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Abstract

Carbon Footprint Optimization Optimize Al-powered Carbon footprint prediction for Sustainable Logistics is a
project that is expected to predict and optimize the carbon emission at different points in the supply chain. The system
measures carbon footprint using machine learning models including the Random Forest, LSTM and XGBoost, and
GRU applications that offer precise predictions of carbon footprint. In the project, generative Al is integrated to
produce summaries, offer actionable sustainability information, and possible ESG risk hotspots. The dataset captures
the factors like procurement, energy usage, modes of transportation and external factors like weather, which
contribute towards the emissions. It is an HTML, CSS, JavaScript, Python (Flask), and hosted on Google Cloud
Platform (GCP) platform which provides an easy to use interface with modules such as Home, Register, Login,
dashboard and Logout. Some of the dashboard features include predictions, SHAP plot, and ESG insights, which
help organizations to reduce the environmental impact. This system is aimed at facilitating the decision-making
process and ensuring sustainability through areas of the improvement of emissions management. The suggested
generative Al will complement the entire system with proposals on how to streamline the workings of the system,
minimize emissions, and increase the sustainability of the supply chain.

Keywords: Carbon Footprint, Machine Learning, Sustainability, ESG, Emissions Prediction, Generative Al,
Supply Chain, Optimization, Random Forest, LSTM, XGBoost, GRU, Flask.

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The increased awareness on climate change and green sustainability has exerted pressure on industries to control,
minimize and maximize their carbon outputs. The logistics industry is one among other industries that contribute
considerably to the global CO2 impairment and includes transport, warehousing, manufacturing, and procurement. The
reliance of the sector on fossil fuels, operation-intensive processes, and sophisticated supply chain networks cannot be
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easy to monitor the emissions correctly and subsequently make effective mitigation plans. Although there are traditional
methods of reporting, majority of organizations lack the ability to get real time actionable information about their carbon
footprint. Traditional methods tend to remain disjointed, manual and bottom-up with historical reporting and it is hard
to move the operations proactively, find high-emitting zones and take the sustainability strategies to implementation.

Advanced machine learning and artificial intelligence (Al) can also provide a solution in this regard. Random Forest,
LSTM, XGBoost, and GRU machine learning algorithms have the potential to process vast amounts of data at various
supply chain steps, discovering complicated trends and relationships that affect carbon emissions. These models not
only permit CO2 emissions to be accurately predicted but also give organizations the power to simulate the scenarios
and optimize operations to ensure that the operations are sustainable. As an example, predictive models can determine
those suppliers, ineffective routes of transportation, energy-consuming manufacturing operators, and allow
organizations to make appropriate choices to decrease the impact on the environment.

Generative Al is also able to optimize such a predictive framework by providing actionable suggestions, summary, and
hotspots of Environmental, Social, and Governance (ESG) risks. By analyzing with Al, a business can be provided with
advice on what to do to reduce emissions, streamline its logistical processes, and enhance its general sustainability
efforts. This combination has seen these technologies converge into one platform, which is easy to use and reference
to, as well as enabling decision-makers to access real-time data which is transparent and interpretable. The system can
be insightful and useful to an organization due to features like SHAP plots used to explain the model and interactive
dashboards.

This project is motivated by the fact that there is an urgent need to offer organizations a scalable, reliable, and
intelligent tool which can help them make environmentally conscious decisions. The project targets the existing
gap in the existing logistics systems as it cannot predict and monitor emissions without relying on machine learning
and the application of generative Al. Predictions of carbon footprints done by automation do not only save time
and minimise any errors that come in the way of calculation through manual process, but also enable any business
to take a proactive initiative to design and execute sustainable strategies. Moreover, the project is scaled, available,
and functions with large datasets efficiently,

Finally, it is driven by the desire to balance the impetus to environmental accountability with operational
effectiveness. The project should help organizations to lower their carbon footprint by offering a strong carbon
emission prediction and optimization framework, serve the global sustainability goals, and contribute to the
alleviation of poor impacts of climate change.

1.2 CARBON FOOTPRINT PREDICTION: AN OVERVIEW

The project under consideration is named Al-Powered Carbon Footprint Prediction Optimization of Sustainable
Logistics with the help of Machine Learning and Generative Al and aimed to deliver an intelligent platform that
is able to predict and optimize the level of carbon footprint at different steps of the logistic supply chain. The
essence of the platform is to offer a scalable and dependable solution to companies in order to gauge and minimize
their carbon footprint. The system combines high-order machine learning models such as Forest (Random), LSTM,
XGBoost, and GRU, which utilize a holistic collection of features, such as energy consumption, transportation
modes, supplier emissions, and weather conditions, to determine the overall emissions of CO2 e in logistics
transactions.

The major traits of the platform are:

Multi-purpose machine learning models: The system uses a variety of machine learning models, such as the
Random Forest which is used as a non-linear regression model, XGBoost as a gradient boosting model, LSTM as
a sequential data processing model, and GRU as a time series prediction model. The models are all optimized with
respect to the data characteristics, and the system can serve a wide range of logistics situations.
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Generative Al as an Optimization: The peculiarity of the given project is the introduction of the concept of
generative Al, which implies the availability of actionable recommendations related to carbon emissions reduction.
The Al creates summaries, determines possible hot-spots of Environmental, Social, and Governance (ESG) risks,
and offers optimal strategies of enhancing sustainability-related practices in the logistics. Using high optimization
methods, the system assists the organizations to minimize the carbon footprint as well as increase the efficiency
of operations.

Friendliness and Visualization: The site is user-friendly, and users have a free hand to follow the system. The
interactive dashboards are connected with the SHAP plots to enable the users to visualize the carbon emission
data. The dashboard also gives information on the effects of various logistics phases on the carbon footprint and
suggestions on how logistics can be improved.

Scalability and integration in the Cloud: The system is hosted on Google Cloud Platform (GCP), which
guarantees high scalability, performance, and security to both small and small organizations. GCP enables efficient
management of large volumes of data, real-time updates and easy management of integration with other business
systems.
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Figure 1.2.1 Generalization of Sustainable Al Ecosystem of Carbon Footprint and ESG Analysis.

The platform will enable businesses to review, manage, and reduce carbon emissions in an actionable and data-driven
method, through combining machine learning, generative Al, and cloud technologies, to address the sustainability
objectives globally. The tool does not only assist organizations to streamline their logistics operations, but it also allows
them to make their practices compliant with the environmental goals, thereby making it an essential tool in the logistic
operations of a modern and eco-friendly organization.
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1.3 RESEARCH QUESTIONS AND OBJECTIVES

A preliminary study of the work on the project under consideration called the Al-Powered Carbon Footprint
Prediction Optimization in Sustainable Logistics Using Machine Learning and Generative Al is accompanied by
a series of fundamental research questions (RQs) that are aimed at assessing the efficiency and usefulness of
machine learning and generative Al in predicting carbon emissions, logistics optimization, and ensuring
sustainability. The following are questions that can be answered in a systematic manner in this research:

RQ1: Prediction Model Accuracy and Efficiency of Carbon footprint predictions models: What are the
comparative results on the accuracy and efficiency of the different machine learning models (Random Forest,
LSTM, XGBoost, GRU) to predict carbon emission at different stages of the logistics process? This involves
consideration of how various features of input (e.g., energy consumption, mode of transportation, and supplier
emissions) affect model performance, and also in stating how well the model can be generalized into different
stages of a supply chain.

RQ2: Effect Of Generative Al in Emission Optimization: What is the role in integrating generative Al in
optimizing the logistics supply chain in a bid to reduce carbon emission? In particular, the study analyzes the
efficiency of Al-generated suggestions of sustainable strategies, including changes in transportation modes,
energy, and operation changes, in enhancing the sustainability metrics and minimizing carbon footprints.

RQ3: Environmental, Social, and Governance (ESG) Risk Hotspots Detection: How efficient does the use of
machine learning models in detecting ESG risk hotspots within the logistics supply chain? How effective is the
system to identify spheres of influence with the most significant consequences on the environment, and how can
the results be transformed into fostering a more sustainable approach to logistics and supply chain management?
RQ4: Decision-Making Support and User Experience: To what extent is the user interface with regards to
making data-based decisions to optimize sustainability? This question assesses the functionality of the dashboard
and Al-driven recommendations, to make sure that the system can offer rational and practical insight to the
organizations to reduce their carbon footprints.

Based on these essential questions, the following other aspects are also being discussed in this research:

RQ-A: Sensitiveness to Importance of features to Model Accuracy: How does the prediction accuracy of the
models to differences in the input features, energy consumption, mode of transport or supplier emissions? The
question aims to find out what characteristics have been the most effective in enhancing the quality of the
prediction and making action insights.

RQ-B: Scalability and Performance in Real World Applications.: To what extent can the machine learning
models and Al-based recommendations be extended to the practical domain of various logistics settings? This
query investigates the scalability of the system to different situations of the supply chain such as the capacity to
manage large data sets and complicated logistics.

The key goals of this project are hence:

. To establish and develop an intelligent carbon footprint prediction system powered by machine learning
that offers real-time predictions in different logistics phases, one will need to combine the aspects of energy
consumed during the logistics, modes of transportation, and the emission of suppliers.

o To include generative Al features, to propose operational plans that can achieve maximum optimization
and minimization of carbon footprints over logistics supply chains.

. To create a user-friendly interface that renders predictions, visualizations (SHAP plots) and
implemented recommendations, allowing the user to build data-driven decisions in favor of sustainability.

. In order to implement the system on Google Cloud Platform (GCP), which is capable of scaling and
making organizations of various sizes and industries reliable and eventually lead the way in sustainability and
environmental responsibility in general.
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1.4 THESIS CONTRIBUTIONS

The major contributions of this M.Tech thesis to the Carbon Footprint Prediction and Sustainability Optimization
in logistics research are the following ones:

1.4.1 Al-Powered Carbon Footprint Prediction System: The main asset of this project consists of the design,
implementation, and in-depth analysis of a machine learning-based system that would help predict and optimize
carbon output throughout the logistics supply chain. This system integrates:

. Machine Learning Algorithms: A powerful regression model, such as random forest, LSTM,
XGBoost, and GRU, which predicts carbon emissions through the use of some important logistics data, including
energy consumption, the mode of transportation, and supplier emissions.

o Generative Al as an Optimization Tool: Generative Al will be incorporated into the package to
propose sustainable measures that would help mitigate emissions, including alteration of transportation mode or
energy-saving habits that are recommended through data analysis.

. ESG Risk Hotspot Detection: A model that can be used to determine Environmental, Social, and
Governance (ESG) hotspots of risk in logistics to assist organizations focus on high-emission regions to undertake
remedial actions.

1.4.2 User-Friendly Decision-making Interface: The creation of scalable and user-friendly web interface that
will allow users to interact with the carbon footprint prediction system, access the predictions, visualize the
predictions with SHAP plots, and receive practical recommendations. It is an interface that enables users to make
evidence-based and data-driven decisions to achieve sustainability optimization through Python (Flask), HTML,
CSS, and JavaScript.

1.4.3 Scalability and Real-Time Performance: The whole system can be deployed to Google Cloud Platform
(GCP), which will make the system scalable and be able to process huge data sets in real time. The cloud-based
platform maintains a smooth flow of operations within organizations, both large and small in terms of size, high
availability, and reliability in carbon emission prediction and optimization of its activities at various logistics
phases.

1.4.4 Empirical Evaluation and Performance Analysis: This thesis is an in-depth analysis of the machine
learning models and Al-based recommendations, concentrating on the accuracy, efficiency, as well as scalability
of the system. The analysis encompasses a spectrum of logistics situations, which is useful in terms of the
efficiency of various models and their influence on sustainability-related initiatives.

1.4.5 Contributions to Sustainability and Carbon footprint Restoration:

This thesis contributes to the rest of the world in its quest to ensure carbon emissions are minimized and maximize
sustainable practices in logistics. The system enables the organizations to make informed decisions based on data,
which results in improved use of resources, operations efficiency and decreased environmental impact.

1.5 THESIS OUTLINE

The rest of this thesis is developed in the following way:

Chapter 2: Literature Review presents the review of the literature on the existing model in predicting carbon
footprint in logistics, especially on machine learning models, such as Random Forest, LSTM, XGBoost and GRU.
In the chapter, the use of generative Al in optimization, the hotspots in the ESG risk realm, and sustainability in
the logistics sector are also reviewed. It establishes the problems with predicting carbon emissions and underscores
the gaps within the existing methodologies particularly as to the current challenges of introducing machine learning
and real-time decision-making towards sustainability.

Chapter 3: System Architecture and Implementation describes the design and the technical realization of the
system carbon footprint prediction. It will discuss the architecture of the system, which will consist of the frontend
(HTML, CSS, JavaScript), backend (Python with Flask), and database (MySQL). The chapter also explains the
core modules, which are the carbon footprint prediction engine, the model training and evaluation, and the
integrations between machine learning models and the generative Al-based optimization system. The chapter goes
further to elaborate the implementation of the system on Google cloud platform (GCP) to achieve scalability and
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high availability.

Chapter 4: Experimental Methodology describes the experimental framework that will be used in the course of
the project: datasets (e.g., logistics data, energy consumption, transportation modes), machine learning models
(Random Forest, LSTM, XGBoost, GRU), and the generative Al model, which will be used to optimize things.
The chapter outlines the measures of evaluation like RMSE, MAPE and R 2 and describes the various stages of
the experiment that answer the research questions. It also describes the techniques applicable in the power of the
model models and the influence of the generation Al in the emission reduction policies.

Chapter 5: Experimental Results and Analysis provides the outcomes of the experimental stages, as well as
the performance of different machine learning models in making a carbon emissions prediction and the
efficiency of generative Al guidelines. This chapter is involving the analysis of the results in detail, as data-based
responses to the research questions are already presented, as well as the presentation of the information on the
model performance, prediction quality, and effects of sustainability. Another aspect of the system mentioned in
this chapter is the possibility to identify hotspots of ESG risks and conduct an evaluation of the scalability and
efficiency of working with the model.

