A Review on Placenta as a Source of Stem Cells for Regenerative Medicine

1 Sweety Patel, 2 Ankur Murani
1 M.sc. Student, 2 M.sc. Student
1 Department of Biotechnology
1 Parul Institute of Applied Science, Parul University, Ahmedabad, India.

Abstract: The event of effective cell transplantation therapies is presently the main focus of medical specialty analysis worldwide, and diverse cell sorts and sources are explored for applications in regenerative medicine. The placenta may be a distinctive organ of fetomaternal origin that plays a crucial role in craniate development, and multiple forms of placenta-derived stem cells show nice promise for application in regenerative medication. This review briefly summarizes the recent proceedings on the characterisation, immune serum globulin, and applications of mesenchymal stem cells that are isolated from numerous anatomic regions of the placenta and at completely different physiological condition ages. Additionally, this review summarises recent studies that have isolated sac animal tissue cells, hematogenic stem cells, and tissue layer stem cells from placental tissue.

Keywords: Placenta Derived stem cells, Mesenchymal stem cells, Hematopoietic stem cells, Cell-based medical care, Regenerative medicine.

I. INTRODUCTION:

The human placenta could be a distinctive temporary organ that ensures mutual co-existence of the organisms of mother and craniate, determinative growth and development of the latter.[1] Since the placenta is probationary organ, it becomes a salvage material when delivery.[2] Recent developments of cell medical aid approaches in conjunction with opportunities for autologous considerably multiplied the interest within the placenta as a supply of biological material.

The development of effective cell transplantation therapies is presently the main focus of biomedical analysis world wide, and various cell sorts and sources are explored for applications in regenerative medicine.[3] The placenta could be a distinctive organ of fetomaternal organ that plays a crucial role in foetal development and multiple kinds of placenta-derived stem cells show nice promise for application in regenerative medicine.

The main mechanism of action for stem cells therapies is donor cell engraftment and ulterior differentiation and replacement of broken tissue or second and additional recently investigated via organic process effects by secretion of soluble factors like cytokines, growth factors or chemokines by the donor cells.[4]

Antibiotics classified into differing types supported their practical or structural characteristics were summerized, together with IgG, obstruction protein non-precipitating uneven protein antiphospholipid protein, antithrophoblast protein, and antipaternal protein. Placental transfer of maternal Ig antibodies to the craniate is a crucial mechanism that has protection to the infect whereas his/her body substance response is in economical. Ig is simply protein category that considerably cross the human placenta. In some things, sucha as mothers with primary immunodeficiencies, exogenous Ig nonheritable by blood vessel antibody medical aid, crosses the placenta in similar patterns to endogenous antibody and my conjointly defend the offspring from infections in childhood. Inversely, harmful autoantibodies might cross the placenta and cause impermanent disease within the newborn infant.[9]

The channel tract, that ordinarily colonised with multiple microorganisms is separated from the normally sterile intraterine compartment by the cervical plug, that contains many antimicrobial proteins and peptides, together with lactoferrin and alpha defensins.
1.1 Placental transport of IgG in infectious diseases:

Antibody transport throughout gestation may be litted with variety of things and clinical conditions, as well as placental abnormalities, total IgG concentration, in maternal blood, the gestational age of the foetus at birth, and maternal pathologies, like hypergammaglobulinemia , HIV infections and placental protozoal infection. [6-8]

1.1.1 IgG:

Immunoglobulin-G is that the most exuberant representative of Ig. It carries with it 2 serious chains (γ- chain) hooked up singly from a light-weight chain (κ). The serious chain includes of 3 constant regions the serious chain includes of 3 constant regions (ch1-3) and one variable region. (vh) supported the chemical and biological properties of IgG fragments, they're classified into 2 matter binding fragment and a fraction crystallizable [9]. Compared to traditional girls, pregnant girls, had a major increase in total IgG levels in early gestation. Specially, IgG4 levels were considerably higher in in progress pregnancies with considerably low levels being related to miscarriages. apparently, it's been incontestable that dynamic pleasing arm exchange of IgG manufacturing bisppecific protein plays a vital role within the mechanism for generating medicine activity. therefore IgG differs functionally from different IgG taxonomic category in its medicine activity. The role of cytokines has been ascertained that lymphokine (IL)-4 increased IgG4 production with interferon- γ inhibiting this induction.

