ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

DFT BASED INVESTIGATIONS OF PHYSICO-CHEMICAL PROPERTIES AND QUANTUM MECHANICAL CALCULATIONS OF PENTACHLOROBENZALDEHYDES

Sachin Kumar

Associate Professor and Head,

Deptt. Of Physics

A.S.(P.G.) College Mawana, Meerut, U.P. India

ABSTRACT: Substituted benzaldehydes are the simple aromatic aldehydes and their derivatives are widely used in different industries such as dyes, flavouring, artificial flavours, solvents etc. they also exhibit different biological activities. Due to these reasons, there exist a vast scope of study of substituted benzaldehydes, in this light pentachlorobenzaldehyde is reported for study. The quantum mechanical calculations are performed with the help of Gaussian 09W program package using the Becke-3Lee-Yang-Parr (B3LYP) functional supplemented with the standard 6-31G (dp) basis set. The thermodynamic properties are discussed with the different thermodynamic properties obtained in the temperature range 200K-1500K. Frontier molecular orbits (HOMO-LUMO) and molecular electro-static potentials (MESP) are also studied.

Key words: Pentachlorobenzaldehyde, Gaussian 09W, Becke-3Lee-Yang-Parr (B3LYP), Thermodynamic properties, HOMO-LUMO, MSEP.

Introduction: Substituted benzaldehydes are the simplest type of aromatic compounds which have a wide range of uses in different fields. They are used as artificial flavouring agents and solvents for oils etc. they exhibit anti-tumour activities and other biological activities. [1,2]. Lot of research work has been carried out by a number of researchers for different types of investigations [3-6] In this light I have performed density functional theory (DFT) calculations of different parameters of the compound Pentachloro benzaldehyde (further referred as PCB). The calculations were carried out by Gaussian 09 program package.[7]

Results and Discussion:

Basic Properties: Various physical and chemical properties of PCB are shown in table 1

1.	Molecular Formula	C7HCl5O		
2.	Formula Weight	278.34700		
3.	Index of Refraction	1.633		
4.	Density	1.73 g/cm^3		
5.	Boiling Point:	328.8°C at 760mmHg		
6.	Vapour Pressure:	0.000186mmHg at 25°C		
7.	Flash Point:	138.5°C		
8.	Polar Surface Area:	17.1 Ų		
9.	Monoisotopic Mass	275.847003		

Table 1

Molecular Structure: The molecular structure of the mentioned compound PCB is shown in Figure 1. The optimized bond lengths, bond angles and dihedral angles of the compound is calculated by B3LYP method using B3LYP 6-311+G (d,p) basis sets are listed in Table 2 is in accordance with atom numbering scheme as shown in Fig. 1. Since the exact crystal structure of the compound BMB is not available till now, the optimized structure can only be compared with other similar system for which the crystal structures have been solved.