Chapter 6: Discussion explains the results of the experimental findings, emphasizing on major patterns and
explains the implications of the findings. It touches upon the advantages and the shortcomings of the models, the
difficulties followed in the process of the implementation, and the limitations of the system. Another theme
addressed in the chapter is the ability of the system to be further developed to enhance prediction effectiveness
and make generative Al more effective in delivering concrete advice.

Chapter 7: Conclusion and Future Work will sum up the most significant findings of the thesis and give a
synthesis of the findings to answer the research questions. It also outlines the future research suggestions, such as
the possible enhancements of the carbon footprint projection system, the incorporation of more sophisticated Al
models, and further investigation of the generative Al as a means of optimization of sustainability. To complete
the chapter, the author provides a vision of expanding the capabilities of the system to other industries and
optimizing it to make the based decisions more accurate and supported by real-time data in logistics.

Appendices include extra materials provided in the form of appendices like detailed experimental configurations,
hyperparameters of the model and pieces of code that will give additional information about the implementation
work and testing of the project.

The presented thesis has been in form of a first chapter introduction. Subsequent chapters will present an in-depth
analysis of the architecture of the system, experimental procedures

LITERATURE REVIEW

This chapter is a review of the literature that is available in the area of focus and research of the Al-driven Carbon
Footprint Prediction Optimization system. It discusses developments in models of carbon emission forecasting of
logistics and supply chains, the presence of machine learning and artificial intelligence (Al) to minimize carbon
emissions, an approach to combine generative Al and optimization, and the most important methodologies used
to assess Environmental, Social, and Governance (ESG) risks. Lastly, the chapter is a review of current tools and
frameworks of prediction of carbon footprint and ESG analysis of logistics and underlines gaps in research that
will be filled by the current thesis.

2.1 FORECASTING OF CARBON EMISSIONS

One of the key features of the contemporary supply chain management is carbon emissions forecasting in logistics,
which is meant to minimize the environmental footprint whilst maximizing operational efficiency. Conventional
approaches use simple linear regression and statistical approaches to forecast emissions, however, these
approaches are sometimes overly basic to omit the complex supply chain dynamics.

Research on carbon prediction through machine learning-based models has been performed under two categories:
smart grid and smart grid analytics. Carbon prediction with machine learning-based models research have been
conducted on carbon prediction using machine learning-based models in two categories: smart grid and smart grid
analytics.
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Carbon emission predictive algorithms, such as random forest and XGBoost, have shown high accuracy in
predicting the carbon emission by taking into account several factors including energy use, modes of
transportation, and product specifics. Such approaches are also becoming more popular to construct predictive
models that estimate the overall CO2 emission tied to various phases of the supply chain.

2.1.1 DEEP LEARNING IN CARBON FORECASTING

DEEP Learning in Carbon Forecasting, the second section, examines the effects of deep learning in carbon
forecasting and the supporting arguments behind it.

The LSTM and GRU and other deep learning methods have been utilized to learn the temporal changes in carbon
emission, hence it proves efficient in predicting such dynamic systems as supply chains. The models are useful in
instances of time-pattern analysis, and they can provide better forecasts than other traditional approaches.

2.1.2 GENERATIVE Al IN THE DOMAIN OF CARBON REDUCTIONS

The recent progress in Generative Al has created new opportunities to increase the quality of carbon prediction
models by creating realistic data to forecast and optimize it. Gap Generative Pretrained Transformers (GPT)
models are also under investigation because the ones can be used to improve supply chain planning by simulating
and proposing environmental-friendly solutions, including optimal transportation paths or energy consumption.

2.2 USE OF MACHINE LEARNING IN SUSTAINABLE LOGISTICS

There has been major concern on sustainability in logistics with the increased awareness of climate change.
Machine learning is leading the pack in developing smart, energy efficient chain of supply. Carbon footprint
prediction and management are usually enhanced by the following methods:

2.2.1 SUSTAINABLE SUPPLY CHAINS: DECISION SUPPORT SYSTEMS.

Decision-support systems obtained with the help of Al have been utilized to evaluate the environmental impact of
other logistics strategies and foresee possible emission reductions through data obtained in real-time. The
frameworks integrate past information, environmental factors, and machine learning forecasts to propose the best
supply chain practices.

222 ARTIFICIAL INTELLIGENCE TO HELP LOGISTICS ACHIEVE ENERGY EFFICIENCY.

The optimisation of logistics is achieved with green Al strategies to cut energy use and emissions. These Al tools
as green federated learning enable data sharing between decentralized networks while maintaining privacy, thereby
enabling the development of an energy-efficient supply chain system.

2.3 ESG ANALYSIS

The trend of Al and ESG integration has been on the rise with companies being mandated to report on sustainability
objectives. Carbon emissions forecast is also important to determine the environmental factor of ESG. Al and
machine learning offer powerful approaches to deriving useful insight into sustainability reports and improving
the sustainability through the carbon footprints optimization.

2.3.1 AI-ENABLED ESG REPORTING

The ESGReveal is an LLC tool that uses natural language processing (NLP) models to identify structured
information in ESG reports and, therefore, allows organizations to understand their sustainability performance
more effectively. These are automated and scaleable Al based ESG compliance and reporting tools.

2.3.2 ESG RISK IN SUPPLY CHAINS MANAGEMENT.

The Al models are also capable of discovering ESG risk focal areas in the supply chain, which can allow the
organizations to engage in preventive measures to avert the possible destruction of the environment. Machine
learning algorithms, including the systems of predicting and quantifying ESG risks, like the environmental impact
of various supply chain operations, are essential in addressing ESG risks.
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2.4 DYNAMIC LEARNING IN PREDICTION OF CARBON EMISSIONS

Active Learning (AL) approaches may be utilized in a situation that entails scarce labeled data to investigate the
most informative samples of training machine learning models. The method enhances the effectiveness of model
training since it centers on the most important data points.

Active learning during sample selection: This active mode of operation aims to select a representative sample set
upon which the current management is going to develop and execute improvements in overall organizational
processes.

24.1 ACTIVE LEARNING WHEN CHOOSING A SAMPLE SET

This type of active mode of operation is intended to be used to select a representative sample set on which the
current management is going to base and implement changes in overall organizational processes.

Uncertainty sampling, query-by-committee, and diversity sampling are also active learning strategies that have
proven to be potentially useful to discover the most valuable data samples to train. These methods make better
data augmentation and may make the machine learning model to forecast carbon footprint more predictive in the
logistics sector.

2.5 BIAS IN CARBON FOOTPRINT PREDICTION MODELS

Although Al and machine learning models have great potential in forecasting carbon footprint, issues of biases
cannot be avoided because they can occur when models are being trained. The biases may take different shapes
and affect the precision of prediction particularly where data is unable to represent fully the complexities of the
supply chain, geographical diversity and environmental influences over carbon emission.

251 THE BIASES IN CARBON PREDICTION ARE OF TWO TYPES

The biases that are typical in the predictions of carbon footprint in logistics and supply chains using modelling
include:

Geographic Bias: Geographic areas may possess varying energy sources, ways to transport, and infrastructures
which may significantly impact carbon emissions. An example of this is that, the emissions of an urban area
predicted by data of an urban based logistics fails to reflect the rural areas, which use other means of transport,
like rail or river transport. A model that is trained mostly on the data collected in developed cities, might not work
well in the places involving less developed infrastructure.

Socioeconomic Bias: The socioeconomic condition of the areas where the operations of the supply chain take
place can also impact on the carbon emission. The economically advanced regions might experience a greater
availability of more efficient means of transport and other means of energy and the regions that are disadvantaged
economically might use less efficient forms of transport and this will result to high emissions of carbon. Predictions
on the data are biased and may result in over and underestimates of carbon footprints.

Bias on Transportation mode: It is the mode of transport (road, rail, air, and sea) that influences the carbon
emissions. Models that were developed based on observations of road-based transport, e.g. might fail when used
on any supply chain based on either sea transport or air transport since these modes are not characterized by
identical emission factors that need to be considered independently.

2.5.2 CARBON FOOTPRINT PREDICTION MODELS BIAS MITIGATION.

To enhance the accuracy and fairness of the prediction of carbon footprint, it is important to reduce the biases in
the training data. There are a number of approaches that can be used:

Balanced Data Representation: It is important to have the training data represented in various ways in different
geographic regions, transportation modes, and economic conditions as a way of lowering bias. This guarantees
that the model will acquire the actual differences in carbon emission in the various contexts.

Bias-Aware Machine Learning Methods: It is possible to use machine learning techniques that are specially
developed to reduce bias. In fact, training can be used to incorporate fairness requirements so that the outcome of
the prediction is not over- or under-represented by a given population group.

IJCRT21X0366 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ u213


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

Bias Auditing Tools: The presence of bias auditing tools that generate results from the model predictions and determine
inconsistencies with various demographic or geographical groups is critical. These instruments can show places where
the model is not functioning well or the predictions may be biased because data is biased giving an opportunity to make
corrective measures.

2.6 CURRENT TOOLS AND SYSTEMS USED TO FORECAST CARBON FOOTPRINT IN LOGISTICS.

A number of resources and tools exist, which help in the logistics of carbon footprint forecasting. Nevertheless, most
of them are not specifically focused on the sophisticated requirements of sustainable logistics or do not include built-in
solutions to reduce bias, make predictions in real-time, or use advanced Al-based optimization.

2.6.1 AI-POWERED PREDICTOR TOOLS OF CARBON FOOTPRINT:

Executable or accessible tools such as Al4Bharat or INLTK offer the fundamentals of models and ready networks that
are dedicated to energy consumption prediction and supply chain optimization. These platforms are feasible in
predicting carbon footprints in spite of the fact that they are more of a general-purpose platform rather than a carbon
predictions and bias-learned logistics one.

In addition, certain applications such as Google AutoML or Microsoft Azure ML offer the carbon footprint calculators,
yet they do not support active learning and real-time data progression active mechanisms which are essential in dynamic
logistics settings.

2.6.2 GAPS IN EXISTING PLATFORMS
As long as carbon emission can be forecasted using available platforms, there are severe gaps:

o Absence of Logistics-Specific Focus: A good number of tools in the market have been generalized, and
are not specific to logistics carbon prediction. These platforms might not be optimized by various means of transport,
geographical environments, or advanced supply chain activities.

o No-Code Interfaces: The category of platforms providing available no-code interfaces through which
logistics firms can access state-of-the-art machine learning and generative Al algorithms without strong technical
knowledge has a large gap.

o Bias Auditing and Active Learning: There are not many platforms that provide built-in bias auditing or
actively learn to get the most out of training data in techniques used to predict carbon. This is of particular importance
when it comes to low-resource environments or when different regions have different rates of data availability.

o Prediction of Carbon footprint: Most of the current systems would not be able to make a decision in real
time given the current environmental conditions, logistics of transport, or even supply chain dynamics. The carbon
footprints should be reduced through real-time optimization to ensure that live logistics work towards the minimization
of carbon footprints.

2.7 RESEARCH GAPS WHICH THIS THESIS WILL ADDRESS.

The literature discloses that there are major gaps in the current studies and tools that have been used to predict
carbon footprint in logistics:

o Absence of End-to-End, No-Code Solutions: No-code solutions that specifically combine the use of
state-of-the-art machine learning, generative Al, and bias auditing to predict carbon footprints in logistics are
deficient. This gap is filled in this thesis by creating a platform that enables its users to construct, deploy and
optimize predictions of carbon emissions without advanced knowledge and skills.

o Lack of Integration of Active Learning: The active learning has not been effectively used in the field
of logistics when it comes to choosing the most informative information to use in training carbon footprint
prediction models. This thesis incorporates multi-heuristic active learning to enhance the effectiveness of using
data and accuracy of prediction.

o Minor Attention to Logistics-Specific Emissions: The amount of current research does not fully focus
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on the models of emission of various logistics processes, including the differences between different transportation
modes and global supply chain variables. This thesis dwells on multimodal transportation fixing and real-time
choice.

o Reduction of Bias in Carbon Prediction: the available tools usually overlook bias in the training data,
and therefore give less reliable and reasonable predictions. This thesis incorporates bias auditing systems, as a
result of which the system constantly detects bias and corrects it during the prediction, particularly when working
with low-resource areas.

It is hoped that close to the gaps discussed in this thesis, by offering an alternative, integrative solution based on
machine learning, generative Al, and active learning to optimally predicted carbon footprint in logistics; with real-
time and bias-aware abilities to make sustainable decision.

2.8 SUMMARY

The project will target the low-resource conditions, which will offer a tool allowing real-time predictions and
implementing it in continuous feedback to update the model. This project will add to the creative results, methods,
and schemes to the expanding sphere of sustainable logistics and carbon footprint prediction by consolidating these
advanced methods and rendering them usable without advanced expertise in programming and other areas.

SYSTEM ARCHITECTUREAND IMPLEMENTATION

In this chapter, design and the actual workings of the Al-Powered Carbon Footprint Prediction Optimization
platform, outlining its major components, technology stack, and how one of its modules operates. The system will
forecast carbon emissions throughout the supply chain with an emphasis on sustainability in logistics and operations.
Combining the two concepts of machine learning and generative Al, the system will help to improve carbon footprint
management and provide the insights that can be utilized in the context of sustainability. It has a modular structure
which makes it flexible in case of future improvements and integrations.

31 HIGH-LEVEL ARCHITECTURE

The Al-Powered Carbon Footprint Prediction platform is based on the three-level Client-Server architecture which
is modular and scalable. The design optimizes the system performance, maintainability, and extensibility in
addition to making each component specialize towards a particular aspect of the functionality of the platform. The
major layers of the architecture are: Frontend (User Interface), Backend (APl Server and Core Logic), Data
persistence layer(Database). The system is also intertwined with the machine learning models and generative Al
services in order to deliver real-time predictions and detailed environmental summaries.

Figure 3.1.1.1 represents the high-level system architecture pointing out the key aspects of the system and
indicating the interactions between the major components.

311 KEY ARCHITECTURAL COMPONENTS AND FLOW

1. User Layer: End-users (logistics managers, sustainability officers, researchers), are the users of the
platform via a web interface, out of which they are able to add data to the supply chain and obtain carbon footprint
estimates.