1.2 Blocking Antibodies:-

Several interference factors, presenting within the liquid body substance of traditional multigravida, block the maternal white cell proliferative response elicited by associate allogeneic stimulant. the most constituent of those factors ar IgG. They were detected as early as twelve weeks of gestation in primigravidae and tamura et al. reported that the positive rate of BAb was considerably higher in continual stillbirth girls with prosperous gestation (32.4%) compared to the abortion cluster (10%). Maternal anti-TXLx(trophoblast-lymphocyte cross reacting antigen) antibodies, additionally referred to as mixed white cell reaction interference issue, were created on activation of TLX residing within the sperm cell and have cross-antigen determinants with HLA molecules and membrane matter epitopes. They shield the embryo from immune attack through binding to FC-fragment receptors on membrane cells.

1.3 Amniotic animal tissue cells:

AEC from placenta have been investigated due to their phenotypic similarity to embryonic stem cells and their ability to differentiate into all types of cells from three germ layers.(10-12]) Marongiu et al. demonstrated the transdifferentiation potential of human AECs into hepatocytes, and after transplantation of human AECs into SCID/ Beige mice, Marongiu et al. also examined the capacity of AECs to repopulate the liver and differentiate into functional hepatocytes [13]

1.4 Hematopoietic stem cells:

HSCs are capable of make cells that populate the blood and system and HSCs are among the foremost extensively studied form of vegetative cell for medical care. The placenta has not usually been referred to as a supply for HSCs to be utilized in medical care the new identification of those cells with within the placenta could drive more analysis into the isolation and potential growth of HSCs from the placenta. One study known CD34+, CD45+ cells that had clonogenic potential and were capable of generating myeloid and erythroid progenitors, additionally as natural killer cells and B cells invitro[5]. The presence of those cells peaked among 5-8 weeks gestation, creating them a tough supply to get for cell medical care.

1.5 Trophoblast stem cells:

Trophoblast s square measure a cell population entirely distinctive to the placenta and that they arise from the trophectoderm layer of the blastodermic vesicle early within the development and facilitate embryo implantation and formation of the placenta. they need been wide studied for his or her vital within the method[biological process] process, however it should be attainable to utilize isolated trophoblasts and TCSs for cell medical care. Lee et al. incontestible the aptitude of TCSs obtained from ectopic pregnancies to differentiate into neutral stem cells [14] and also the study found that once transplantation, these tissue layer derived neural stem cells were able to regenerate the dopaminergic nigrostrial pathway within the each acute and chronic parkinsons sickness rate models. This study indicates the good potential for these cells to be utilised for regenerative medication, abundant work still has to be wiped out order to grasp the potential edges of victimization trophoblasts as compared to different a lot of normally used cells varieties like MSCs.

1.6 Mesenchymal stem cells:

MSCs were initial derived from bone marrow stroma, and BM-MSCs are thought-about the gold normal for MSCs thanks to the relative simple isolation, extended malleability, and evidenced clinical applications [15, 16]. MSCs may be with success isolated from variety of tissues, together with bone marrow, fat, muscle, lungs, tooth buds, channel blood, Wharton’s jelly, humor, and totally different regions of the placenta [17, 18], looking on the tissue of origin, MSCs exhibit varied degrees of malleability, rate of division, and secretion. variety of recent publications counsel that placenta- and amnion-derived mesenchymal stem cells have a large vary of cell-based therapeutic applications, together with duct gland and liver regeneration, neurologic diseases, and cardiac muscle and respiratory organ rescue cell therapies [17, 19].
1.7 Secretion of MSCs:-

Currently, studies are exploring the potential of MSCs to replace cells of damaged tissue, and investigators are interested in the ability of MSCs to modulate the local environment by releasing chemokines, cytokines, and prostaglandins that may promote vascularization and inhibit inflammation [20]. Recent studies suggest that the therapeutic effects exerted by PMSCs are likely due to the secretion of bioactive substances [18]. PMSCs express wide range of cytokines involved in wound healing, including IL-6 and IL-8, VEGF, angiogenin, PDGF, TGF-beta 2, and TIM-1 [21,22]. When compared to BM-MSCs, AMSCs exhibited a different paracrine factor profile [23]. The pathway for cytokine secretion activation was also different in fetal PMSCs compared to maternal PMSCs when exposed to immunostimulatory factors. Essentially, the secretion of PMSCs is a key factor of their therapeutic utility and should be taken into consideration for therapeutic applications.