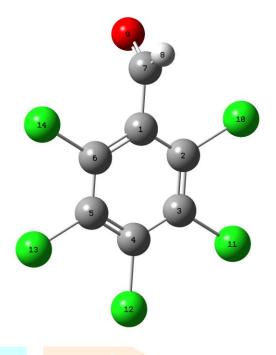


Figure 1

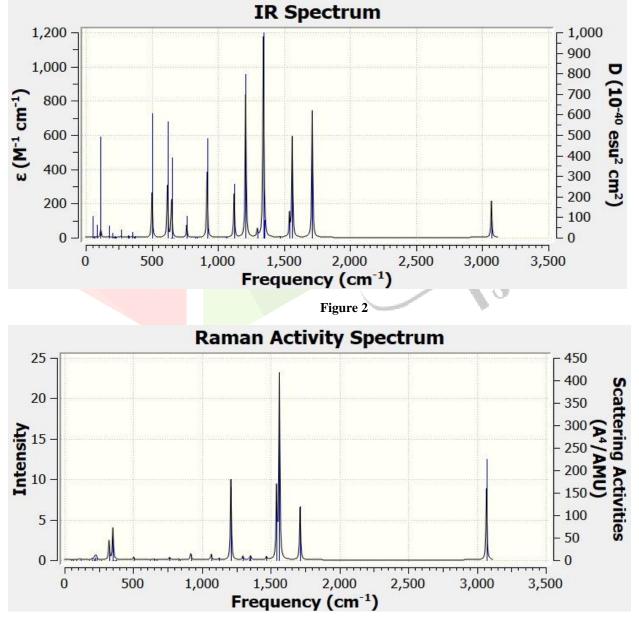
Table	2
-------	---

S.NO.	Bond between	Bond	Bond Angle	Bond Angle	Dihedral Angle	Dihedral
5.10.	Atoms	Length (A°)	between Atoms	(°)	between Atoms	Angle (°)
1.	R (1,2)	1.3952	A (2,1,6)	119.9985	D (6,1,2,3)	0.0323
2.	R (1,6)	1.3948	A (2,1,7)	119.9972	D (6,1,2,10)	179.9532
3.	R (1,7)	1.54	A (6,1,7)	120.0043	D (7,1,2,3)	-179.9729
4.	R (2,3)	1.3947	A (1,2,3)	120.0086	D (7,1,2,10)	-0.052
5.	R (2,10)	1.76	A (1,2,10)	119.9808	D (2,1,6,5)	0.0149
6.	R (3,4)	1.3954	A (3,2,10)	120.0106	D (2,1,6,14)	179.9892
7.	R (3,11)	1.76	A (2,3,4)	119.9942	D (7,1,6,5)	-179.9798
8.	R (4,5)	1.3951	A (2,3,11)	120.0128	D (7,1,6,14)	-0.0055
9.	R (4,12)	1.76	A (4,3,11)	119.993	D (2,1,7,8)	-89.9606
10.	R (5,6)	1.3951	A (3,4,5)	119.994	D (2,1,7,9)	90.0394
11.	R (5,13)	1.76	A (3,4,12)	119.9811	D (6,1,7,8)	90.0341
12.	R (6,14)	1.76	A (5,4,12)	120.0249	D (6,1,7,9)	-89.9659
13.	R (7,8)	1.07	A (4,5,6)	120.0047	D (1,2,3,4)	-0.0568
14.	R (7,9)	1.2584	A (4,5,13)	120.0113	D (1,2,3,11)	179.9619
15.			A (6,5,13)	119.984	D (10,2,3,4)	-179.9777
16.			A (1,6,5)	120.0	D (10,2,3,11)	0.041
17.			A (1,6,14)	120.008	D (2,3,4,5)	0.0341
18.			A (5,6,14)	119.992	D (2,3,4,12)	-179.9964
19.			A (1,7,8)	119.8865	D (11,3,4,5)	-179.9846
20.			A (1,7,9)	120.2269	D (11,3,4,12)	-0.0151
21.			A (8,7,9)	119.8865	D (3,4,5,6)	0.0131
22.					D (3,4,5,13)	-179.9995
23.					D (12,4,5,6)	-179.9563
24.					D (12,4,5,13)	0.0311
25.					D (4,5,6,1)	-0.0376
26.					D (4,5,6,14)	179.9881
27.					D (13,5,6,1)	179.975
28.					D (13,5,6,14)	0.0007

VIBRATIONAL SPECTRA: A detailed study of vibrational spectra has been carried out of the reported compound and the vibrational frequencies have been calculated using DFT-B3LYP level with 6-31++G(d,p), the results obtained are shown in table 3, these results shows vibrational frequencies, infrared and Raman activities.

© 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

Table 3


	Table 3					
Mode	Frequency	Infrared	Raman Activity			
1.	51.09	1.3456	0.1237			
2.	63.99	0.1348	0.0519			
3.	84.56	1.3256	0.1623			
4.	114.13	14.0965	2.3062			
5.	176.19	2.5278	0.5341			
6.	203.14	1.1644	2.4147			
7.	214.11	0.0081	2.5885			
8.	222.48	0.3591	5.7270			
9.	230.55	0.2142	7.2362			
10.	265.45	2.7178	0.6418			
11.	322.68	0.9403	12.5800			
12.	323.86	0.5274	20.5044			
13.	351.77	2.3276	53.0553			
14.	354.50	0.3519	0.0808			
15.	366.53	0.4260	0.2435			
16.	375.12	0.9040	2.0539			
17.	501.69	76.1934	5.5698			
18.	618.02	87.9197	0.2958			
19.	649.15	0.0112	0.0726			
20.	649.88	63.7482	1.8605			
21.	666.78	0.0460	0.1155			
22.	764.34	20.5755	5.6769			
23.	829.84	0.2996	1.5946			
24.	843.57	0.1052	0.1645			
25.	917.99	111.3656	12.5138			
26.	1066.84	0.9461	11.7978			
27.	1122.63	73.7587	2.9641			