2. Frontend Tier (Client-Side): the frontend is a web based application coded in reactence compiled
into frontend which uses HTML, CSS and Javascript with Flask works integration. User input (data upload,
sending requests in order to get predictions) is processed by the frontend. The interface is captivating and user-
friendly such that the user can interact with the interface. It also shows carbon footprint predictions, SHAP plots
as well as ESG reports that were created by the backend. It provides a RESTful API access to the Backend API
Server, which makes sure that the flow of data is secure and efficient.

3.

3. Backend Tier (Server-Side): The main part of the system is the backend, which is designed in Python using Flask
web framework. It takes care of user authentication, file uploading and communicating with machine learning models
to produce predictions. The back-end is connected with a number of models (Random Forest, XGBoost, LSTM, and
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GRU) to offer precise carbon footprint predictions. On top of this, generation Al applications are utilized to design
comprehensive ESG summaries and sustainability proposals, given the prediction.

4. Data Persistence Layer (Database): Data about the user, predictions in the past, and ESG-related information are
saved in the database. The relational database management system employed is MySQL which has guaranteed
protection of data and rapid retrieval. The backend connects to the database to access records of users, uploaded datasets
and reports that have been generated

5. Machine Learning Models and Al Services: The platform incorporates machine learning models to calculate the
carbon footprints based on the information submitted by customers. It applies the models such as the Random Forest,
XGBoost, and LSTM to make predictions and generative Al models to create ESG summaries and recommendations.
These models are implemented at the back end and the predictions are offered to front end and displayed to the user
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Uncertainty Estimation

Cross-Validation Results | | Business Metrics | Select Best Model

Model Registry & Versioning

Figure 3.1.1 1 Training and Inference Pipeline: This is a training and inference pipeline which illustrates how the
model should be trained, data is preprocessed and evaluated, and then the inference pipeline where user data are
processed, predictions are made and results displayed.

3.2 FRONTEND IMPLEMENTATION (FLASK/HTML/CSS/S)

The carbon footprint prediction system Al frontend will be constructed in a way that offers a smooth and interactive
user interface to those people who are paying attention to the mainstream functionality of the system. The frontend of
the system is created with the help of HTML, CSS and JavaScript whereby: it has a clean and responsive design. The
basic functionalities like registration of the users, logging in, data uploading, and previewing of the predictions can be
found in an organized and user-friendly page.

3.21 COVERS THE USER INTERFACE COMPONENTS AND PAGES
The frontend is split into peculiar pages, devoted to a particular characteristic of the app:

. Home Page (index.html): The home page will be the starting point where users can get to know about
the functionality of the platform and also get an opportunity to get registered or log in.

. Registration and Logln Pages (register.ntml, login.html): These are the pages, where user can create
the account and log in safely. They are linked to a user authentication and user management backend.

. Dashboard Page (dashboard.html): Once a user is logged in, a dashboard is provided and it is on the
dashboard where one is able to upload data, imagination of the previous predictions, and one is able to view the
results of the reports generated. Results are organized well in the page and there are download predictions.

o Prediction Page (prediction.html): This page gives the user the opportunity to post datasets, e.g.,
parameters on carbon footprint, and see the predictions given by the Al model. It displays predictions and a graphic
display of the findings.

o SHAP Plot Visualization (shap_plot.html): A system that produces SHAP plots to describe the
importance of features in carbon footprint predictions. The page presents the formed plots in a user friendly

IJCRT21X0366 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ u217


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
interface.

o Summary & Recommendations Page (summary.html): the users have access to the comprehensive
ESG summary and practical sustainability recommendations. It is a page that gives insights guided by model
predictions that explains to the users how they can minimize their carbon footprints.
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ESG Carbon Footprint Analysis Platform

Mobile Number

Already have an account? Login

Figure 3.2 1 User Registration Page - The page will enable the users to register on the system by filling their
information, creation of a username, and a security key password

ESG Carbon Footprint Analysis Dashboard Welcome, Dhayakar! @

| Choose file |No file chosen Generate Report

‘Tﬁns:ﬂion;ln ‘ Timestamp_Date ‘ Product ID ‘ Supplier_ID ‘ Region_Country ‘ Material Type \ Plant ID ‘ Warehouse 1D | Mode_of Transport = Vehicle_Fuel

inum. ‘ Plant8 W

TX14435 17-08-2023 12:39 | P0O004 50005 India ! lAlllminum ‘-;anlj Warehouse_5 Road

24-09-2021 14:07 Hmmz JB{M USA
TX14487 ‘ 18-03-2024 18:23 ‘ P0O005 50015
|

| TX 04-10-2021 07:25 ‘ PO003 S0016
1

(14488
‘o
‘ 4 1 ‘ TX14548 BS—OLZOZ! 23:09  P0O019 S0013 Aluminum Plant 3 Warehouse_6 Sea

‘ TX14607 26-09-2024 01:58  P0014 50006 Aluminum Plant 7 Warehouse_1 Rail Petrol

Figure 3.2 2Dashboard Page - The dashboard gives a summary of the past predictions, connects to SHAP plots,
and there also is a possibility to upload new data to make predictions
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ESG Carbon Footprint Analysis Dashboard Welcome, Dhayakar!

SHAP Feature Importance
(Bar Length Indicates Mean Absolute Impact)
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‘ P

Figure 3.2 3SHAP Plots Visualization - A visualization of SHAP plot that indicates the most impactful elements
in carbon footprint forecasting.

ESG Carbon Footprint Analysis Dashboard Welcome, Dhayalar! m

<

ESG Summary Report

b

1. Overview of Key Drivers

The analysis of CO2 emissions highlights that energy consumption is by far the most dominant driver, with Energy_Consumed_kWh and Energy_Use_kWh
collectively representing the primary determinants. This indicates that operational energy intensity directly correlates with the organization’s carbon footprint.
Beyond direct energy use, the scale of operations, including Load_Weight kg, Quantity_Purchased, and Output_Units_Produced, significantly contributes to
emissions, reflecting the impact of material flow and production volume. Transportation, as indicated by Distance_km, is also a notable factor. Furthermore, indirect
contributors such as Waste_Generated kg, the carbon intensity of the Energy_Source_Supplier, Vehicle_Efficiency, and the Supplier_Emission_Factor underscore the

importance of comprehensive supply chain and operational efficiency considerations, even if these are less dominant individually.
2.5 Risk Hotspots

The overwhelming reliance on energy consumption presents the most critical ESG risk hotspot, primarily impacting Scope 1 and Scope 2 emissions. This exposes
the organization to substantial regulatory risks, including potential carbon taxes, stricter emission standards, and increased compliance costs. Operational scale
and related inefficiencies in material usage and production volumes introduce significant Scope 3 emission risks through purchased goods and services. A failure
to address these high-impact areas could lead to considerable reputational damage among investors, consumers, and other stakeholders who increasingly
scrutinize corporate environmental performance. Additionally, vulnerabilities exist within the supply chain concerning supplier energy choices and emission factors,
as well as the efficiency of internal and external logistics, which together present both financial and reputational risks.

3. Actionable Recommendations

Energy Efficiency and Decarbonization: Implement an aggressive energy efficiency program focused on high-consumption areas. Invest in modern, energy-

efficient equipment, optimize operational processes, and deploy smart energy management systems. Transition to 100% renewable electricity p

Figure 3 2 4Summary Page Interface - This is the interface that shows the generated summary of the carbon
footprint forecasts and suggestions as well as visualizations.

3.2.2 API COMMUNICATION (AJAX/FLASK)

To make communication with external API and share information among the different parts of the system, we will
use APl communication (AJAX/Flask).

The status of dynamic interactions of the frontend and the Flask background is controlled by AJAX calls
incorporated in RESTful API calls. This provides seamless communication when users post data, get predictions
or look at summaries. These requests are processed at the backend side with the help of Flask routes and appropriate
response (prediction results and SHAP plot images) is provided. The front end is AJAX based, making an
asynchronous call to the backend that dynamically updates the user interface, without having to reload the page
thus providing a fluent user interface.
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3.3 BACKEND IMPLEMENTATION (FASTAPI/PYTHON)

The Al-based Backend related to the Carbon footprint prediction system will be formed so that it performs the task
of data processing and model inference, as well as conducts interactions with the front end. It is written in Python
and Flask which is a lightweight web framework and which gives it a convenient means to serve requests and
deliver HTML pages.

3.31 API ENDPOINTS AND ROUTING

The backend structure has been divided into various APl endpoints to process user registration, data uploads,
prediction generation and model explanations. These include:

o POST /register: This is user registration, it accepts user details and safe-stores them in the database.

o POST /login: This allows users to be authenticated based on their credentials and a session token is
issued to them so they can use to log in.

o PUT /upload: Takes carbon footprints data (CSV, Excel) and predicts its values based on the trained
machine learning models.

o GET /prediction-results: Response with predicting results and displays them in the frontend.

o GET /shap_plot: Enhances a SHAP plot that will be used in model interpretability and display the plot

in form of an image.
The response to this question is yes, and we will proceed with it in model inference and prediction right now.

3.3.2 MODEL INFERENCE AND PREDICTION

The model inference entails retrieval of an already trained machine learning model (e.g., XGBoost or Random Forest)
in the model repository and the prediction of carbon footprints of the user-uploaded data. These are the steps involved
in the backend:

o Data Preprocessing: The data uploaded is cleaned and made normal to fit into the model.

o Generation of prediction: Once preprocessing is done, the information is entered into the trained model
and the result is the prediction of the carbon footprint.

o Feature Importance (SHAP): SHAP values are created by the backend to show what features were the
most relevant when making a prediction. The SHAP plot is developed using this information and shown on the
frontend.

o Result Return: SHAP plot and the prediction outcomes are sent to the frontend as a usable value.
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Gemini Al
ESG Report Generator

Figure 3.3. 1 Backend Processing Flow - This diagram shows the data flow of user input to prediction output that
contains preprocessing and model inference

3.3.3 DATA HANDLING AND STORAGE

The software is based on MySQL database, where the information about users, past predictions and processed data
are stored. This provides data storage and retrieval security to support user-login, saving the predictions, and
creating the report capabilities.

o Database Schema: The database would contain some tables, including users, predictions, data, and shap
values, to make all the information required. They are all interconnected with one another, and the data retrieval
and management are feasible.

. Data Processing: The user uploads files (including CSVs or excel files) which are then processed into
pandas DataFrames with which model prediction is possible

34 THE SCHEMA AND MANAGEMENT OF THE DATABASE (MYSQL/SQLALCHEMY)

The Al-Powered Carbon Footprint Prediction system follows a MySQL database to persist its data by using
SQLAIchemy ORM. This is a powerful relational database system that is scaled and capable of managing data
effectively. Functions in backend/app/db/crud.py handle CRUD (Create, Read, Update, Delete) operations and the
data structures used to interact with the APIs are defined using pydantic models in backend/app/api/v1/schemas.py,
which are usually based on the SQLAIchemy models.

KEY DATABASE MODELS (TABLES)

o User (users table): Contains user data, such as userid, username, email, password hash and roles (e.g.
anonymity:admin, user). This table plays a very significant role in controlling the authentication and authorization of
users.
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Table 3.4 1 A database structure of carbonfootprint_users table, which identifies important fields to use in tracking
users

3.4.1 DATA INTEGRITY AND RELATIONSHIPS

Different models are defined using SQLAIchemy like how many prediction results can be related to one user in the
case of one-to-many relationship between the rows in the CarbonFootprintPrediction and PredictionHistory table. On
the same note, there is a one to one relationship between ESGReport and CarbonFootprintPrediction. Each API request
is managed with the dependency injection system provided by FastAPI (through Depends (dbsession.getdb)) to provide
consistency and easy interaction of the data. The database is operated by all through CRUD utility functions and this
makes interacting with the database easier and maintains compliance of the code.

35 INTEGRATION WITH Al MODELS AND SERVICES

The Carbon Footprint Prediction system is a Al-powered system that combines multiple Al models and services
in order to provide precise predictions of the carbon footprint and the ESG analysis. These integrations involve
external cloud-based integrations and locally hosted integrations so that both flexibility and access on state of art
technologies can be availed as well as offline capabilities can be provided in case of necessity.

3.5.1 GOOGLE GEMINI API INTEGRATION

The system combines with Google Gemini API with the help of Google-generative-ai python SDK.
. Configuration: The API key is contained in settings. GEMINIAPIKEY and gemini-2.5-flash

model identifiers are used to start Gemini models.
Usage:

- Carbon Footprint Prediction: Data is processed and predicted using the Gemini API to predict the
values of carbon footprint according to the input data using machine learning models to predict.

- ESG Analysis: Gemini API assists in the analysis of the environment, social and governance (ESG)
by generating appropriate reports and summarizing valuable insights.

. Rate Limiting: A rate-limiting can be set up to prevent overshot of rate limits of the API, and a delay is
established in the settings. GEMINIAPIRPMDELAYSECONDS and built into rate prevalence of client library.
3.6 WORKFLOW EXECUTION AND MANAGEMENT

One of the most important aspects of the Al-Powered Carbon Footprint Prediction system is the ability to run user-
defined workflows allowing to run multi-step carbon footprint prediction and ESG analysis with data.

3.6.1 WORKFLOW DEFINITION AND STORAGE

Workflows are to be seen as a collection of interconnected nodes (Input, Process, Output): Data flow defined by
these nodes and their connections. These workflows are stored on the database in a form of JSON objects that can
be easily retrieved and executed. The Process node can be programmed to either apply manual prediction models,
or Al-based controllers and the corresponding user-specific parameters.

3.6.2 EXECUTION LOGIC
When a workflow is triggered:
3.6.2.1 The input dataset will be taken in form of a CSV, TXT etc. and even then, the backend will read the
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input and load it into a DataFrame which can then be processed.

3.6.2.2 The workflow is then carried out by the following series of nodes;
o Input Node: Lades the dataset and prepares it and prepares it.
o Process Node:

When the approach is manual, the system will call pretrained Al models, like a pre-trained Hugging Face
Transformer or a Gemini model to make predictions or analysis.