1.8 PMSCs from Different Placenta Regions :-

The placenta consists of 4 anatomic regions: amnionic animal tissue, amnionic mesenchymal, sac mesenchymal, and sac tissue layer [24], and also the epithelial tissue is that the section of female internal reproductive organ lining that forms the maternal a part of the placenta throughout physiological state. Because of the high level of quality of the human placenta and also the restricted scope of this review paper. AEC, amnionic mesenchymal stromal cells (AMSCs), sac mesenchymal stromal cells (CMSCs), and sac tissue layer cells (CTCs) is isolated from these regions [24]. Different placental sources like funiculus, Wharton’s Jelly, cord blood, and humour won't be enclosed during this review.

Table 1 Recent publications using preterm PMSCs in regenerative medicine:-

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Tissue</th>
<th>Investigation</th>
<th>Experimental findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Sung et al. [25]</td>
<td>First-trimester (8–12 weeks) and third-trimester (38–40 weeks) chorionic plate amnion</td>
<td>Evaluated the proliferation capacity, phenotypic expression, mesoderm differentiation, and expression of pluripotency stem cell markers between preterm and term MSCs.</td>
<td>Preterm PMSCs had better growth capacity and proliferation potential with the expression of pluripotency markers</td>
</tr>
<tr>
<td>2011</td>
<td>Poloni et al. [27]</td>
<td>First-trimester (11–13 weeks) chorionic villi</td>
<td>Evaluated susceptibility of PMSCs to malignant transformation after longterm culture</td>
<td>Fetal MSCs can be expanded long term with no increase in telomerase activity and no evidence of genetic changes</td>
</tr>
<tr>
<td>2012</td>
<td>Jones et al. [26]</td>
<td>Preterm (8–12 weeks) and term chorionic villous</td>
<td>Investigated whether preterm or term placental chorionic stem cells are superior for cell therapy and tissue engineering</td>
<td>Preterm PMSCs have smaller size, faster kinetics, and more favorable genetic markers for use in regenerative medicine</td>
</tr>
<tr>
<td>2013</td>
<td>Park et al. [28]</td>
<td>First-trimester and thirdtrimester placenta</td>
<td>Compared the pluripotency of firsttrimester and third-trimester placenta</td>
<td>Preterm PMSCs have 2–11-fold higher expression of pluripotency-coupled genes than term PMSCs, implying greater differentiation potential</td>
</tr>
</tbody>
</table>

II. CONCLUSION:-

The placenta could be a distinctive organ of fetomaternal origin which will function a supply of multiple sorts of stem cells for autologous and allogenic cells transplantation. MSCs, HSCs, TSCs, AECs is isolated from totally different anatomic regions of the placenta, and these stem cells have nice potential thanks to their growth rate differentiation capability, secretion and immunomodulation functions.
III. REFERENCES:


[5] Barcena A et al (2009) A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 16(2): 178–187. This study shows that human placenta contains primitive multipotent and intermediate progenitors and that the cell number and density change over gestation. The findings suggest that human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.


[13] Barcena A et al (2009) A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 16(2): 178–187. This study shows that human placenta contains primitive multipotent and intermediate progenitors and that the cell number and density change over gestation. The findings suggest that human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.


[26] Jones GN et al (2012) Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS ONE 7(9):e43395. This study demonstrated that first trimester PMSCs have more primitive and curative characteristics than third trimester PMSCs in vitro and in vivo. It provides insight into the ontogeny of the stemness phenotype during fetal development and suggests that the more primitive characteristics of early gestation fetal chorionic stem cells may be translationally advantageous compared to those of late gestation

[27] Poloni A et al (2011) Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant 20(5):643–654. This study demonstrated that human mesenchymal progenitor cells derived from chorionic villi (CV) and amniotic fluid (AF) isolated during the first and second trimesters, respectively, preserve a constant expression level of p53 and a normal karyotype throughout long-term expansion. These findings suggest the safety of fetal MSCs for cell therapy and regenerative medicine