DIFFERENTIAL EVOLUTION BASED ECONOMIC LOAD DISPATCH

Annpurna Dubey¹, Mrs. Shobhana Jain², Dr. K.T. Chaturvedi³
¹Department of Electrical Engineering, University Institute of Technology, RGPV Bhopal
²Assistant Professor, University Institute of Technology, RGPV Bhopal
³Associate Professor, Department of Electrical Engineering, University Institute of Technology, RGPV Bhopal

Abstract:
The economic load dispatch is an online process of allocating generation among the available generating units to minimize the total generation cost and satisfy the equality and inequality constraints. Since the civilization increases day by day the demand of electricity increases in the same ratio. Differential evolution is a very simple but very powerful stochastic optimizer. Since its inception, it has proved very efficient and robust in function optimization and has been applied to solve problems in many scientific and engineering fields. Economic Load Dispatch Problem (ELDP) plays an important role in the operation of power system, and several models by using different techniques have been used to solve these problems. Economic Dispatch is the process of allocating the required load demand between the available generation units such that the cost of operation is minimized. There have been many algorithms proposed for economic dispatch out of which a Differential Evolution (DE) is present in this paper.

I. INTRODUCTION

Economic load dispatch (ELD) has become an essential function in operation and control of modern power system. The ELD problem can be defined as determining the least cost power generation schedule from a set of online generating units to meet the total power demand at a given point of time. Though the core objective of the problem is to minimize the operating cost fulfilling the load demand, various types of physical and operational constraints make ELD a highly nonlinear constrained optimization problem, particularly for larger systems.

However, careful and intelligent scheduling of the units can not only reduce the operating cost significantly but also assure higher reliability, improved security and less environmental impact.

II. ECONOMIC DISPATCH

Economic dispatch is the short-term determination of the optimal output of a number of electricity generation facilities, to meet the system load, at the lowest possible cost, subject to transmission and operational constraints. This is the cost of delivering one additional MWh of energy onto the system. Economic dispatch (ED) is a typical optimization problem of economic operation and optimal dispatch, which aims to improve the operation economy and reliability of power system effectively. The purpose of ED problem is to optimize output power of each unit and minimize power system generating cost.

III. ECONOMIC LOAD DISPATCH PROBLEM

The main aim in the economy of operation problem is to minimize the total cost of generating real power at various stations while satisfying the loads and the losses in the transmission links. Economy of operation is naturally predominating determining allocation of generation to each station for various system load levels. The first problem in power system is called the unit commitment (UC) problem and the second is called the load scheduling (LS) problem.

IV. DIFFERENTIAL EVOLUTION

Evolutionary algorithms (EAs), such as genetic algorithm (GA), evolutionary strategy (ES) and evolutionary programming (EP), are faster than
simulated annealing (SA) because of their inherent parallel search technique. Besides, other advantages of EAs, such as global search capability, robust and effective constraints handling capacity, reliable performance and minimum information requirement, make it a potential choice for solving ELD problems. Consequently, EAs have received much attention in solving ELD problems. Because of the highly nonlinear characteristics of the problem with many local optimum solutions and a large number of constraints, the classical calculus-based method and Newton-based algorithms cannot perform very well, respectively, in solving ELD problems. Though dynamic programming is not affected by the nonlinearity and discontinuity of the cost curves, it suffers from the “curse of dimensionality” and local optimality. Differential Evolution is a population-based search algorithm that works with a collection of solutions which are modified over the generations, through Selection, and Replacement schemes, in order to find better solutions.

The basic economic dispatch problem can be described mathematically as a minimization of the total fuel cost of all committed plants subject to the constraints.

\[
\min \sum_{i=1}^{n} F_i (P_i) + 1000 \\
\text{s.t.} \sum_{i=1}^{n} P_i = D - \sum_{ij} B_{ij} (P_i P_j) \\
\sum_{i=1}^{n} P_i \leq Pi_{i \text{ max}}
\]

The total generation should meet the total demand and transmission loss. The transmission loss can be determined from either Bmn coefficients or power flow.

V. REFERENCES