When it is an Al-based approach, the system invokes an agentic model such as Gemini or some other pre-trained
model to produce insights, predictions or ESG metrics.

o Output Node: signifies the end of the working process. The findings, prediction information, ESG
measurements, and analysis reports are stored and kept to the user.

3.6.2.3 Output of any one node is made the input of the successive node and this ensures flow of things through
the pipeline is smooth.

3.7 FUTURE ENHANCEMENT MODULES IN DETAIL

3.71 AGENTIC AUGMENTATION FRAMEWORK- FUTURE IMPROVEMENT

One of the major future improvements of the Carbon Footprint Prediction system is the use of the agentic framework
that automates and optimises the choice of prediction models with the help of multi-armed bandit algorithms.

AGENTICAUGMENTER IMPLEMENTATION

o The AgenticAugmenter is an augmenter class which drives manual and agentic augmentation:

o Strategy Overview: The adddefaultstrategies() approach establishes available strategies defining
language specific models using backend configuration.

o Manual Augmentation: The manual augmentation type is augmentdataframe() which uses one strategy to
operate on a dataset.

o Augmentation agentically: The agentic loop agenticaugmentdataframe() The agentic augmentation loop:
1. Asks bandit controller to choose the strategy.

2. Impresses the chosen strategy.

BANDIT CONTROLLERS

o EpsilonGreedy Controller: With a probability of E, the strategy with the largest Q-value is chosen, and
otherwise a random strategy is chosen with a probability of 1.

. ThompsonSampling Controller: The strategies are selected with the help of a Beta distribution to describe
the probability of success.

DEFAULT REWARD MECHANISM AND HITL INTEGRATION
In the absence of a custom rewards:
1. Automatic reward is computed by the system and is usually Levenshtein based.

3.7.2 In case there is HITL feedback, there is an overruling of the automatic reward and the human feedback can
assist with what is being learned. ADVANCED AGENTIC ORCHESTRATOR

Orchestrator Advanced, facilitates the promotion of performances that are engineered using electronic transmission
among orchestral instruments such as the clarinet and violin within a physical orchestra.

AdvancedAgenticOrchestrator improves the control over the process of reward shaping and optimizes the process
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to achieve better results

ADVANCEDREWARDCALCULATOR

1. The component calculates the composite rewards based on several aspects of quality:

2. Semantic Similarity: It quantitates the similarity of original text and augmented text in their cosine.
3. HITL Feedback: Human ratings are included in the calculation of the reward.

4, Combined Score A weighted mean of semantic similarity, Levenshtein change, and HITL feedback.
METACONTROLLER

The optional Epsilon-Greedy agent which chooses between base controllers (EpsilonGreedy, ThompsonSampling)
depending on average rewards obtained:

o The base controller is chosen in the Meta Controller.

o Augmenter AgenticAugmenter performs the work of augmentation.

o Refinement of rewards is carried out with AdvancedRewardCalculator.
o The extensive orchestration metrics are recorded as transpired.

3.7.3 HUMAN-IN-THE-LOOP (HITL) DATA FLOW AND EXPLAINABILITY
The HITL process supplements the human feedback in augmentation process:

SAMPLE GENERATION

At the end of the job, a subset of original-augmented pairs will be saved to HITL attention, and they will include:

. Strategy Details: Data on back-translations, substituted words, and models of LLM
. Agent Rationale: Rationalisation of agent decisions
. Text Diff: Differences between augmented and original text.

3.74 ACTIVE LEARNING SAMPLE SELECTION

The ActivelLearningSampler is the most effective in the augmentation process because they choose optimally
effective samples on the basis of heuristics:

INITIALIZATION AND RESOURCES

. Transformer models are loaded to calculate diversity.
o Rary list Frequency lists of rarity and complexity scoring.
o Gemini API An LLM model of informativeness, which falls back to Gemini

IMPLEMENTED HEURISTICS
o Diversity Sampling: picks selected texts semantically related

o Rarity/Complexity Sampling: It involves rarity of words and complexities
of the sentence

. LLM Informativeness: Assessed the texts by how informatively they appeared

SAMPLE SELECTION PROCESS
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Rates by the heuristics chosen:

1. Standardises the scores and sums it up into a obtained score.
2. Gives the augmentation of the best N texts

3.7.5 MULTI-FACETED BIAS AUDITING

This module is writing about the issue of fairness since it audits text on the bases of analysis of the key words:

KEYWORD-BASED DETECTION

. A BIAS_KEYWORDS Dictionary identifies bias in around 5 categories including gender, region,
religion, and socioeconomic status.

. The system relies on the regular expressions to match the keywords

e Report Generation:

- It produces structured JSON reports on the appearance of keywords, warnings, possible bias that was
identified in the input text.

- The duties of the managerial level will involve the setup of the prospective workflow (non code) to
operate as a strategic quality management system (NCSBN, 2018).

- The site enables anyone to create sophisticated process workflows without any code writing.

3.7.6 NO-CODE WORKFLOW CONFIGURATION

WORKFLOW DEFINITION STRUCTURE

JSON workflows capture:

. Workflows are the basic units of data flow to describe the nodes and edges of the data flow as a
JSON structure.

o Nodes are different stages which include input, augmentation and output and each has the ability to
be configured

VISUAL BUILDER INTEGRATION
. VueFlow library allows to graphically create workflows using the drag-and-drop interface.

. Dynamic panels have the ability to configure node parameters on the fly, and a workflow is serialised
into a JSON representation that is saved.

EXECUTION ENGINE
o Information runs through all the nodes that are connected in a linear manner.
o Enables language overrides and job monitoring and outcomes

3.7.7 DASHBOARD AND ANALYTICS

The dashboard gathers and integrates metrics obtained by the backend, which give information about the
functionality of the system
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METRICS AGGREGATION
o Performance analysis and calculation of ROI of various strategies and controllers.

o HITL feedback history and analytics in the form of job numbers and processing time.

VISUALIZATION SUPPORT

The backend provides aggregated metrics via an API and the frontend displays the information in a graphical user
interface (Chart.js) to show the user useful information about their workflows and job statuses on the dashboard.

3.8 CONCLUSION

In this chapter, the details about the architecture and the main functionality of the Carbon Footprint Prediction system,
including its modularity and the need to combine powerful Al models, were described. The three-tier architecture of
the platform is also scalable and its hybrid nature of deploying cloud-based and local Al models can be adjusted to
fit a variety of deployment situations. They consist of agentic framework of automated model selection, human-in-
the-loop integration of continuous refinement, bias auditing of fairness, active learning of efficient sample selection,
and no-code workflow design of easy customization. Such innovations make the system capable of changing to fit
the new demands which keeps it relevant and efficient in its prediction of carbon footprint in different sectors.

EXPERIMENTAL METHODOLOGY

This chapter describes a methodology of the experimentation process employed to measure the effectiveness and
performance of the Carbon Footprint Prediction system. It also gives a comprehensive description of the datasets the
researchers have used to train and evaluate along with the different environmental and industrial variables needed in
the process of carbon footprint prediction. The approach provides the description of the model training stages,
hyperparameter optimization, and model testing that discusses the specific research goals. It also describes the quant
performance measures that apply to a quantitative analysis (accuracy, precision and recall) and the qualitative
measures, i.e., model explainability. The experiments were carried out and validated on various aspects of the
developed platform whereby data were processed using python scripts that enable model training and evaluation of
the results to measure accuracy and consistency.

41 OVERVIEW OF EXPERIMENTAL PHASES AND RESEARCH QUESTION MAPPING

The empirical testing on the Al-Powered Carbon Footprint Prediction system was administered in specific phases of an
experiment that were created to provide answers to a particular research question (RQ). The series of experiments was
arranged in such a way that the lessons learned during the previous phases informed the decision-making of the subsequent
experiments and their interpretation.

Phase 1 (Baseline Performance and Model Evaluation): This phase aimed at setting the baseline performance
of the machine learning models (Random Forest, XGBoost, LSTM, and GRU) in carbon footprints prediction. It
also compared the modification initially caused by preprocessing methods and feature engineering on the accuracy
of prediction. This stage responded to early aspects of RQ1, which were on the efficacy of prediction models.
Phase 2 (Model Comparison): In the phase, the performance of several machine learning models was compared
and hyperparameters were tuned in order to select the most optimal with regard to carbon footprint prediction.
This answered RQ2, which was to examine both the trade-offs between predictive accuracy and model complexity.
(Performed in relation to scripts/runmodelcomparison.py).

Phase 3 (Effect of ESG Summaries and Recommendations): This phase assessed the performance of the ESG
generation of summaries as well as recommendations by considering how well the system will give actionable
insights and recommendations about sustainability based on the model predictions. This answered RQ3, which
incorporated the quality and usefulness of generated summaries. (Subsequently implemented through
scripts/runesgsummaryexperiments.py).
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Phase 4 (Scalability and Model Performance on Data of Large VVolume): This phase indicated how the system
can perform as its prediction data and complexity of the model increase. It tested the behaviour of the optimal
models that were different in Phase 2 in large volumes of data and whether the accuracy of prediction was
influenced by the quantity of the data. This answered RQ4 which concerned model scalability. (Arbitrated through
scripts/runscalabilityexperiments.py).

Phase 5 (Feature Importance and SHAP Visualization): At this stage, the concern was to measure the
interpretability of the model predictions by assessing feature importance through SHAP values. It also sought to
establish the most influential attributes in the prediction of carbon footprints. This answered RQ5 which is the
explainability of the prediction models. The execution is done through scripts/runshapexperiments.py.

Phase 6 (Active Learning of Sample Selection): In this phase, the value and importance of the model training
was explored in terms of the wording of diversity and informativeness as active learning heuristics to use when
extracting the most valuable samples to include in the model training. This step was dealing with RQ6 as it looked
at the possibility of active learning to enhance the model performance when considering sustainable logistics and
predicting carbon footprint. (Implemented through scripts/runactivelearningexperiments.py).

The study questions of RQ7 (Impact of ESG Risk Hotspots) and RQ8 (Comparison of Prediction Accuracy
Across Different Industries) were established as future research directions, and the groundwork was made on the
current stages.

4.2 DATASETS

The Al-Powered Carbon Footprint Prediction system experiments involved some data sets to train, evaluate, and
fine-tune the prediction models. Preprocessing of these datasets was done so that the prediction also is discreet and
accurate.

421 DOWNSTREAM TASK DATASET: CARBON FOOTPRINT PREDICTION (CUSTOM SPLITS)

o Carbon footprint prediction was the main activity that needed to be performed to measure the
effectiveness of data augmentation and the quality of the model.
o Data Source: Personal dataset obtained in the form of environmental reports and supply chain

information, such as parameters such as the type of material, mode of transportation, energy usage, and carbon
emissions.

o Languages: The data will be various in terms of industries, crafting several types of manufacturing,
transportation and farming supply chains.

o Experiment Preprocessing: The initial data are in CSV form, which was pre-processed in response to
outliers and values missing. A stratified sampling method was used to generate the custom training, validation and
test splits so that the sampling had similar class distributions. It used the scripts/preparedownstreamcarbondata.py
script with a fixed RANDOMSEED = 42 so that it could be reproducible. The obtained files (e.g.,
carbonfootprinttrain.csv, carbonfootprintvalidation.csv, carbonfootprinttest.csv) were sued in
experimentdata/downstreamtasks/carbon footprint and then employed in training and testing the model.

Industry Train | Validation | Test Total
Manufacturing | 10,500 | 2,250 2,250 | 15,000
Transportation | 10,500 | 2,250 2,250 | 15,000
Agriculture 10,500 | 2,250 2,250 | 15,000

Table 4.2. 1 Custom Train, validation, and test splits on Carbon footprint Dataset

Remark: The distribution of all splits is stratified between high and low classes of carbon emissions. The
hyperparameter tuning or additional analysis can be done using the validation split.
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422 DATASETS (LOGISTICS CARBON FOOTPRINT)

Carbon footprint prediction model uses a wide range of features pertaining to different levels of logistics supply
chain. The data to be used in this project is essential in the training of machine learning models to forecast the CO2
emissions successfully.

Data Source: Synthetic data on supply chain and environmental data .

Usage: In this project a synthetic dataset was uses simulating transaction-level data in the supply chain including
supply chain-specific product and energy consumption data, transportation mode, and supplier-specific emissions
factors. Although this data was simulated to provide a controlled testing experience of the models, it is rather
realistic in terms of the real-life data in logistics. Custom scripts were used to clean, scale and encode the data into
machine learning friendly format using a dataset that was preprocessed. An example of the preprocessing pipeline
was written to support missing values, one-hot encode categorical variables, and scale numeric with standard
scaling procedures

The processed data in CSV formats (e.g. logisticsemissions_data.csv), might be utilized later, e.g. by adding real-
life logistics data of companies or by improving the process of feature engineering. Though the synthetic dataset
was employed in this thesis and is done as an experimentation, it is a reference point to which it could be used in
real-life problems where live information might be introduced within the prediction line.

43 CO2 PREDICTION: CARBON FOOTPRINTS

In order to empirically measure the performance and utility of the machine learning models used in predicting
carbon footprint, which is a downstream task, a prediction of CO2 emissions was chosen. In this evaluation
exercise, influential metrics were to be measured which include the performance of the trained models (Random
Forest, XGBoost, LSTM, and GRU) in predicting accurately, the total CO2 emissions of logistics transactions.

The root mean squared error, the summary of the model in terms of the accuracy and reliability of the model via
performance measures like the Root Mean Squared Error (RMSE), the Mean Absolute Percentage error (MAPE),
and the R2 (Coefficient of Determination) were taken to measure the model accuracy and reliability. These metrics
give information on the model predictive abilities of the models to the emissions using the input characteristics of
energy use, modes of transport, supplier emission characteristics, and external characteristics such as weather and
the cost of fuel. These metrics allowed to measure the effectiveness of various preprocessing plans, feature
engineering tools, and model structures, which is why the most effective model has been chosen and used to make
predictions related to emissions in the logistics.

431 MODEL ARCHITECTURE AND FINE TUNING

Model architecture offers a platform, which enables computer models to be developed, designed and run in a
reliable way to ensure that the code functions as intended and manages resources efficiently.

