been used to help responders sift
through the big crisis data, and prioritize information that
may be useful for response and relief.

2. SYSTEM ANALYSIS

2.1 Existing System

During the Paris attacks in November 2015, eyewitnesses,
or friends of eyewitnesses, shared information about
gunfire and dangerous places through Twitter, to alert
people within minutes after attacks in different places.
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Parisians also launched the hashtag #PorteOuverte
(meaning “open door”) to offer, through Twitter, safety
and refuge to those affected by the attacks.

Therefore, microblogging data from Twitter like
platforms are seen to have intrinsic value for both
responder organizations and victims, due to their
growing ubiquity, communications rapidity, and cross-
platform accessibility.

a) Disadvantages of Existing System

e One problem became apparent during the
earthquake in Haiti when thousands of
technical volunteers from around the world
suddenly attempted to provide
responders with mapping capabilities,
translation services, people and resource
allocation, all via SMS at a distance.

o Despite the good will of field staff, their
institutions' policies and procedures were
never designed to incorporate data from
outside their networks, especially at such
an overwhelming flow. In addition, the
organizations did not have the technical
staff, or the analytical tools, to turn the flow
of data into actionable knowledge.

2. Proposed System

We propose to use a domain adaptation approach,
which learns classifiers from available dataset, with
labeled data. Our approach uses the Linear SVC
Algorithm, together with an Self-Training strategy.
Experimental results on the task of identifying
emergency messages classification relevant to a
disaster of interest show that the domain adaptation
classifiers.
SYSTEM DESIGN

a. Systemarchitecture

The automatic classification of tweets begins with
the manual classification of a dataset which serves
as the ground truth for evaluating the performance
of two machine classifying algorithms, Naive Bayes
(NB) and Support Vector Machine (SVM). The
following sub-sections describe the dataset and the
approach used in the study.

b. Data Source

Habagat hit the Philippine's capital Manila and its
neighboring provinces last August 1-8, 2012. The
monsoon brought about eight days of torrential rain and
thunderstorms which caused flooding in several areas
and consequently caused massive damages and loss of
properties and lives. At the onset of the Habagat until its
aftermath, subscribers of Twitter used this social
medium to send relevant or personal messages to their
intended recipients. A
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sample of Habagat tweets were collected by the
researchers of Ateneo de Manila University using the
Twitter API. The sample has a total of 612,622
tweets, of which 373,771 are unique tweets and
238,851 are retweets. Unique tweets are the original
messages that are sent by the author of a tweet which
can be viewed by his or her followers and followees.
Retweets on the other hand are messages received by a
subscriber and are forwarded to another user or set of
users.

¢. Manual Classification

From the collected Habagat tweets, a sample of 4,000
tweets was randomly selected. Annotators initially
classified the randomly selected tweets as to whether
they are encoded in English, Tagalog, combination of
English-Tagalog or other languages or dialects. The
annotators further classified the English tweets as
informative or uninformative based on the given
definitions. Informative tweets are tweets that provide
useful information to the public and are relevant to the
event, while uninformative tweets are tweets that are
not relevant to the disaster and these do not convey
enough information or are personal in nature and may
only be beneficial to the family or friends of the
sender.

d. Information Extraction

Using conditional probability and Bayes' theorem,
information can be extracted from the statistics of
manually classified tweets. Conditional probability is
defined as P(A|B) = P(A N B)/P(B) , provided P(B) >
0. Bayes’ theorem , also known as Bayes’ rule or
Bayes’ law, is a result in probability theory that relates
conditional probability. If A and B denote two events,
P(A|B) denotes the conditional probability of A
occurring, given that B occurs [22]. Bayes theorem is
mathematically defined as:

P(A|B) =P (B|A) P (A)/ P (B)
where:

P(A) is the prior probability or marginal probability of
A

It is lpriorl in the sense that it does not take into
account any information about B

P(A|B) is the conditional probability of A, given B
P(BJ|A) is the conditional probability of B given A

P(B) is the prior or marginal probability of B, and acts
as a normalizing constant

In the context of this study, P(A) is the probability of a
tweet being informative, while P(B) is the probability of
a tweet being unique. Therefore, information of the
probabilities of tweets being informative or not
informative, given that these are unique or are re tweets
were then extracted.