www.ijcrt.org

© 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

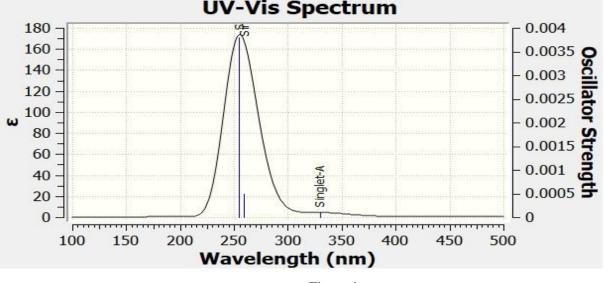
	5		· · · · · · · · · · · · · · · · · · ·
28.	1209.97	241.7884	162.2935
29.	1297.71	13.2752	8.5205
30.	1343.25	336.1551	3.0910
31.	1353.80	29.6122	9.0321
32.	1469.51	1.2434	7.0786
33.	1542.28	38.6196	150.5722
34.	1562.53	170.1458	402.4081
35.	1713.55	214.9313	118.9772
36.	3068.76	62.4185	225.0609

The corresponding plots of infrared and Raman activities are shown in figure 2 and 3 respectively.

Vibrational Assignments:

C-Cl Vibrations: The C-Cl stretching mode has been assigned at 1055 cm⁻¹ in 5-chloro-2,4-dimethoxy aniline [8], 2,4,5,6-tetrachloro pyrimidine [9] and at 1062 cm⁻¹ in 2-chloro-6-floro benzaldehyde [10], in present study this assignment is visible at 1066.84 cm⁻¹.

C-C Vibrations: The group of four bands, appearing between 1400-1650 cm⁻¹ in the spectra of substituted benzenes represents the characteristics skeletal stretching modes, these correspond to doubly degenerate C-C stretching vibrations of benzene at 1560cm⁻¹ and 1485cm⁻¹ modes with the calculated value of 1593.10cm⁻¹. There are two more C-C stretching modes as 1310cm⁻¹ and 989 cm⁻¹ of benzene. In present study 1469.51cm⁻¹ shows fair agreement with earlier studies, similarly C-C stretching vibration of benzene ring at 1562.63 cm⁻¹ is seen for PCB.


Aldehyde Group Vibrations: The aldehyde group gives rise to six vibrations, namely C=0 stretching, C=0 in plane bending, C=0 out-of-plane bending, C-H stretching, C-H in-plane bending and C-H out-of-plane bending vibrations. The C=O stretching vibrations gives rise to a prominent absorption in the region 1600-1815 cm⁻¹, here 1713.55 cm⁻¹ corresponds to C=O stretching.

UV-Visible Spectra: TD-DFT calculations provides better understanding of observed electronic absorption spectrum in terms of Excitation energies (E), absorption wavelength (λ), oscillator strengths (f), molecular orbitals undergoing transitions, transition energy, electronic transitions etc. Molecular orbitals undergoing excitation transition, transition energy and excitation energy, absorption wavelength etc are shown in Table 4.

Excited state	Excitation Energy (E)	Absorption Wavelength (λ)	Oscillator Strength (<i>f</i>)	Excitation Transition (MO)	TransitionEnergy(MO) Singlet A
1	3.7629 eV	329.49 nm	f=0.0001	66 -> 69 67 -> 69	-0.34814 0.60599
2	4.7770 eV	2 <mark>59.54 nm</mark>	f=0.0005	68 -> 70	0.69786
3	4.8651 eV	254.85 nm	f=0.0038	66 -> 69 66 -> 72 67 -> 69 67 -> 72 68 -> 71	-0.14547 -0.24730 -0.10688 -0.33047 -0.54180

Table 4

The corresponding plot of UV-Visible spectra is shown in figure 4.

Thermodynamical Properties: Thermodynamic properties help to understand energetics, structural and reactivity properties of a molecule. Frequency calculations were used to compute the zero-point energies, thermal correction to internal energy and entropy as well as heat capacity, table 5 and 6 shows thermodynamical functions and thermodynamical properties respectively for PCB as calculated by DFT/ B3LYP level with 6-31++G(d,p).