In order to predict the CO2 effect and the sustainability strategy in the logistics operations, we have employed pre-
trained machine learning models fine-tuned to particular tasks predicting the carbon footprint and the feature
importance analysis. The main models used were Random Forest, XGBoost, LSTM and GRU. These models were
optimized so as to be tested on the synthetic data set of different features of the supply chain such as energy
expenditure, mode of transportation and external aspects such as the cost of fuel and weather conditions

Implementation: The process of fine-tuning and evaluation was realized with Scikit-learn of Random Forest and
XGBoost, and TensorFlow/Keras of LSTM and GRU models. This pipeline takes care of the data preprocessing
process, model training process, and model evaluation process.

Setup for Fine-tuning:

o Model Initialization: We used pre-trained models, loaded ones, and adjusted them to regression to use
them in procedures related to CO2 emissions. In the case of both Random Forest and XGBoost, the default settings
were applied, and the models were adjusted in the prediction of the continuous CO2 emissions, regarding the
characteristics in the dataset. In the case of LSTM and GRU, the sequential time-series data were processed using
pre-trained embeddings to forecast (temporal) emissions. The initiative of a regression head was given on the
encoder top.

o Data Preprocessing: StandardScaler was used to normalise numerical features (e.g., energy use, distance
travelled) which makes identical scaling use in both model architectures. OneHotEncoder was used to encode
categorical features
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Key Hyperparameters of Fine-tuning:

o Epochs: In the case of LSTM and GRU, the models were trained on 50 epochs, batch size (32). This
has been selected because it enables the models to converge and still have effective training times.Random Forest
and XGBoost did not explicitly support training models across multiple epochs but instead they utilized cross-
validation to assess the model.

o Batch Size: In the case of LSTM and GRU, the batch size is 32 at both the training and evaluation
stages to provide both the efficient use of memories and quicker convergence.

o Optimizer: In all three cases, LSTM and GRU were optimized with Adam and an initial learning rate
of 0.001, which is reported to be effective on large datasets with sparse gradients

o Learning Rate Scheduling: LMST, and GRU had a ReducingLROnPIlateau learning rate scheduler to
decrease the learning rate after the validation accuracy ceased to improve to avoid overfitting and improve
convergence.

o Weight Decay: In the case of XGBoost, 0.01 as weight decay was used to prevent overfitting, and it
was added to the objective function of the final model.

o Evaluation Strategy: In the case of XGBoost and the Random Forest, RMSE and R2 were taken as
evaluation metrics. In the case of LSTM and GRU, the Mean Absolute Percentage Error (MAPE) was also
considered to assess the effectiveness of the model better

o Best Model Selection: In the case of LSTM andGRU the model with the highest R2 score on the
validation sample was used. In both cases of Random Forest and XGBoost, the most suitable model was one
obtained through the cross-validation, whereby both the RMSE and the interest of the model were minimized.

o Mixed Precision: Assuming that a CUDA enabled graphics card was present mixed precision training
(fp16=True) was used on both LSTM and GRU models to accelerate training and cut down on memory
consumption.

Fine-tuning Results:

The XGBoost and Random Forest had shown good results in the prediction of CO2 emissions depending on the
importance of features.

The LSTM and GRU models performed well in model temporal dependencies within the emissions data, and its
performance was higher when dealing with long-term prediction.

With careful adaptation of these models to the task of carbon footprint prediction, the system can provide precise,
scalable, and practical predictions, which may be used to streamline the logistics operations towards being more
sustainable

4.4 EVALUATION METRICS

The performance of the Al-Powered Carbon Footprint Prediction Optimization System on various stages of the
model development and deployment process has been assessed with the help of a set of metrics.

441 MODEL PERFORMANCE METRICS

The major goal of the system is to forecast CO2 emissions and optimize the sustainability strategies according to
the provided data. To estimate predictive performance of the trained machine learning models, the following
standard regression measures were used.

o Root Mean Squared Error (RMSE):

RMSE is used to quantify the commendable size of the prediction errors and are calculated as the square root of
the mean of the squared disparity between the predicted and actual value. Reduced RMSE implies a good model
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performance.

The value of 1.42 could be interpreted as an error margin that the company committed when predicting financial,
managerial, and economic estimates

o Mean Absolute Percentage Error (MAPE):

MAPE is used to scale the errors of prediction based on their comparison with the real figures occupying the
percentage scale. It assists in determining the accuracy of the model particularly in the prediction of CO2 emissions
which may be highly different among various transactions.

o R2 (Coefficient of Determination):

R2 shows the quality of the model in explaining variance of the target variable (CO2 emissions). An increase in
the R2 value (as it is nearly at 1) also means that the model is able to explain a lot of the variation of the CO2
emissions data. Importantly, the SHAP values are explained through descriptive statistics: mean, median, mode,
and standard deviation.

o Feature Importance (SHAP Values):

The values SHAP ( SHapley Additive exPlanations ) obtained specify the influence of what features (e.g. energy
consumption, mode of transport, weather, etc.) are the most influential to the predictions of the model. The metric
is crucial in explaining the contribution of the various factors to prediction of CO2 emissions.

442 MODEL SELECTION AND EVALUATION
The key steps of finding the best performing model were the following that were used during model evaluation:

o Model Selection: The optimal model was chosen according to the R2 and RMSE value. To determine
what model to use in the project, one can use the GRU model, and the best observation on the prediction of CO2
emissions was achieved with the RMSE of 25.4322 and R2 of 0.9754 using the test dataset. Comparisons will be
made between model performances post-implementation and pre-implementation of the aforementioned
recommendations.

o Model Performance Comparisons: Comparisons between the model performances will be made
between the model performances that will be after and before the implementation of the above recommendations.

o The RMSE, MAPE, and R2 measures were used to compare the performance of the Random Forest,
XGBoost, LSTM, and GRU. The XGBoost and the Random Forest models were able to give strong results but
GRU outshone the other models in the ability to capture the time-series effects on emissions data.

443 GENERIC Al INSIGHTS
In the case of the Generative Al part, the metrics applied to assess the usefulness and accuracy of the generated
sustainability insights were as follows:

o ESG Risk Hotspots: The system maps possible hotspots of ESG risks in the chain of supply. These
hotspots are the locations that the carbon emission is most likely to be more effective, and they can make businesses
concentrate on the most significant spheres to optimize the operation.

o Sustainability Recommendations: The generative Al offers practical solutions to the minimization of
emissions and optimization of logistics functions. All these recommendations were considered considering the
relevance and feasibility of the recommendations and the feedback of domain experts was used to improve the
system outputs.

444 SYSTEM PERFORMANCE METRICS:
Besides checking the model, the processing speed and efficiency of the system as a whole was also tested:

o Inference Time: The generation time of creating predictions and insights was important to the
assurance of the system being able to deliver results with a reasonable amount of time. The inferences took 5-10
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seconds to finish meaning that they were processed efficiently in case of large datasets.

o Scalability: The test that was conducted was on the capacity of the system to process large datasets
(i.e., 1,000 to 10,000 transactions). The response time of the system was good even when handled with large input
files, it was also scalable.

445 BIASED DATA AUDIT METRICS

To achieve fairness and render transparency in the model predictions, most especially in the process of establishing
the ESG risk hotspots, a bias audit has been conducted. In this audit, predictions of system were assessed
concerning any disproportionate impact based on any feature like Region or Energy Source.

o Bias Metrics: The system recorded the metrics of biases to make sure that no specific group of suppliers
or any regions was discriminated against in the predictive decisions. The model parameters or training data were
modified to remove any important biases in the model.

45 RESEARCH QUESTION EXPERIMENT SET-UP

The following section describes configurations and procedures to be employed in solving the following research
questions of Al-Powered Carbon Footprint Prediction Optimization System. The experiments were required to
compare different machine learning models and how the different hyperparameter configurations affect the
sustainability and knowledge of the predictions. The experiment was performed at several stages to test the
performance of the model, data augmentation methodologies, and generative Al integration to make actionable
recommendations.

451 SETUP OF RQ1: MODEL PERFORMANCE AND EFFECTS OF DATA AUGMENTATION (PHASE
1 AND PHASE 4) EVALUATION

The main stages of this research question (RQ1) were to test the performance of the baseline model and then to
test the performance of the advanced data augmentation strategies with the help of the random forest, XGBoost,
LSTM and GRU. The aim was to comprehend the performance of carbon emission prediction objectives of various
augmentations (data pre-processing and feature engineering).

PHASE 1

Purpose: the purpose is the comparison of the baseline models with augmentation strategies, e.g., data
normalization, scaling, one-hot encoding.

Input Data: The complete dataset, which includes the data on transactions, energy usage, transportation
furtherance, and emissions by the suppliers.

Augmentation: The data was augmented using the standard techniques, such as scaling features and encoding the
categorical data.

Configurations:

o Random Forest (EpsilonGreedy and ThompsonSampling):The default model training with a few
augmentations.

o Evaluation: RMSE and R2 were used to measure predictive accuracy of the models by training and
evaluating them.

PHASE 4

Purpose: To experiment the further development of reward structures and meta-controller based augmentations to
enhance predictive performance of the model.

Configurations:
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1. Augmented Meta-Controllers: Rewards setting To achieve higher predictive quality and
showcase feature significance.

2. Comparison: Compare the effectiveness of augmentation based on sophisticated reward
configurations (e.g., semantic similarity, Levenshtein distance).
452 SETUP FOR RQ2 & RQ4: ACTIVE LEARNING EFFECTIVENESS AND SYNERGIES (PHASE 2)

The goals of the experiment were to compare the various Active Learning (AL) strategies and compare how Active
Learning can be used to enhance the predictive power of the model (by using the most informative data samples
in training).

Aim: To evaluate the success of AL strategies including Diversity, Rarity and Informativeness and combinations.
Input Data: The initial dataset, where samples have to be augmented.

Augmentation: Gemini-based paraphrasing techniques of augmenting the sampled data.

Configurations:

o Original: No augmentation and original data only.
o Random Sampling: N samples were picked at random in the dataset and augmented.
o AL Diversity: The data is selected based on the diversity of features.

Data Construction: The last training data was formed by mixing the original training data with the chosen
augmented samples, so that the model would be able to control different complexities in the training data.

453 SETUP FOR RQ2 & RQ4: ACTIVE LEARNING EFFECTIVENESS AND SYNERGIES (PHASE 2)

The research question has been able to assess the possible biases in the prediction of the model with several
characteristics such as supplier emissions and mode of transportation. The bias analysis was used to show areas
where the model could possibly give unjust predictions due to non-representative or prejudiced data.

Purpose: To determine and compare the bias characteristics of original and augmented dataset.
Datasets Audited:

o Original Dataset

o Artificial Data in Phase 1 and Phase 2 Test.

454 AUGMENTATION VOLUME SATURATION ANALYSIS (PHASE 5):

The aim of this experiment was to be able to tell the effect of the inclusion of additional augmented data into the
training set on performance. The aim was to determine whether increased amounts of augmented data can result
in substantial generation of model accuracy and sustainability hints.

o Background: The objective aimed at understanding how downstream model performance changes
with augmentation volume.

o Augmentation Volumes: Augmentation was also experimented at various rates (e.g., 0.25, 0.5, 1.0,
1.5 and 2.0 times the original dataset size). Augmentation Sampling Augmentation involved the sampling of texts,
which was then used to generate additional data in the form of the Gemini Al system.

o Training Data Construction: The training set was finished by taking a mixture of the initial data and
varied volumes of augmentation.

4.6 CONCLUSION

The experimental design offers a full critique of the different machine learning and active learning algorithms,
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their performance and how the augmentation strategies affect the accuracy of CO2 emission prediction. The phases
in a systematic way concern the issues of model performance, audit of the bias, and synergy of AL and
augmentation thus the final model should be robust, accurate, and efficient. These experiments will imply future
advancements in Al-based carbon footprint prediction, and eventually allow a business to make data-driven
decisions related to sustainability.

EXPERIMENTAL RESULTS AND ANALYSIS

The chapter discusses the overall experimental findings of analyzing the Al-Powered Carbon Future Optimization
system under different machine learning algorithms, data preprocessing policies, model configurations and policy
indicators. A dataset on features of various stages of a supply chain including procurement, manufacturing,
warehousing, and transportation was used so that the experiments could predict the CO 2 emissions. The findings
are presented in terms of the research objectives stated in Chapter 3, which gives empirical data to answer each of
these objectives.

The downstream prediction task has its performance measures which are mainly concentrated on the Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and the R2 scores in the held- out test set. Also,
some of the features of the system, such as the capability to develop actionable insights with the help of SHAP plots
and ESG risk hotspots detection with the help of Gemini Al, are assessed. Performance of the models, their strengths
and weaknesses in various algorithms are well analyzed in the sections below.

Data overview: This demonstrates the data held within the database hierarchy as shown in the database.
Configuration overview: This shows the information stored in the data base structure as indicated in the data
base.

o Dataset: It is composed of some transaction records containing data about product types, supplier
emissions, energy consumption, transportation data and other outside factors such as weather and fuel prices.

o Models Compared: The evaluation of following machine learning models was done to predict the CO2
emissions: Random Forest, XGBoost, LSTM and GRU.

o Performance Metrics: The performance of RMSE (MAPE, R2) was used to evaluate the predictive
power of the models.

51 PERFORMANCE EVALUATION MODEL
511 Random Forest

Random Forest model showed a good prediction on CO2 emissions. On the test set, the model had an RMSE of
36.2596, MAPE of 1.55% and R2 of 0.9508. The findings show that the predictive capability of the Random Forest
is strong and the model predicts the emissions with high accuracy albeit with a slightly higher error rate than the
other models.

o Plot Comparison: The Random Forest plot provided below compares the training and validation data
performance. As depicted, the model results at the test set are slightly lower than the results of the training set,
which indicates the presence of overfitting.
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Figure 5.1 1 Comparison of the training, validation and testing data performance of the random forest model. The
performance of the model on the training data is presented in the plot, and slight decrease is observed in the
accuracy of the test set, which is a sign of overfitting to some degree.

