
www.ijcrt.org                                                                © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882 

IJCRT2107491 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e595 
 

Live Migration Modeling and Regression Analysis 
 

Kutcherlapati Hima Bhargavi, G.M.Padmaja, K. Kanaka Sanjana, Kattamuri Sai Satya 

Sanjana, Nallala Anirudh. 

Student, Assistant professor, Student, Student, Student 

Computer Science and Engineering 

Raghu Institute Of Technology,Visakhapatnam,India 

 

 

 

Abstract –  

One of the most important innovations for improving utilization and maintenance of the virtual machine during the live migration 

process to increase the power efficiency of data is one the main task which contains the high risk. Several live migration algorithms 

have been proposed, each with its own set of characteristics in by using completion time and other characteristics features related to 

live migration machine, virtual machine (VM) downtime, and VM performance degradation. Choosing the best live migration 

strategy has been a challenge so far, even with service-level agreements and organizational constraints in place.  We propose 

Regression based Machine learning model that can predict key characteristics of live migration with high accuracy, depending on the 

migration algorithm and workload running within the VM. In contrast to previous research, we are not only able to model all widely 

used migration algorithms, but also significant metrics that have not been considered previously, such as VM performance 

degradation.  

Keywords: Terms— live migration, Regression Techniques, virtualisation, Performance metrics 

Problem Definition 

The downtime and the total migration time are the two key 

parameters that quantify the performance of VM live-

migration. These two quantities have a tendency to behave in 

opposite ways, so they must be carefully balanced. The 

cumulative migration time, on the other hand, measures the 

effect of the migration on the Cloud network infrastructure, 

while the downtime measures the impact on the end-

perceived user's quality of service. 

Proposed Approach 
We use machine learning (ML) techniques to create a flexible 

model capable of accurately predicting key metrics of various 

live migration algorithms. The presented model predicts six 

main metrics of live migration (complete VM migration time, 

total amount of data transferred, VM downtime, VM 

performance  
degradation, and CPU and memory use on the physical hosts) 

with high accuracy given the resource usage of the physical 

hosts and the characteristics of the VM's workload. The 

model can be incorporated into established migration 

frameworks to determine the live migration algorithm is best 

for a VM migration. 

 

 We illustrate that there is no such thing as a one-

size-fits-all live migration algorithm. Using the ‘correct' 

algorithm will help you save time and money by reducing 

resource waste and SLA violations. 
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 Here we implement a modeling approach for 

predicting key performance metrics of live migration 

algorithms for a specific virtual machine. The work presented 

here is currently the only method that can predict multiple 

target metrics in a scalable and automated manner for all 

widely used live migration algorithms. 

 We show how incorporating the model into an 

existing live migration framework to automatically select the 

best live migration algorithm reduces the total number of SLA 

violations while also improving resource utilisation. 

 

 

Algorithms Used 

The point in time where the volatile state of the VM is copied 

to the destination host may be labelled as pre-copy, stop-and-

copy, or resume (post-copy). Other algorithms are 

combinations of these three methods or concentrate on one 

Introduction 
The market for strategies for complex resource management 

in data centers has skyrocketed in the last decade. The aim is 

to reduce operating costs and environmental effects by 

minimizing energy consumption while optimizing hardware 

resource usage [30]. Virtualization [23] is a crucial 

technology for efficient data centre operation because it 

allows for better resource utilization by running multiple 

virtual machines on a single physical host. Virtual machines 

are live migrated [10, 20], that is, transferred from one 

physical host to another while the virtual machine (VM) is 

still operating, to adapt to fluctuating workloads and 

dynamically optimize resource usage. A live VM migration is 

an expensive process since it requires sending several 

gigabytes of volatile VM state from the source to the 

destination host. Several live migration algorithms have been 

proposed over the years [10, 19, 22, 28, 31, 24, and 27]. each 

algorithm has different performance characteristics that are 

dependent on the state of the host system, the interconnection 

network, and, to a greater extent, the workload running within 

the VM itself. 

Choosing the best migration strategy based on operating 

policies, workload characteristics in the VM, the status of the 

involved hosts, and existing service-level agreements is a 

major challenge with major cloud platform Many companies 

are using virtualization strategies in their data centers [3, 16, 

31]. (SLAs). There have been numerous attempts to model 

live migration efficiency [1, 13, 26, 27, 14, 11, 13], but 

analytical or simple probabilistic models do not achieve 

adequate prediction accuracy due to the various migration 

algorithms and large parameter space. We use machine 

learning (ML) techniques to create a flexible model capable 

of accurately predicting key metrics of various live migration 

algorithms. The presented model predicts six main metrics of 

live migration (complete VM migration time, total amount of 

data transferred, VM downtime, VM performance 

degradation, and CPU and memory use on the physical hosts) 

with high accuracy given the resource usage of the physical 

hosts and the characteristics of the VM's workload. The 

model can be incorporated into established migration 

frameworks to determine the live migration algorithm is best 

for a VM migration. 