3. IMPLEMENTATION

a. Machine Learning Algorithms for
Classification

a) Supervised Learning

Supervised learning was used in training the machine to
classify a tweet as informative or not informative.
Supervised learning is a training in which the class
attribute values for the dataset are known (labeled data)
before running the algorithm [24]. Supervised learning
builds a model that maps x to y;

where X is a vector and y is the class attribute. A model
is generated when the supervised learning algorithm is
run on a training set, which maps the feature values (x)
to the class attribute values (y). After training, the model
is tested on a dataset which will predict class attributes.
In the context of this study, x~ = vector of
features and y

{informative, uninformative}.

In order to minimize bias related to the sampling of
data, the stratified 10-fold cross validation was used to
estimate the performance of the model. In a 10-fold
cross validation, the dataset is randomly split into 10
mutually exclusive subsets (DS1, DS2..DS10) of
approximately equal sizes and with proportional
representation of the tweet classes. Using the data set,
the classification model is trained and tested 10 times,
with the 9-folds used as the training data set and the
remaining 1-fold as the testing data set. The algorithms
Naive Bayes and Support Vector Machine (SVM) were
compared in terms of the different metrics of evaluation.

Naive Bayes' and Support Vector Machine are two
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of the most commonly used machine learning
algorithms for classification. Naive Bayes classifier is
robust and has a good performance in several real-world
classification tasks. A Naive Bayes classifier is a
simple probabilistic classifier basedon Bayes' theorem
(from Bayesian statistics) with strong (naive)
independence assumptions [25]. In simple terms, a
Naive Bayes classifier assumes that the presence (or
absence) of a particular feature of a class is unrelated to
the presence (or absence) of any other feature [26].
Support Vector Machine is a learning method used for
binary classification. The basic idea is to find a
hyperplane  which optimally separates the d-
dimensional data into its two classes [26]. However,
since example data is often not linearly separable,
SVM incorporates the notion of a kernel induced feature
space which projects the data into a higher dimensional
space where the data is more easily separable [27].

b) Evaluation of the Machine Learning
Algorithms:

In this study, accuracy, recall, precision, area under
curve (AUC) and F-measure were used as metrics in
the empirical evaluation of the classification algorithms
Naive Bayes and Support Vector Machine. Table |
presents the description of each metric of evaluation, as
described in Rapid miner.

Table I: Metrics of Evaluation

all examples classified as
positive

This parameter specifies
the relative number of
Recall correctly as  positive
classified examples among
all positive examples

This  parameter is a
combination of the

Metric Description
Relative number of
correctly classified

Accuracy examples or in other words
percentage  of  correct
predictions.

AUC is the Area Under the
Curve of the Receiver
Operating  Characteristics
(ROC) graph which is a
technique for visualizing,
organizing and selecting
classifiers based on their
performance.

AUC

Relative number of
Precision correctly as positive
classified examples among

F-measure precisionand the recalli.e.
f=2pr/(p+r)where  f,rand
pare f-
[TFS— l
v
Basdew Smaplag ol &
Adogu Twes
I -
e '1’ * L3
\ o ‘ Exgiat giat T (
L AT dan
! L - - -
. - peme W
=] el
3 3 | S
siormay o i A ‘ sarie=asry
BE— ]
[ |
o=
- |
v
Eviuasee of Machias Leinany Modeh
n s of aoowney, ALC, rcall

Feonss & Foanea

Figure: Methodology Structure

4. RESULTS AND DISCUSSION

5.5 Manual Classification of Habagat Tweets

From the 4000 tweets randomly selected, there were
1,563 English tweets, 1,393 Tagalog tweets, 913 tweets
using a combination of English and Filipino and 121
tweets using other languages or dialects. Table IlI
presents a summary of the manually classified English
tweets.

Based on the labeling of the annotators, the computed
ICC or multi-rater Kappa coefficient is 0.671, which
apparently is substantial [33][34][35] or there is a good
level of agreement among the annotators in classifying
whether a tweet is informative or not.
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In case of conflict in label, a discussion among the
three annotators was necessary to resolve such
differences. After thorough discussion, annotators
agreed on a specific label for the tweet.

5.2 Extracted Information

By applying conditional probability and Bayes' theorem,
data was analyzed from the manually classified tweets.
According to the statistics, uninformative tweets
outnumbered informative ones by a ratio of 65% to 35%.
An example of an uninformative tweet is: "Stay safe
everyone!!! #PrayForThePhilippines #TrustGOD”.