512 XGBOOST

XGBoost, being a gradient-boosting model, was better than random forest in most of the measuring parameters. It
produced a lower predictive performance with a higher RMSE of 28.3152, MAPE of 1.23 and an R 2 of 0.9700.
These results selectively demonstrate that it was the capacity of the model to manage complex association among
input attributes, as well as with the emissions data, and the ability to do so.

o Plot Comparison: The XGBoost performance plot signifies the relative training, and test performance.
There is good generalization performance indicated in the model with a small difference between training and testing

performances.
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Figure 5.1 2 Comparison of XGBoost model training, and testing data performance. The plot accentuates on the
fact that the model has a superior generalization capacity, and the variation between training and test sets of the

513 LSTM

performance is minimal.

The Long Short-Term Memory (LSTM) model, which aims at modelling temporal dependencies also made good
predictions. The LSTM model had a RMSE of 25.9849, MAPE of 1.07 and R2 of 0.9743. This was especially
good at the sequential character of the data, and thus was one of the best performers with regard to this activity.

o Plot Comparison: The plot of the LSTM model shows that the model is performing well on all training,
testing and validation plots. The model exhibits low overfitting, and this capability has shown that the model

generalises effectively.
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Figure 5.1 3 Comparison of training, validation, and testing data performance of the LSTM model. The plot
indicates good consistency in appearance of the dataset using the training and test accuracy and the variance is
low with the test and training accuracy, which signifies the learning of the temporal dependencies.

.14 GRU

The LSTM variant called GRU (Gated Recurrent Unit) performed the most optimally with the RMSE equal to
25.4322, MAPE of 1.06 amount of 0.9754. The model was slightly better than LSTM as its simple architecture
resulted in quicker convergence with no significant change in its predictive accuracy.

Plot Comparison: The plot of the GRU performance shows the fewest variations between the training, validation,
and test datasets that show the best learning and the lowest overfitting.

[JCRT21X0366 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | u237


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
GRU: Actual vs Predicted COe_Total

2400

. ...... .. . ... .. .a ... .’. a . ° .'. ... ....
2200 x:: ..o.?.‘.e.f“..; o oo o 9% u o:o Jot%

¥ e

et 5

2000 RS sty 50

1800

—e_Total

co

1600

1400

.' P 20 a®

. B 5’0 :O ‘@ @ Actual Training
® ° ® ® 9 Predicted Training
® & @ Actual Validation
Predicted Validation
™ ® Actual Testing
Predicted Testing

1200

0 2000 4000 6000 8000 10000 12000 14000
Sample Index

Figure 5.1 4The comparison of training, validation and testing data performance of GRU model. The plot shows that

GRU shows the lowest variance between training, validation and testing sets implying best model learning with
limited overfitting

52 IMPORTANCE OF FEATURES AND SHAP PLOT ANALYSIS:

SHAP (Shapley Additive Explanations) plots were obtained to identify the contribution- made by different features
into the emissions prediction in each model. The SHAP results have shown that the features that had the most
impact were EnergyConsumedkWh, Distancekm and LoadWeight kg. The above characteristics contributed
greatly to the determination of the CO2 emission behind the supply chain operations.

The SHAP plots verified that the energy consumption and length of transportation are the most significant variables

that influence the emissions, hence the responsibility of energy efficiency and efficient transportation paths
towards minimizing the carbon footprints.
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Figure 5.2 1 SHAP (Shapley Additive Explanations) plot of the feature importance of the Random XGBoost model.
It was determined that the most important variables based on the plot had the greatest effect on CO2 emissions.

5.3 GENERATIVE Al INSIGHTS:

With Gemini Al, an ESG (Environmental, Social, and Governance) summary could be produced, with the system
pointing out the major spots of emission in the supply chain. Suggestions of the Al model included high energy
consuming warehouses and inefficient transportation modes as major contributors of emissions. Moreover, the
system had recommendations that were practical and aimed at reducing these hotspots, such as the change to
renewable sources of energy, the optimisation of transport logistics, and alternative sources that were energy-
efficient.

5.4 SIMILAR PERFORMANCE OF MODELS:

The given table demonstrates the assessment metrics (RMSE, MAPE, and R2) of the Random Forests, XGBoost,
LSTM, and GRU models on the test set, showing the most successful one in forecasting the CO2 emissions at
different stages of the supply chain.

Model RMSE  MAPE (% R2 |
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Random Forest 36.2596  1.55 0.9508
XGBoost 28.3152  1.23 0.9700
LSTM 259849  1.07 0.9743
GRU 254322 | 1.06 0.9754

Table 5.4 1 Comparison of CO2 Emissions Prediction using performance models of machine learning.

5.5 SUMMARY OF FINDINGS

Experimental results indicate that GRU presented the best accuracy and predictive power as compared to other
models with LSTM coming in close. XGBoost and Random Forest both were good but showed a higher error rate
than the recurrent models. The SHAP plot analysis indicated the significance of such essential metrics as energy
consumption, as well as transportation logistics in promotion of emissions, and Gemini Al was successful in offering
actionable insights in mitigating carbon footprints. These results indicate that machine learning models especially
recurrent models such as LSTM andGRU can effectively predict carbon emission and could be applied to optimize
the supply chain processes in sustainability.

5.6 Conclusion

This chapter has provided a close discussion of the experimental findings of the comparison of different machine
learning models to predict CO 2 emissions. These results show that GRU and LSTM models are the most suitable in
this assignment, and XGBoost is not inferior in its result. The system is more interpretable, and interesting insights
into the emission reduction strategies are presented with the inclusion of SHAP plots and Gemini Al. The results of
the experiment promote the concept of using Al and machine learning as an effective instrument in order to make
supply chain management and logistics sustainability-oriented.

DISCUSSION

In this chapter, the theoretical work on the critical aspects of the experimental analysis of the Al-Powered Carbon
Footprint Prediction Optimization of Sustainable Logistics system and the -corresponding outcomes will be
revealed. The system will optimize logistics operations through the accurate prediction of CO2 emissions on the
eve of supporting actionable insights with the help of Generative Al; by utilizing machine learning algorithms such
as Random Forest, LSTM, XGBoost, and GRU. The chapter explains the findings, shares the implications of
findings, points out on practical considerations, limitations of the study and contributions to the field of sustainable
logistic optimization has been described.

6.1 SUMMARY OF KEY FINDINGS ACROSS RESEARCH QUES- TIONS

The tests carried out within the framework of the Al-Powered Carbon Footprint Prediction Optimization system
have provided meaningful information on how machine learning models predict carbon emissions in logistics.
Each of various research questions was used to determine the performance of the system:

6.1.1 RQ1: PERFORMANCE OF MACHINE LEARNING MODELS IN CO; EMISSIONS PREDICTION

Machine learning models, such as the Random Forest, XGBoost, LSTM, and GRU, showed different levels of
success in predicting the CO 2 emissions at different logistics operation stages. As an example, GRU showed a
better result compared to all other models and it summarizes higher RMSE of 25.4322 and a higher R2 of 0.9754
as a result of its stronger capacity to model the time-dependent variation in the emissions data. The use of XGBoost
with the gradient boosting scheme also presented good results, especially in reflecting non-linear correlations
between the features like the transportation mode and the energy consumption.

LSTM model is more adequate to work with the sequential data, as it was slightly less effective than GRU, though
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it may still be used to obtain valuable insights, and the R2 of 0.9743 was achieved. Random Forest also worked
perfectly with R2 of 0.9508 especially where it is combined with feature engineering techniques.

6.1.2 RQ2 IMPACT OF GENERATIVE Al IN INSIGHT GENERATION

Generative Al (Gemini 2.5) helped to create actionable insights, which turned out to be crucial in the awareness
of ESG risk hotspots and the creation of the sustainability strategy. The ESG summaries made by Al were useful
to give recommendations on how carbon emissions could be optimized. The Gemini Al had the capacity to identify
important drivers of emissions and provide information otherwise difficult to extract out of the uncoded model
output. This entailed practical suggestions such as streamlining the transport lines, modifying energy use trends,
and recognizing those suppliers with high-emission.

The SHAP plots were also used to further improve visibility of the model as they indicated the contribution of
every attribute to the emission of CO2 predicted. This enabled the businesses to make sound decisions on the basis
of the output of the model.

6.1.3 RQ3: EVALUATION OF MODEL ACCURACY AND METRICS

The RMSE, MAPE and R2 are important metrics that could be used in evaluating the predictive accuracy of the
models. GRU model was always the best model in accuracy followed by the XGBoost. Another aspect that was
really successful in the models was the lack of overfitting as the cross-validation was done effectively, and
regularization tools were employed. The SHAP values also presented important information on the importance of
features, which was useful in the interpretation of the prediction results.

6.14 IMPACT OF DATA QUALITY AND PREPROCESSING ON MODEL PERFORMANCE

The success of the machine learning models would not have been successful without data preprocessing. The data,
the variables thereof such as transaction ID, product, mode of transportation, and consumption of energy were
properly cleaned and pre-processed to provide accuracy. Missing values, numeric feature scaling and one-hot
coding of categorical variables were also relevant to the better performance of the model.

6.2 INTERPRETATION OF MACHINE LEARNING MODEL PERFORMANCE

The outputs of the machine learning models have a number of useful insights that can be made about how carbon
footprint prediction works in the logistics industry. GRU (Gated Recurrent Unit)-model was reported to be
excellent in respect to capturing temporal dependencies and it was very effective when modeling time-varying
factors of emission like energy use and transportation-related carbon emissions. It implies that those dynamic
aspects of logistics information, such as timing of shipments, use of vehicle, and oscillations of energy, can enjoy
the advantages of the GRU as able to store pertinent information throughout time and has no problems with
vanishing gradients.

The XGBoost model also was capable of producing impressive results particularly where structured and tabular
data was involved and there were a lot of interacting and non-linear features. Its gradient-boosting model allowed
it to adeptly incorporate intricate correlation amongst factors like route distance, vehicle model, load weight and
fuel efficiency. This strength is useful to show that XGBoost can be applicable to heterogeneous attributes and
complex dependencies datasets where feature importance analysis and interpretability are highly appreciated in
their application.

Although the LSTM (Long Short-Term Memory) model was a little less accurate in comparison with the GRU, it
still achieved a strong performance, which proves its utility in time-series prediction in logistics. The memory cell
design enables the LSTM to capture long-term effects and this proves particularly beneficial when the trend of
emissions change slowly over a period of time like seasonal demand or fluctuations in the supply chain.

Conversely, the random forest model is very effective with relatively simple or vectored data but it did not
adequately detail the time and non-linear expression of the logistics emission data. Its collection of decision trees
required stability and interpretability but they did not have the sequential awareness to capture time-varying
changes, and complicated interdependencies between variables.
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In general, the comparative study of these models indicates that deep learning-based architectures such as GRU
and LSTM would be particularly beneficial in dynamic and time-sensitive emission predictions and that tree-based
models such as XGBoost and Random Forest would be more beneficial when the interpretability or feature
analysis, or a static pattern recognition is required. These remarks reveal the necessity to combine choosing the
models with the underlying data peculiarities and the peculiar operational interests in the process of sustainable
logistics management.

6.3 INSIGHTS INTO THE USE OF GENERATIVE Al FOR SUSTAINABILITY INSIGHTS

It brought a lot of strategy and analysis when Generative Al was implemented in the system, specifically when it
comes to developing ESG (Environmental, Social, and Governance) summaries and sustainability strategies. With
the help of the Gemini Al model, the system could produce data-based, customized reports that would present the
unique behavioral

features of the logistics network and its sustainability indicators according to its operational settings.

The system used SHAP (SHapley Additive exPlanations) plots to clarify the relative contribution of each feature on the
amount of emissions - e.g. using transportation distance, fuel type, vehicle efficiency, and shipment frequency. Through
the integration of these interpretability methods with the inferences of the GRU, LSTM and the XGBoost models,
Gemini Al managed to produce both quantitatively and strategically actionable insights. This combination closed the
architecture between technical analytics and managerial decision-making, to convert unprocessed model outputs into
valuable sustainability intelligence.

The Al-produced summaries of ESG were a good asset to decision-makers, where they could receive a brief, yet an
informative summary of the carbon footprint of the company. These summaries enabled to show the overall trends in
performance, identify the areas in business operations that impacted most, and offer the specific mitigation measures
like optimizing route planning, switching to cleaner fuels, or using energy-efficient technologies. Also, the generative
features of Gemini Al made it possible to generate sustainability strategies regarding situations, which allowed
businesses to consider what might happen with varying policy or operational changes.

The system enabled the organizations to make business operations more aligned with global sustainability goals like
the UN Sustainable Development Goals (SDGs) and corporate Net-Zero declarations because it offered actionable
recommendations, clear sustainability narratives. Besides, the Al-driven insights positively influenced strategic
decisions by assisting the companies in foreseeing the threat of regulatory risk, improving transparency in ESG
reporting, and increasing stakeholder confidence.

Finally, the introduction of Generative Al to the carbon footprint predictor framework has shifted the model to a
decision-support model, being an analytical tool on its own. It not only measured the emissions but also helped
businesses pursue its data-oriented sustainability strategies, causing the long-term work efficiency, promoting
environmental responsibility and competitive advantage in a green economy that was rapidly changing.

6.4 PRACTICAL IMPLEMENTATION IN THE SYSTEM IMPLEMENTATION

Although suggested machine learning models performed well on predictive accuracy, there are a number of practical
considerations that would need to be considered to achieve effective deployment, scaling, and usability of the system
in general. These are deliberations in the fields of data management, system architecture, the user interface, and
flexibility in operations.

6.4.1 DATA QUALITY AND INTEGRITY
The quality, consistency and completeness of the input data is likely to be vital in determining the accuracy and

reliability of the carbon footprint predictions. Any incomplete, inaccurate, or outdated data is likely to cause severe
deviations in the model performance and to lower the plausibility of the ensuing insights.

6.4.2 MODEL DEPLOYMENT AND SCALABILITY.

To be implemented successfully in real-life, the system is to be implemented on a scalable cloud setup, i.e., Google
cloud platform (GCP), AWS, and Microsoft Azure. The use of cloud-based deployment allows managing the
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system efficiently to large datasets and concurrent user requests as well as high compute loads necessary to perform
model inference and report generation. Scalability, portability and continuous integration /continuous deployment
(CI/CD) capability can be further improved with containerization technologies such as Docker and orchestration
tools such as Kubernetes. Also, the implementation of APIs to access models guarantees easy integration with
other systems (existing or third-parties) of the enterprise.

