ARTIFICIAL NEURAL NETWORK ALGORITHM FOR ECONOMIC LOAD DISPATCH

Reena Kalane¹, Dr. K.T. Chaturvedi²

¹Department of Electrical Engineering, University Institute of Technology, RGPV Bhopal
²Associate Professor, Department of Electrical Engineering, University Institute of Technology, RGPV Bhopal

Abstract
Artificial Neural Networks (ANN) are gaining popularity in various fields of engineering including electrical power systems due to their high computational rates and robustness. One of the ANN models extensively used for power system application is the multilayer perception model based on back propagation algorithm. However, its training requires large number of input-output data sets which increases with system size and may become prohibitively large and time extensive. Moreover, the Back propagation algorithm offers slow convergence with random initial weights. This paper presents a new approach to minimize the number of training patterns for ANN by using variable slope of the sigmoidal function for different test cases. In addition, the paper suggests the use of new functions for generating initial weights for training. The ANN models so developed have been tested to solve economic load dispatch (E.L.D.) problem on IEEE-14 bus test system and 89-bus Indian system. The proposed approach provides tremendous saving in the training time of ANN and provides fast and accurate results of E.L.D.

1. Introduction

Power system is highly complex and non-linear, therefore its analysis and control in real time environment requires highly sophisticated computational skills. The ED problem is to determine the optimal combination of power outputs for all generating units which minimizes the total fuel cost, while satisfying load demand and operational constraints. Economic dispatch is used in real-time energy management power system control by most programs to allocate the total generation among the available units, unit commitment and in some other operation function. In the area of economic dispatch, several methods have been proposed. Recent advances were achieved by using gradient method, the recursive method, the Newton-Raphson method. These methods are required more time to converge to the correct results. Other researches in field of expert system, the unit-based genetic algorithm method, neural networks, fuzzy set theory and approximate reasoning have been investigated. However, in the conventional methods, it is difficult to solve the optimal economic if the load is changed. It needs to compute the economic dispatch each time which uses a long time in each of computation loops. In this paper, an application of neural networks to economic dispatch is
proposed. The method used a feed-forward back-propagation type of neural networks to learn different condition in operation of each unit. By changing total load condition in one day, the minimum cost operation of each unit should be selected. So, the minimum operation condition is selected with less iteration and time.

3. ECONOMIC DISPATCH PROBLEM

Figure 1 shows the configuration that will be studied in the section. This system consists of \(m \) generating unit connected to a single bus-bar serving a received electrical load. The input to each unit, show as \(C_i \), represents the cost rate of the unit. The output of each unit, \(PG_i \), is the electrical power generated by that particular unit. The total cost rate of this system is, of course, the sum of the costs of each of the individual units. The essential constraint on the operation of this system is that the sum of the output powers must equal load demand.

Mathematically speaking, the problem may be stated very concisely. That is, an objective function is equal to the total cost for supplying the indicated load. The problem is to minimize \(CT \) subject to the constraint that the sum of the power generated must equal the received load. Note that any transmission losses are neglected and any operating limits are not explicitly stated when formulating this problem. [1314].

The objective of economic dispatch is to minimize the total generation cost throughout the target time interval by evaluation the following objection function. The economic dispatch problem can be mathematically described as follows.

\[
C_T = C_1 + C_2 + \ldots + C_m = \sum_{i=1}^{m} C_i(PG_i) \tag{1}
\]

\[
PG_T = PG_1 + PG_2 + \ldots + PG_m = \sum_{i=1}^{m} PG_i \tag{2}
\]

\[
\phi = 0 = P_D - \sum_{i=1}^{m} PG_i \tag{3}
\]

\[
\text{Min}_{PG_i} \sum_{i=1}^{m} C_i(PG_i) = \text{Min}_{PG_i} \sum_{i=1}^{m} (a_i + b_i PG_i + c_i PG_i^2) \tag{4}
\]

where

\(m \): The number of generator units

\(i \): Index of dispatchable units

\(C_i \): The fuel generation of unit \(i \) [$/h]

\(C_r \): The total fuel cost generation in system [$/h]

\(PG_i \): The power generation of unit \(i \) [MW]

\(PG_T \): The total power generation in system [MW]

\(a_i, b_i, c_i \): Coefficients for power generation cost of unit \(i \)

4. ARTIFICIAL NEURAL NETWORK

Neural networks have self adapting capabilities which makes them well suited to handle non-linearity, uncertainness and parameter variations which may occur in economic dispatch [14]. Back propagation network is an example of nonlinear layered feed forward networks. Back propagation neural networks construct global approximations to nonlinear input-output mapping. There are capable of generalization in regions of the input space where little or no training data are available. The structure of the proposed neural network used for calculate economic dispatch is shown in Fig. 3.
The proposed neural networks have three layers, i.e. input layer, hidden layer and the output layer. The input layer has only one neuron which is the number of total load. The output layer has 3 neurons represented the number of generated power of each generators. If the system has only 3 generators, the output layer will have only neurons. The hidden layer has 30 neurons. The network is fully connected, i.e. the output of each neuron is connected to all neurons in them hidden layer through a weight which is not shown in the figure. Also a bias signal is coupled to all the neurons through a weight. All the layers of neural network have a hyper tangent sigmoid transfer function. The algorithm used for training is back propagation. The back-propagation training algorithm needs only inputs and the desired outputs to adapt the weights. A gradient descent minimization can be performed on the error function. Back-propagation training is referred to as supervised training. The input-output data for training neural networks is the variation of load as input and the optimal generated power of each generator as output which is calculated by using Lambda iteration.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>No. of Hidden nodes</th>
<th>Training time</th>
<th>No. of Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>1.1 s</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0.3 s</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0.8 s</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>0.5 s</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>2.2 s</td>
<td>37</td>
</tr>
</tbody>
</table>

TABLE 1 Cost, Emission Coefficients and Generation Limits of Three Unit System

<table>
<thead>
<tr>
<th>M W</th>
<th>P_{r_{max}}</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
<th>e_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>21</td>
<td>.03</td>
<td>38</td>
<td>12</td>
<td>0.68</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
<td>30</td>
<td>43</td>
<td></td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>.02</td>
<td>36</td>
<td>16</td>
<td>0.0</td>
<td>-</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>33</td>
<td>58</td>
<td></td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>.01</td>
<td>38</td>
<td>13</td>
<td>0.0</td>
<td>-</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>27</td>
<td>56</td>
<td></td>
<td>0.5</td>
<td>12</td>
</tr>
</tbody>
</table>

6. REFERENCES

T. Denise King, M. E. El-Hawary and Ferial El-Hawary

Kwang, Y Lee, Arbit Sode-Yome and June, Ho Park

SNNS, N3.2, University of Stuttgart Institute for parallel and distributed high performance systems

(IPVR) [Available on the Internet via anonymous ftp from the host “ftp.informatik.unistuttgart.de”]

Shakti Kumar, Sukhbir Singh Walia, A Kalanidhi Nov 2013 b “Fuzzy Model

Hardiansyah, —A Modified Particle Swarm Optimization Technique for Economic Load Dispatch with Valve-Point Effectl, I.J. Intelligent Systems and Applications, 2013, 07, 32-41 Published Online June 2013 in MECS