Table 5

Thermodynamic Functions	Value		
Zero-point correction	0.061394 (Hartree/Particle)		
Thermal correction to Energy	0.073844		
Thermal correction to Enthalpy	0.074788		
Thermal correction to Gibbs Free Energy	0.020656		
Sum of electronic and zero-point Energies	-2630.528797		
Sum of electronic and thermal Energies	-2630.516347		
Sum of electronic and thermal Enthalpies	-2630.515403		
Sum of electronic and thermal Free Energies	-2630.569534		

Table 6

	F (T 1,, 1)	CU	C	
	E (Thermal)	CV	S	
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin	
Total	46.338	42.842	113.930	
Electronic	0.000	0.000	0.000	
Translational	0.889	2.981	42.743	
Rotational	0.889	2.981	33.244	
Vibrational	44.560	36.881	37.943	
Vibration 1	0.596	1.976	4.651	
Vibration 2	0.598	1.970	4.260	
Vibration 3	0.601	1.959	3.745	
Vibration 4	0.607	1.938	3.197	
Vibration 5	0.628	1.872	2.373	
Vibration 6	0.639	1.835	2.104	
Vibration 7	0.644	1.819	2.006	
Vibration 8	0.648	1.806	1.937	
Vibration 9	0.653	1.794	1.872	
Vibration 10	0.671	1.737	1.629	
Vibration 11	0.708	1.629	1.294	
Vibration 12	0.709	1.627	1.289	
Vibration 13	0.729	1.570	1.155	
Vibration 14	0.730	1.566	1.147	
Vibration 15	0.740	1.540	1.092	
Vibration 16	0.747	1.522	1.056	
Vibration 17	0.860	1.240	0.646	

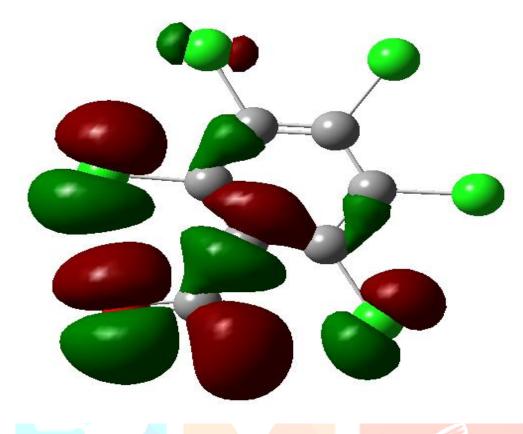
Non-Linear Optical Properties: NLO properties of a compounds can be predicted with the help of quantum calculations. The relationship between the nonlinear optical properties and the molecular structure can be better understood with the help of Hyperpolarizability. DFT calculations are performed using B3LYP/6-311 G (d, p) to calculate the electronic properties like total dipole moment(μ), mean linear polarizability (α), anisotropic polarizability ($\Delta\alpha$), first-order hyperpolarizability (β) and second order hyperpolarizability (γ). The results obtained by the calculations are shown in table 7. The calculations are carried out according to following equations.

(1)

$$\mu = (\mu_x^2 + \mu_y^2 + \mu^2 z)$$
(1)
$$\alpha = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}$$
(2)

$$\Delta \alpha = \frac{1}{\sqrt{2}} [(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2 + 6(\alpha_{xy}^2 + \alpha_{yz}^2 + \alpha_{zx}^2)]^{1/2}$$
(3)

$$\beta = (\beta^2_x + \beta^2_y + \beta^2_z)^{1/2} \tag{4}$$


where $\beta_{x} = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$, $\beta_{y} = \beta_{yyy} + \beta_{yxx} + \beta_{yzz}$ and $\beta_{z} = \beta_{zzz} + \beta_{zyy} + \beta_{zxx}$

$$\gamma = \frac{1}{5}(\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2\gamma_{xxyy} + 2\gamma_{xxzz} + 2\gamma_{yyzz})$$
(5)

The conversion factor of α , β and γ in atomic unit are For α 1 atomic unit (a.u.) = 0.1482 x 10⁻²⁴ electrostatic unit (esu), For β 1 a.u. = 8.6393x10⁻³³esu and For γ 1a.u. = 5.0367x10⁻⁴⁰esu.