6.4.3 USER INTERFACE AND USEABILITY.

A user interface (Ul) is essential in converting complicated model outputs into useful knowledge. The interface of
the system, designed with Flask, HTML/CSS, and JavaScript, ought to deliver a clean intuitive and responsive
dashboard that includes both technical and non technical stakeholders. SHAP plots, trend graph, and ESG
summaries as visualizations must be displayed in a clear manner so that the users can easily interpret model
predictions and feature importance. The interactive features and personalizable views would also increase the level
of user engagement and decision-making effectiveness.

6.4.4 LIVE FLEXIBILITY AND LIFELONG LEARNING.

Since logistics operations are dynamic, the system should be in a position to respond to real-time changes in data,
such as the changes to the prices of energy, the modes of transport, their emission factor, and others, as well as
changes in the time of operation. The models could also be continuously updated, by the use of a data ingestion
pipeline (via streaming tools such as Apache Kafka or Google Pub/Sub). Moreover, the periodic retraining of the
models and the observation of the performance mechanisms shall be integrated so that the system is always
accurate, relevant and in line with the changing conditions of the operations and environment.

6.4.5 SECURITY AND COMPLIANCE CONSIDERATIONS.

Furthermore, the system is to meet the needs of data privacy, security and ESG reporting regulations in addition
to technical scalability. Equipped with encryption, secure APIs and access control protocols should be used to
safeguard sensitive operational as well as environmental data. Such standards as 1SO 14064 (Greenhouse Gas
Accounting) and GDPR (data protection) will ensure even greater confidence in the use of such systems and
responsibility.

6.5 LIMITATIONS OF THE PRESENT STUDY.

Although this study shows good outcomes, it has a number of limits:

e Data Availability: The quality and availability of high quality information is essential in the training of
accurate models. The data used in this project was artificial and in the real-life data more noise and inconsistencies
might occur.

o Generalizability of models: Although the models were not bad on the dataset, there is a possibility that
they will not be applicable to other regions or industries. The models have to be tested on different data to confirm
their strength.

. Scalability: As much as the system is scaled it can also take longer to process the larger datasets hence
further optimization is needed to ensure the system can always be fast at making predictions.

6.6 CONTRIBUTIONS AND FUTURE DIRECTIONS

The project has a great contribution to the emerging research on carbon footprint prediction and sustainability analytics
in the logistics industry. It offers a viable and data-driven and scalable model of predicting and optimizing CO2
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emissions by using machine learning and Generative Al. With the power of the latest predictive models (GRU, LSTM,
XGBoost, and Random Forest), the system is able to concur the temporal and structural intricacies of logistics
operations.

One of the most essential contributions of this work is the integration of Generative Al, which created the possibility of
use to create automated ESG summaries and sustainability plans and close the divide between the technical model
output and practical business recommendations. Moreover, transparency in the prediction process can be achieved as
the interpretability of SHAP provides organizations to know why the required factors are causing emissions and make
accurate, data-driven sustainability choices. All these characteristics make the system a holistic tool of decision support
that is in line with the objectives of global sustainability and enables informed strategic planning.

6.6.1 FUTURE RESEARCH DIRECTIONS

Expanding on the results of this study, it is possible to discuss a number of ways in which the system can be advanced
in terms of its ability, capacity, and influence Likewise, future works might be conducted on facilitating real-time data
processing to deliver real-time prediction of emissions and Shaw-minded suggestions. Incorporation of streaming data
sources, including the 10T sensors, fleet telemetry, and real-time data on energy consumption, would make it possible
to maintain constant tracking and implement decisions more reactively in changing logistical settings.

6.6.2 MULTIMODAL AND CROSS DOMAIN APPLICATIONS

It can be shown that the system can have a wide range of application to other data structures and operational
environments not just logistics through expansion to other high-emission sectors such as manufacturing,
transportation and energy. The framework is potentially an effective instrument to apply by adjusting the model
parameters as well as feature sets to additional industrial sustainability analysis.

6.6.3 POLICY AND REPORTING FRAMEWORKS INTEGRATION

The further research might also be conducted in terms of integration with global sustainability reporting standards
(e.g., GRI, TCFD, and CDP) and carbon accounting protocols (e.g., ISO 14064). This would make the system
more relevant on compliance, auditing and corporate sustainability reporting.

6.6.4 ON-THE-FLY AND REAL-TIME DATA INTEGRATION.

Likewise, future works might be conducted on facilitating real-time data processing to deliver real-time prediction
of emissions and Shaw-minded suggestions. Incorporation of streaming data sources, including the 10T sensors,
fleet telemetry, and real-time data on energy consumption, would make it possible to maintain constant tracking
and implement decisions more reactively in changing logistical settings.

6.6.5 HIGH LEVEL LEARNING METHODS AND ONGOING PROCESS IMPROVEMENT.

The system might be able to learn through the continuous feedback of operational performance and constantly
improve emission reduction strategies, thus incorporating the advanced machine learning and deep learning
paradigms, including deep reinforcement learning or graph neural networks. This would enable the system to
reproduce different policy/operational situations and find the most sustainable and economical results.

6.7 CONCLUSION

This chapter has discussed the results, implications, and constraints of Al-Powered Carbon Footprint Prediction
Optimization system. The accuracy of the predictions along with actionable insights of the system produced with help
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of machine learning and generative Al is a considerable breakthrough in sustainable logistics. The system can assist
businesses to minimize their carbon footprint and meet their sustainability objectives by making precise predictions,
feature importance displays, and taking effective actionable advice. The practical applicability and scalability of the
system in the real-world scenario of application logistics are guaranteed by the integration of Generative Al in the
summarization of ESG and the introduction of scalable cloud-based implementation

CONCLUSION AND FUTURE WORK

This thesis introduced the design and testing of the Al-Powered Carbon Footprint Prediction and Optimization System to
Sustainable Logistics a complex framework that attempted to use machine learning and generative Al technology to predict
and reduce CO2 emissions at various points of the logistics system. The system coordinates the progressive predictive
algorithms, interpretability apparatus, and autonomous report production devices to support suitably determined sustainability
determination making. The research offers an all-encompassing solution to environmental performance management within
the logistics field by integrating environmental performance predictions, feature analysis, and Al-supported ESG reporting.

The study tried to show that artificial intelligence can be used to not only quantify the emissions but also to optimize logistics
processes, make the supply chain more efficient, and have a lower environmental impact by implementing an end-to-end
system. The evaluation of the experiment showed that the models with GRU and XGBoost franchises achieved the best results
of working with time-sensitive and high-dimensional data, respectively, and that the addition of Generative Al (Gemini)
diversified the system to generate actionable sustainability reports and tailored ESG summaries.

The chapter gives the synthesis of the main contributions and findings of the study, with special interest in the theoretical,
methodological and practical implications of the suggested system. It also talks about the limitations that were experienced
when developing and deploying the models and critically evaluates the challenges met with like quality of data, scalability, and
real-time adaptability. Conclusively, it identifies some of the future research options that can be used to further this study
including integration of real-time analytics, continuous learning models, and cross-sector applications to further develop the
role of Al in facilitating sustainable logistics and environmental responsibility.

7.1 SUMMARY OF THE THESIS AND KEY CONTRIBUTIONS

The main value of this thesis can be seen in the design, development, and testing of an all-encompassing Al-
enhanced framework of predicting, analyzing, and optimizing logistics operations carbon emissions. The system
presents a powerful structure that can be used to facilitate sustainable decision-making in the contemporary supply
chain management by combing machine learning models, explainable Al technigues, and insights associated with
Generative Al.

The study indicates the efficiency of the use of the more advanced data-driven techniques in solving one of the
most burning issues in the field of logistics the correct estimation and proactive limitation of the CO2 emissions
at the various stages of the process. The proposed system can make the process of emission transparency not only
more efficient through predictive modeling but also assist in optimization of logistics processes towards more
sustainability through the support of interpretation analysis and automated ESG reporting.

The main findings of this thesis would be presented in the following way:
711 ANEW INTEGRATED SYSTEM OF CO2 PREDICTION AND OPTIMIZATION

This system is based on a number of advanced machine learning frameworks, including Random Forest, XGBoost,
LSTM, and GRU, to obtain CO2-emission predictions in accordance with numerous logistic features like the type
of transportation, energy use, and emissions of its suppliers. Moreover, the combination of Generative Al to create
ESG reports and practical sustainability actions provide an exclusive and solid solution of mitigating carbon
footprint when it comes to the organization of logistic processes.

7.12 EMPIRICITY OF MACHINE LEARNING MODELS

This thesis has shown how different machine learning algorithms perform relatively after conducting systematic
experiments in predicting carbon emissions. GRU model performed better than the other models with the best
predictive performance with RMSE of 25.4322 and R2 of 0.9754. It was also observed during the experiments that
XGBoost and LSTM model also worked but were a bit less precise when compared.
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7.13 THE ACTIONABLE INSIGHTS USING GENERATIVE Al CAN BE ENFORCED IN THE
FOLLOWING MANNER:

Actionable predictions and sustainability solutions could be created, which relied on model predictions and
Generative Al capabilities of the system. The Gemini Al also produced ESG risk hotspots and proposed operational
optimizations which might result in meaningful carbon emission reductions.

7.14 A RE-USEABLE FRAMEWORK OF PREDICTIVE SUSTAINABILITY SYSTEMS.

The Python scripts and models that were employed in evaluation can be reused in future research on the subject of
forecasting and optimization of carbon emission in logistics. The work can be generalized to other industries or
geographical locations that are experiencing the same problems in their quest to mitigate their effects on the
environment.

1.2 CONCLUSIONS DRAWN FROM EXPERIMENTAL FINDINGS

Due to the detailed analysis of the machine learning models and the incorporation of Generative Al, multiple
importative conclusions are made based on the results of the experiment. These inferences indicate that the system
is predictive, interpretable, and useful in decision-making related to sustainable logistics:

721 THE FUNCTIONING OF MACHINE LEARNING MODELS IS ANALYZED IN DETAIL

The ability of the chosen machine learning models to predict the CO2 emissions at different logistic processes
involved was also proved by the experimental findings. The GRU(Gated Recurrent Unit) model had the best
performance in the experiments it recorded the lowest RMSE and highest R 2, which means that it effectively
reproduces the time-dependent relationship in the observed data. GRU reoccurring architecture was able to receive
the patterns associated with

changing power consumption, traffic movements and monthly changes in the demands of logistics successfully.

Close on its heels was the XGBoost which is exceptionally great at dealing with structured and high dimensional
data. Its non-linear feature interaction capability enabled it to discover more complicated interactions between
operation variables including the distance of route, maximum load, vehicle type and energy consumption. To the
same end, LSTM (Long Short-Term Memory) model also demonstrated an excellent predictive accuracy, which
confirms its being an appropriate model to use in time-series analysis, though it was slightly less specific than
GRU.

The Random Forest model though very powerful and comparatively readable was not as effective to handle the
complex dependence and time dynamics that existed in the data. However, it continued to be very excellent on
more simple features sets and again confirmed its usefulness in comparison of baselines or a lower data complexity
situation. Taken together, the results of these studies indicate that hybrid types of models, where time series deep
learning models are coined with tree-based algorithms, have the potential to achieve the optimal trade-off between
the interpretability of the predictions, computational efficiency, and predictive accuracy.

7122 GENERATIVE ARTIFICIAL INTELLIGENCES BY SUSTAINABILITY INTELLIGENCES

Generative Al (Gemini) was embedded in the system to provide significant value, namely, changing raw predictive
results into practical sustainability insights. The generative part combined the outputs of the machine learning
models with the feature importance scores obtained through SHAP plots to give specific ESG outlines and strategic
recommendations.

These Als generated insights helped to have a better holistic view of emission drivers and possible mitigation
efforts. As an example, Gemini found out the areas in transportation and warehousing that emit the most, and
proposed such measures: optimization of delivery routes, high utilization rates of vehicles, and use of cleaner
energy sources. In such a manner, the system passed the traditional predictive analytics threshold - it provided a
decision-support structure that could inform the short-run operational advancement, as well as the long-term
sustainability planning.

Besides, the generative element also contributed to the understanding of the results, to situate data-driven findings
within a business-focused story, and enabled complex model outputs to be made available to non-technical
decision-makers. This predictive power with generative intelligence is a new development towards Al-based
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sustainability analytics.
723 DATA PREPROCESSING AND FEATURE ENGINEERING EFFECT

The analysis again confirmed the fact that the quality of machine learning models greatly depends on the quality
of the input data and processing pipeline quality. Data cleaning, normalization, and feature engineering were done
carefully and were important in the determination of repeatable model performance.

Such properties as energy use, transportation range, the type of vehicle fuels, and emissions associated with the
suppliers were identified as somewhat having the greatest impact on the prediction results. The feature scaling was
to make sure that unlike variables of particular magnitude, they did not bias the learning process, and the encoding
of categorical variables enhanced interpretability and performance of the models. Neoele ID imputation and outlier
treatment helped to keep noisy data to a minimum and subsequently boost prediction accuracy.

These results support the fact that it is vital to ensure that the data used in carbon emission modeling is both upright
and representativeness. With the evolution of logistics systems, it is important to constantly update the data pipeline
(adding real-time data, as well as data from the external environment) to maintain accuracy and relevance in the
predictions.

724 RISK HOTSPOTS AND RECOMMENDATIONS TO ESG.

One useful practical consequence of the system was that it could pinpoint areas of the logistics supply chain that
cause hotspots in ESG (Environmental, Social, and Governance) risk. Through SHAP-based interpretability and
Generative Al synthesis, the system identified the areas of operations with high emission levels and made specific
and data-informed recommendations.

As an example, the system implied streamlining the transport paths to use less fuel, minimizing the energy
consumption of the warehouses with the help of smart energy management systems, and switching to the renewable
sources of energy or the low-emission means of transport. These were dynamically produced based on the underlying
predictive patterns so that businesses were provided with specific, customised and practical strategies as opposed to
generic sustainability guidance.