 

Literature survey 

While current Cloud products include a number of options for 

managing multiple VMs running multi-tier applications [6], 

they do not support simultaneous VM live migration, do not 

account for possible future failures, or optimise the migration 

bandwidth allocated to each memory migration round, 

resulting in unnecessarily longer service interruption times. 

Following the pioneering work on live-migration [3,] a large 

number of implementations and research efforts focused on 

moving VMs with minimal service disruption [2], [7], and 

[9]. The majority of current work focuses on single VM 

migration; however, few solutions address the problem of 

migrating groups of similar VMs, such as those running 

multi-tier applications. VMFlockMS [10] focuses in particular 

on the migration of large VM disc images between data 

centres. This strategy, unlike ours, is primarily for non-live 

VM migrations, and the optimum allocation of inter-data 

centre link bandwidth is not taken into account. [11] The role 

of different resource reservation techniques and migration 

strategies on the live-migration of multiple VMs was 

evaluated experimentally. In both VM consolidation and 

dispersion studies, Kikuchi et al. [12] investigated the 

efficiency of concurrent live-migrations. These solutions do 

not account for the substantial impact of network resources on 

live-migration efficiency, unlike our approach, which 

considers an optimum bit-rate allocation. Other 

implementation-based experiments were performed to assess 

simultaneous live-migration under various assumptions and 

with various goals in mind. However, for each memory 

transfer round, they do not optimise bandwidth allocation. 

The only online algorithm designed for VM live migration 

that we are aware of was proposed in [17], where VM 

placement heuristics take into account server workload, VM 

performance degradation, and energy but do not account for 

network topology and bandwidth allocation for server 

interconnection, as we do in our approach. Their migration 

model also fails to account for memory dirtying rates. 
aspect of a process. We simulate all five virtualization 

techniques provided by the major virtualization platforms.

  

 

                         Fig 1:- live migration model 
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 Support vector Regression 

The SVR can be used as a regression tool while preserving all 

of the algorithm's key characteristics (maximal margin). With 

a few slight variations, the Support Vector Regression (SVR) 

uses the same rules for classification as the SVM. For 

instance, since production is a real number, predicting the 

information at hand, which has an infinite number of 

possibilities, becomes extremely difficult. In the case of 

regression, a tolerance margin (epsilon) is set as a rough 

approximation to the SVM that would have already been 

requested from the problem. However, there is another aspect 

to consider: the algorithm is more complex. 

 

 
Fig 2:- live migration with SVR solution and constraint 

 
Fig 3:- live migration with SVR minimize constraint  

 
SVR with Bagging 

 

 
Fig 4: architecture of the SVR with Bagging 

By randomly resembling, but with replacement, from 

the given training data set T R, bootstrapping generates 

K replicate training data sets T RB k |k = 1, 2,...,K. In 

any replicate training data set, each example xi from the 

given training set T R can appear multiple times or not 

at all. A different SVM will be trained for each replicate 

training package. 

Random Forest Regression 
Candidate split dimension A dimension along which a split 

may be made 

Candidate split point One of the first m structure points to 

arrive in a leaf 

Candidate split A combination of a candidate split 

dimension and a position along that dimension to split. These 

are formed by projecting each candidate split point into each 

candidate split dimension 

Candidate children Each candidate split in a leaf induces 

two candidate children for that leaf. These are called as right 

and left split of child nodes 

 
 

Fig 5:-Random forest regression Algorithm 

 

Results Analysis 

 

 
Fig 6: Train the live migration model using Gradient Boosting 

Regression 
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Policy E 

Policy F 

Policy G 

Policy H 

Algo. TT DT TD PERF CPU MEM 

PRE 0.99 0.99 0.99 0.24 0.18 0.69 

THR 0.99 0.99 0.99 0.52 0.45 0.71 

DLTC 0.97 0.89 0.97 0.18 0.30 0.78 

DTC 0.97 0.99 0.99 0.25 0.70 0.65 

Table1:- Aggregated CoDs of the input features using 

gradient boosting 

Algorithm  Learning Time 

(s) 

 Prediction Time 

(ms) 

Linear  8.0  0.74 

SVR  239.0  5.11 

SVR.Bagg  6617.7  188.63 

RFR  6819.9  176.7 

GBR  6987.5  198.6 

Table 2: Learning and prediction overhead of the model for 

all classification 

 
Fig 7 :-samples of live migrations 

 

Fig 8: The 20 input features of the ML model 

 

 
 

Fig 9:- features of work load type 

 

 
Fig 10 Impact of dataset size to the model accuracy 

 
 

 

 
     Fig 11:- total downtime and uptime with data analysis 

 

 

 

fig 12: error ration using policy 

          
 

fig 13: training time and prediction time accuracy 
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