Unique tweets are more likely to be uninformative
(71.72%) compared to informative ones, which have a
probability of 28.28%. Additionally, the probabilities of
retweeted tweets being uninformative and informative are
almost equal, at 49.22% and 50.78% respectively.

Despite the prevalence of uninformative tweets,
informative tweets are more likely to be retweeted
(41.99%) compared to uninformative ones (21.67%).
This suggests that retweeted informative tweets carry
significance and urgency, potentially enhancing public
awareness and disaster response.

The results indicate that subscribers primarily used
Twitter to share subjective messages and emotions
regarding the Habagat event. These findings are
consistent with previous studies on hurricanes by Hughes
and Palen, flooding and wildfires by Starbird and Palen,
and the Haiti earthquake by Starbird and Palen. These
studies reveal that users tweet to share crisis information,
express opinions and emotions, and offer aid to those in
need.

5.2 Evaluation of Machine Learning Algorithms:

Table IVpresents the results of the 10-fold cross
validation for all folds for all the metrics of

evaluation. Using the Kolomogorov-Smirnov and
Shapiro Wilk for normality testing, the data is
normally distributed and this is true to all the five
evaluation metrics. The normality of these
variables has also been validated by their Normal
Probability Plots.

Since the data are normally distributed, parametric
testing was performed. The parametric t-test was
specifically used to determine the significant
differences between Naive Bayes and SVM. Table
Vpresents the results of the experimentation.

The paired t-test results shown in Table V
demonstrate that there is a significant difference
between Naive Bayes and SVM (p<0.001). This is
true to all the five parameters namely, accuracy,
AUC, precision, recall, and F-measure. In particular,
SVM is significantly higher than Naive Bayes in
accuracy, AUC, recall, and F-Measure, though Naive
Bayes is significantly higher than SVM in precision.
Table VI shows the mean values for the paired
sample statistics.

Informative Uninformative Total

Tweets Tweets ota

Unique 315 799 1114
Retweets 228 221 449
Total 543 1020 1563

5.3 Evaluation of Machine Learning Algorithms

Table IVpresents the results of the 10-fold cross
validation for all folds- for.-all the metrics of
evaluation. Using the Kolomogorov-Smirnov and
Shapiro Wilk . for normality testing, the data is
normally distributed and this is true to all the five
evaluation metrics. The normality of these variables
has also been validated by their Normal Probability
Plots.

Since the data are normally distributed, parametric
testing was performed. The parametric t-test was
specifically used to determine the significant
differences between Naive Bayes and SVM. Table
Vpresents the results of the experimentation.

The paired t-test results shown in Table V
demonstrate that there is a significant difference
between Naive Bayes and SVM (p<0.001). This is
true to all the five parameters namely, accuracy,
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AUC, precision, recall, and F-measure. In particular, tweets over 799 uninformative tweets yielding a
SVM is significantly higher than Naive Bayes in 49.56% recall value.
accuracy, AUC, recall, and F-Measure, though Naive
Bayes is significantly higher than SVM in precision. AUC is a measure of quality of a
Table VI shows the mean values for the paired probabilistic classifier. A random classifier
sample statistics. has an area under curve 0.5, while a perfect
classifier has 1. Binary classifiers used in
Table 1V: Results Of 10-Fold Validation practice should therefore have an area
somewhere in between, preferably close to 1
[41]. In this experiment, SVM

demonstrated an average AUC of 0.884
which indicates that the classifier ranked
positive examples higher than the negative
examples.

5. CONCLUSION

TABLE V: Paired T-Test Results We compared two classification algorithms, SVM
and Naive Bayes, using a 10-fold cross-validation.
SVM performed better than Naive Bayes in terms
of accuracy, recall, AUC, and F-measure, while
Naive Bayes was more precise. In the future, we
plan to explore different features and weights to
create word vectors and see how they affect
evaluation metrics. We'll also focus on feature
selection, parameter optimization, and semantics.
Additionally, we'll evaluate other machine learning
algorithms using metrics other than accuracy,
recall, precision, AUC, and F-measure.
Determining the most important evaluation metrics
will help researchers choose the right algorithm for
specific tasks. Multi-label classification of English
and multilingual tweets is crucial for extracting
relevant information, which can improve situational

Table VI: Paired Samples Statistics

Confusion matrices of SVM and Naive awareness. We aim to develop a real-time system
Bayes as shown in Table VII and Table VIII that can detect and filter disaster-related tweets for
respectively. Using the same trainingdata set for effective disaster response management.
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