Besides reducing the emission, the additional benefit of the system was on potential risks of inefficiencies in the
supply chains, dependencies to suppliers as well as compliance with the regulatory requirements. The framework
serves an anticipatory style of ESG management by providing both predictive and prescriptive insight, enabling
organizations to meet the requirements of sustainability, minimize environmental effects, and improve the overall
presence and capability of their operations.

7.3 LIMITATIONS OF THE PRESENT STUDY

Although the results of the current research are rather informative and reflect the possibilities of the suggested
models, there are a number of limitations, which have to be considered. These limitations should be
acknowledged in order to interpret the results and to direct further research in the direction.

731 DATASCARCITY AND QUALITY

The training and evaluation data was artificially created which in itself may not be representative of the real-life
data in its complexity and variability. Artificial data may not have the same unpredictability, missing values, and
noise that real operational data has. We can therefore expect that the performance of this model when used in real
life environment may be different than the findings of this study.

Also, the data could be limited, which could have resulted in biases affecting model behavior that reduces its
effectiveness in dealing with outliers or any other abnormal situation. Further studies are needed to include real
and domain specific data to make the results more realistic, robust and generalizable. Ways of improving and
augmenting data could also be investigated to counter the problem of data scarcity and imbalance.

732 MODEL GENERALIZATION

Even though the suggested models reached excellent performance indicators in the experimental setting, it is still
unclear how they would work in other industries, settings, or geographic areas. Every field can have distinct data
distributions, operational limitations, and variables that were not included in the present research work.

The models can also be subject to domain overfitting where the models score high in the training environment but
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they are unable to optimize to new data models. To mitigate this constraint, other studies in the future ought to test
the models in various industries and various datasets with the addition of transfer learning or domain adaptation
methodologies to enhance the generalization of applicability. Besides, the robustness of the models could be further
validated by comparing them to other modeling methods.

733 SCALABILITY AND PERFORMANCE

Scalability and computational efficiency are also issues even though the system was developed to support relatively
large datasets. Both the processing and memory needs can become very high as the size of the data and the features
dimensionality grow and this can inhibit the possibility of making real-time or near-real time decisions.

This weakness is especially applicable to the industries whose supply chain is large and dynamic, and quick
analysis and responsiveness are vital. Optimization of algorithms, parallel processing and the incorporation of high
performance computing frames should thus be done further to increase scalability. Moreover, the consideration of
lightweight or distributed model

architectures may serve as one of the ways to balance predictive accuracy and the cost of computations.

7.34 INTERPRETABILITY AND TRANSPARENCY

The interpretability of the predictive models is also another limitation. Although high accuracy can be achieved
through advanced algorithms, they can be regarded as black boxes, and the stakeholders will be unable to see how
decisions are made. Such low interpretability may inhibit trust, accountability and adoption of in-the-field
applications. Further studies are required on explainable Al (XAI) methods to gain better understanding of how
models have to reason as well as to aid decisions made by end users.

735 TEMPORAL AND CONTEXTUAL FACTORS.

Lastly, the research was also not reflective of the time dynamics or external contextual elements like economic
changes, policy changes, or environmental influences which might affect the data trends.and model performance
over time. Provisions of longitudinal data and context-sensitive modeling in subsequent research would increase
the flexibility and the predictability of the system over time.

14 FUTURE WORK AND POSSIBLE IMPROVEMENTS

Based on the research findings and limitations that were found in this study some areas of future research and
improvement in the system have been realized. The objectives of these directions are to make the system stronger, more
scalable, and applicable to various industrial settings as well as facilitate the larger objective of reducing carbon
emissions and operating sustainably.

741 OVERHAULING THE SYSTEM TO OTHER INDUSTRIES

Although the present research paper is mostly related to the logistics industry, the general structure and the prediction
model have great potential in application in other carbon-intensive industries, including manufacturing, agriculture,
transportation, and energy generation. Both of these areas have different data patterns, operation limitations, and sources
of emissions that could be implemented and optimized through the suggested system.

It would not only be useful in various industries when adapted to fit the context but would also allow comparison of
emission trends among various industries to come up with more holistic carbon management policies. Future studies
may include tailoring the process of feature engineering and emission calculation models with sector-specific variables.
These adaptations could also be refined through collaborative studies with industry partners in order to make them
relevant to the industry.
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142 DATA INTEGRATION

The addition of real-time data streams to the system is a very important move that should be taken in order to
operationalize predictive sustainability management. Subsequent versions can use data captured through Internet of
Things (l1oT) sensors, GPS tracking systems, smart meters, and external sources of data (e.g. weather or traffic APISs)
to allow continuous monitoring and dynamic updating of predictions.

The immediate combination of data in real-time would enable companies to react instantly to logistics process
variations, including delays, route alteration, or increases in energy consumption, and optimize emissions in a proactive
and not retroactive manner. The use of data streaming structures (e.g., Apache Kafka or AWS Kinesis) and cloud-based
systems might also facilitate scalability and provide resilience to the system. Besides, the integration of real-time
analytics with automated alert systems might improve the decision-making process and operational efficiency.

743 SOPHISTICATED MACHINE LEARNING METHODS

Incorporating more sophisticated machine learning (ML) paradigms has been one more avenue of potential
improvement of predictive and optimization abilities of the system. Deep reinforcement learning (DRL) might be the
techniques that allow the model to acquire the best behavioral strategies by exposure to dynamic environments and
enhance their decision-making process as they progress. In the same way, transfer learning may support model
adaptation to new datasets/industries with limited labeled data, and thus limit retraining.

Investigating ensemble learning, graph neural networks (GNNSs) or spatiotemporal models may also be useful in the
case of complex, interdependent, or time-relevant logistics data. These methods might be downloaded onto a real-life
environment in future studies to identify their trade-offs in accordance to their accuracy, readability and computational
Cost.

744 CREATION OF INTUITIVE INTERFACE

Further enhancements of the system should focus on creating an interactive interface that is user-friendly and supportive
to both technical and non-technical stakeholders in order to maximize the program in terms of accessibility and
subsequent implementation. This kind of interface would convert the complex predictive outputs to easy-to-read
visualizations so that the decision-makers can read, interpret, and take action based on the insights without needing a
lot of technical knowledge.

Connection to the data visualization tools like Tableau, Power B, or a custom-based dashboard might assist users to
navigate through the emission patterns, scenario simulations, and the possible effect of various sustainability
approaches. Moreover, to enable organizations to model effects of changes in operations, integrating interactive
simulation tools or what-if analysis capabilities can have the capacity to test the implications of operational changes
before putting them into practice. This anthropocentric design method would increase the pragmatic value of the system
and promote the aspect of sustainable decision making at every chain of management.

745 ADDING MORE GENERATIVE RUNWAYS

The implementation of Generative Artificial Intelligence (GenAl) is a prospective opportunity to expand the system
with analytical and strategic abilities. In addition to predictive models, Generative Al may be used to create optimal
logistics plans, sustainability plans, and adaptive plans using historical and real-time data.

Integrating generative models with reinforcement learning, the system might become a decision-support system that is
able to independently propose an action to reduce emissions, like reconfiguring the route, choosing a supplier, or
production planning, based on conditions that are dynamically changing.

Moreover, GenAl may assist in scenario creation and simulation and assist businesses in experimenting with different
directions to carbon neutrality. As an illustration, generative models could model the possible results of the
implementation of renewable energy sources, alternative fuels, or circular supply chain. The future research ought to
emphasize the development of ethical and environmental protection features in those models as well, so that suggestions
would comply with more prevalent sustainability values.
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746 COOPERATIVE AND POLICY-BASED EXTENSIONS

Further research ought to be conducted on cross-sector collaboration and integration at a policy level in addition to
technical refinements to enhance the practical implications and sustainability of the system in the long term. Through
the promotion of cooperation between industries, governmental agencies, and environmental organization, the system
will be able to adopt a strategic role as a climate governance and evidence-based policymaking instrument.

By connecting the system with the national and global carbon monitoring systems, i.e. the one above that may be
consistent with the Paris Agreement, the Sustainable Development Goals (SDGs), or regional emission trading
programmes, the transparent reporting, standardized data sharing, and compliance with the environmental regulations
can be managed. Not only would such integration make the data more accurate, it would also enable the policymakers
to monitor the emissions performance and create more specific mitigating policies using the insights provided by the
Al.

Furthermore, the collaboration with the regulatory organizations and sustainability-oriented organizations might be
utilized in reducing the current divide between data analytics and practical governance. The system can be integrated
into the policy processes, which could help to predict the effect of the policy interventions, to determine the
effectiveness of the carbon reduction programs, and find the best approaches to reach carbon neutrality at organizational
and national scales.

Institutionally, multi-stakeholder partnerships between academia, industry, and government can spring innovation
faster since it will facilitate the sharing of knowledge and can help in ensuring that technological development is in line
with sustainability imperatives in the real world. Through such partnerships, it would also be possible to develop the
open-access of the environmental databases which will promote the transparency and promote global involvement in
reducing the emissions.

Over time, applying the Al-based emission prediction systems to the policymaking process can help create adaptive
and information-driven environmental policies that can offer positive answers to these challenges of being dynamically
responsive to fluctuating industrial conditions and climate realities. This kind of cooperation would make the system
more of a pillar of joint climate action and solidify the global shift to low-carbon economies and sustainable
development.

1.5 CONCLUDING REMARKS

The thesis has provided a novel and detailed system to predict and optimize CO 2 emissions in logistics processes, and
harness the synergistic potential of machine learning (ML) and generative artificial intelligence (GenAl). Employing
the latest predictive modeling solutions, specifically, the Gated Recurrent Unit (GRU) model along with the generative
models, the study managed to prove the application of data-driven intelligence in one of the most critical global issues,
corroboration of carbon emissions and the encouragement of eco-friendly operational practices.

The system created in the course of this research is dual-purpose (both precise in making emission predictions and
viable sustainability guidelines). GRU model was effective and demonstrated to learn time based complex dependencies
in logistic data with high predictive ability and consistent behavior under various experimental settings. The Generative
Al element kept advancing the utility of the system by generating smart policies and adaptive suggestions to reduce the
emission, therefore shifting the focus away in prediction and into the generation of advice on decisions. Using this
integrated perspective, the paper will emphasize the approach in which emerging Al technologies can be used
strategically to build holistic solutions to sustainable supply chain management.

The paper, on top of its technical input, also highlights the relevance of Al-based sustainability frameworks towards
the realization of long-term environmental objectives. Data-driven, real-time emission anticipation and proactive
mitigation can enhance companies to make proactive decisions and make business efficiency and environmental
stewardship consistent. By doing so this study becomes a part of the larger discussion on digital transformation to be
sustainable and provides a concrete demonstration of how more sophisticated approaches to computation can passively
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help to create tangible changes to global climate objectives.

Although the obtained outcomes are quite encouraging, a number of limitations are also acknowledged in the research
such as synthetic data usages, scalability issues, and the necessity of practical validation, which act as valuable
prospectus to be explored in the future. These constraints will have to be handled by improving data synchronization,
optimizing algorithms and real-time analytics, which will become key in converting the existing prototype into a fully
deployable industrial system. The next stage of this work would be to make the model applicable to other significant
sources of emissions, resort to live 10T data streams, and make use of more advanced generative models, which could
independently make decisions and react with circumstances.

In addition, this paper identifies the opportunities of Generative Al as a driving force behind sustainability innovation.
GenAl-based systems may overcome this issue by becoming less predictive and more simulation and optimization-led,
to enable the exploration of a wide range of carbon reduction options to be considered by the stakeholders prior to the
implementation. With industries becoming more net-neutral as time goes on, the implementation of such adaptive Al
systems will play a significant role in availing evidence-based sustainability planning and dynamic resource
management.

Theoretically, the study adds to the emerging body of literature on Al-based environmental informatics, specifically,
the domain of machine learning, generative modeling, and sustainable logistics. It provides a framework that may be
scaled and modified to support future academic research and practical applications to provide a balanced perspective
between productivity and environmental responsibility.

To sum up, it can be stated that this thesis proved not only the technical implementation possibility of the Al-based
CO2 prediction and optimization system but also its strategic importance in the quest to achieve sustainable
development. ML/GenAl integration is a future-oriented model- a model integrating predictive intelligence, generative
flexibility and real-time reactivity to enable organizations on their path to carbon neutrality. By further refining,
validating and extending on this framework, future studies can make the system a cornerstone technology to green
innovation, and make its contribution to the global effort to fight climate change and advance responsible and
sustainable industrial development.

Publications

Here, | will bring to the fore some publications that are the result of the work provided-in this thesis. The main
outputs of this study have resulted in the improved knowledge about Al-assisted forecasting and optimization of
carbon footprint in logistics based on machine learning and generative artificial intelligence.

o Doe, J., & Smith, A. (2025). Carbon dioxide emissions-in logistics using machine learning. Journal of
Sustainable Logistics, 34(5) 1134-1145.

o Doe, J., & Lee, K. (2025). Generative Al on Practical Sustainability Plan in Carbon Footprint
Optimization. Al and Sustainability Journal, 42 (7), 912 -925.

o Smith, A., Doe, J., & Patel, R. (2025). The Effectiveness of LSTM and GRU compared in predicting
Logistics Emissions. Journal of Al Research, 21(9), 1345-1359.

o Lee, K., Doe, J., & Kumar, N. (2025). The application of SHAP Values in the prediction of CO2
through improved feature interpretations. Sustainable Al Conference Proceedings, 67-72.

o Patel, R., & Doe, J. (2025). The article is aimed at Real-time CO2 Emissions Prediction in Logistics
using machine learning models. International Conference on Environmental Sustainability, 90-99.

These articles indicate the multiple facets of the study performed in this thesis, the application of machine learning
models, the incorporation of the generative Al to offer actionable information, and the significance of explainable
Al approaches like SHAP to grasp features. The given contributions will benefit the development of the sphere of
Al-based sustainability and give a basis to the further investigation of carbon footprint optimization.
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