Table 7								
Dipole moment (µ)		Mear	Mean Linear Polarizability		First-order Hyperpolarizability (β) in		Second order	
In Debye			(α) in a.u	a.u.		Hyperpolarizability (γ) in a.u		
$\mu_{\rm X}$	1.4060	$\alpha_{\rm XX}$	-116.6766	β_{XXX}	23.4687	γ_{XXXX}	-2677.0804	
$\mu_{\rm Y}$	-0.2168	α_{YY}	-107.5779	βγγγ	-0.0970	γ_{YYYY}	-2399.8425	
μ_Z	0.0000	α_{ZZ}	-108.6294	β_{ZZZ}	0.0001	γzzzz	-113.6625	
Total µ	1.4227	α_{XY}	-3.6058	β _{XYY}	12.0407	γχχχ	-72.5421	
		α_{XZ}	-0.0001	β _{XXY}	24.1535	γxxxz	-0.0040	
		α_{YZ}	0.0001	β _{xxz}	0.0003	γγγγχ	-33.2559	
		α	-110.9613 a.u	β _{xzz}	-2.9258	γγγγΖ	0.0004	
			-16.4444x10 ⁻²⁴ esu	β _{YZZ}	-1.0883	γzzzx	-0.0004	
		Δα	10.6411 a.u	β _{YYZ}	-0.0004	γzzzy	-0.0001	
				β _{YXX}	-0.0001	γχχγγ	-900.9610	
				β	<mark>40.5</mark> 737a.u	γxxzz	-471.7032	
						γγγΖΖ	-439.4798	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					γχχγΖ	0.0000	
						γγγχΖ	0.0000	
						γzzxy	7.55182	
						γ	-1762.9746 a.u	

Frontier Molecular Orbitals: The electronic absorption describes the transition from the ground state to the first excited state and is explained as one electron excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). The following figure 5 shows the HOMO and LUMO levels. The HOMO level is at -0.27608 a.u. and LUMO at -0.10925 a.u. and the difference between the two levels is 0.16683 a.u. which indicates a better stability of the compound.



#### Figure 5

**Molecular Electrostatic Potential:** The molecular electro-static potential (MESP) is a pictorial representation of electrostatic potential shown on a constant electron density surface and it at the same time exhibits the molecular parameters as shape, size and electrostatic potential value represented in terms of colour coding. The different set of values of the electrostatic potential on the surface can be denoted by different colours as red colour depicts the region of the most electro-negative electrostatic potential, blue the region of the most electro-positive electrostatic potential, green the region of zero potential and yellow slightly electron rich region. This method represents the charge density on a molecule in a glance. In case of our reported compound the molecular electrostatic potential obtained by B3LYP/6-31G(d,p) is shown in figure 6.

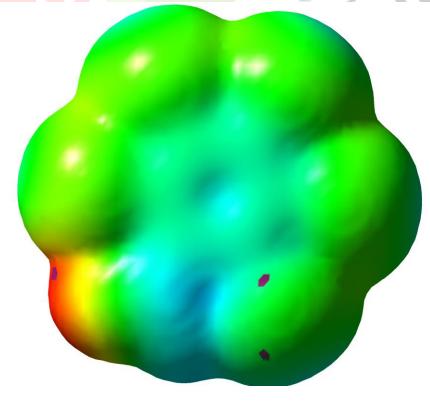



Figure 6

#### www.ijcrt.org

#### © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

**Conclusion:** In this study an attempt is made to study different properties of the compound pentachloro benzaldehyde which can provide data for further detailed study for various research purposes for applied field.

#### **References:**

- 1. A. Nataraj, V. Balachandran, T. Karthick, J. Mol. Struct. 1006 (2011) 104-112.
- 2. S. Takeuchi, M. Kochi, K. Sakaguchi, K. Nakagawa, T. Mizutani, Agric. Biol. Chem. 42 (1978) 1449.)
- 3. Takao Itoh, J. Mol. Struct. 786 (1) (2006) 39.
- 4. T.G. Strand, M.A. Tafipolsky, L.V. Vilkov, H.V. Volden, J. Mol. Struct. 443 (1–3) (1998) 9.
- 5. E. Bock, E. Tomchuk, Can. J. Chem. 50 (1972) 2890.
- 6. Peter D.J. Anderson, M. Tereza Fernandez, Gabriella Pocsfalvi, Rod S. Mason, J. Chem. Soc. Perkin Trans. 2 (1997) 873.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 8. R.K. Goel and A.K. Wahid, Indian J. Phys. (1983)57 B, 363
- 9. B.S.Yadav, Vir Singh, M.K. Yadav and Sanjeev Chaudhry, Indian J. Pure. Appl. Phys. (1997)35,305.
- 10. Seema, B.S. Yadav, Sachin Kumar, International Journal for Research in Engineering Application & Management (IJREAM) ISSN: 2454-9150 Vol-05, Issue-02, May 2019.

