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Abstract: In recent years, various methods for source code classification using deep learning have been proposed. In these 

methods, the source code classification is performed by letting the neural network learn the source code's token sequence, etc. 

In that case, it is necessary to select the appropriate neural network or source code representation because the learning 

efficiency decreases when neural networks and source code representations that are not effective for source code classification 

are used for learning. However, it is not clear which neural networks or combinations of source code representations are 

effective for realizing high-precision source code classification methods. In this study, we compare the source code 

classification method using deep learning. First, we selected 3 neural networks that are widely used in existing research. Next, 

we compared the accuracy of a total of 6 source code classification methods in which the neural network trained the token 

sequence or abstract syntax tree of the source code. As a result, it was confirmed that the recursive neural network which 

learned the token sequence of the source code has the highest accuracy. In addition; we compared the source code 

classification accuracy of deep learning and non-deep learning methods, and confirmed that the classification accuracy of deep 

learning methods is high. 

 

Index Terms - Deep learning, Source code classification, Forward propagation Neural network, Recursive Neural 

network, Graph Convolution network, BoW. 

 

I. INTRODUCTION 

To efficiently develop software, developers frequently reuse existing source code[1], [2].The source code classification 

method is a method that automatically identifies which source code is similar to the existing source code belonging to which 

class, based on the pre-prepared class. By using this source code classification method, developers can efficiently identify the 

source code to be reused. Many source code classification methods have been proposed until now. [3] ~ [9].In recent years, a 

method for classifying source code using deep learning has been proposed, and it has shown high classification accuracy. [6], 

[7] These existing methods can be used to train various neural networks to learn the source code representation. It has been 

realized. However, it is not clear how neural networks and source code expressions affect the accuracy of source code 

classification, and which neural networks and source code expressions can be used to achieve high-precision source code 

classification. In addition, since the existing source code classification model using deep learning is complicated, it is difficult 

to understand which neural networks and source code expressions are effective for high-precision source code classification. 

In this study, we compare the accuracy of the source code classification method using deep learning in order to investigate the 

combination of neural network and source code representation which is effective for high-precision source code classification. 

In conducting this research, we set a research question (RQ). 

RQ what is the combination of neural network and source code representation that can realize high-precision source code 

classification. 

In order to answer this RQ, we first proposed a neural network, a forward propagation neural network, a recursive neural 

network, which is a neural network commonly, used in existing source code classification methods. We selected 3 neural 

networks and graph convolution networks. Then, the selected neural network was trained on the token sequence or Abstract 

Syntax Tree (AST) of the source code, and the accuracy of a total of 6 kinds of source code classification methods was 

compared. As a result, it was found that the classification accuracy of the method which trained the token sequence of the 

source code in the recursive neural network was the highest.In this study, we found that the most accurate method for 

classifying source code using deep learning is the most accurate method for classifying source code. However, it is possible to 

perform highly accurate source code classification without using deep learning. In order to confirm this assumption, the 

accuracy of the source code classification method using deep learning and the source code classification method without deep 

learning were compared. As a result, it became clear that the method using deep learning has higher classification accuracy 

and that deep learning is effective for source code classification. The contribution of this research is as follows: 
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* By learning the source code token sequence or AST from 3 types of neural networks widely used in the existing research, 

and comparing the accuracy of a total of 6 types of source code classification methods, we investigated which source code 

classification methods have high accuracy. As a result, it was found that the classification accuracy of the method to train the 

token sequence of the source code in the recursive neural network is the highest. 

* We compared the accuracy of the source code classification method using deep learning with the method not used. As a 

result, it was found that the source code classification method using deep learning is more accurate and that deep learning is 

effective for source code classification. 

Since, 2.In this paper, we describe the source code classification and typical neural networks used for source code 

classification as the background of comparative investigation.3.In this paper, we describe the combination of neural network 

and source code representation which can realize high-precision source code classification by explaining the comparison 

investigation of source code classification method using deep learning and considering the result.4.In this paper, we compare 

the classification accuracy of the method using deep learning with the method not using it, and confirm whether the method 

using deep learning shows high accuracy.5.In this paper, we discuss the threat of validity of this study.6.In this paper, we 

describe existing research on source code analysis using deep learning as a related research. In this paper, we will summarize 

and discuss future issues. 

 

2. Background  

 

2. 1 Source code classification: The source code classification method in this study is n classes C1, in which existing source 

code is divided into syntactically and semantically similar source code. . . For Cn, the source code given as input is 

automatically classified into classes which contains the syntactic and semantic similarity source code of the input source 

code.Using this method, software can be developed efficiently. For example, by automatically classifying source code by 

function, tags related to functions can be automatically assigned to newly registered source code in a large software 

repository.By using this tag, developers can easily reuse existing source code with the necessary functions.By using the source 

code classification method in this way, and it is expected to improve the productivity of software development. 

The source code classification method can be applied to similar source code retrieval.First, the source code to be searched is 

divided into classes for each similar source code, and the source code classification is performed for the source code of the 

search query.Then, the source code contained in the classified class is given a ranking according to the similarity with the 

search query source code, and the source code contained in the classified class is output as a search result according to this 

ranking. You can also detect source code classified in the same class as a code clone (a piece of code that matches or 

resembles each other in the source code), and you can detect the source code in the same class as a code clone (a piece of code 

that matches or resembles each other in the source code).， 

The source code classification method can be applied to code clone detection. In the research on source code classification, 

various methods have been proposed to date, such as classification by descriptive language[3], classification by dependencies 

between components[4], and classification by program meaning (functionality).In addition, source code classification 

according to the meaning of programs is tackled at various granularity, and there are software-based classification 

methods[5]and method-based classification methods[6] to[9].Recently, a method for classifying source code with high 

accuracy by using deep learning has been proposed. [6], [7]The deep learning model created by these methods computes 

classification probabilities for each class for the input source code and outputs the class with the highest probability. 

 

2. 2 Typical neural networks used for source code classification: In general, deep learning is one of the machine learning 

methods to solve tasks such as feature extraction, feature transformation, pattern analysis, and classification of objects by 

processing nonlinear information using many layers. [10]In the case of neural networks, non-linear information can be 

processed by using hidden layers of 1 layer or more. [11]In this study, we define a neural network using hidden layers of 1 

layer or more in addition to input and output layers as a method of deep learning.Since then, this section describes typical 

neural networks used for source code classification. 

 

2. 2. 1 Forward Propagation neural network:  Feed forward neural Networks (FNN) [12] is a standard neural network that 

does not contain a loop structure in the network.At first, it was a machine learning method consisting only of input and output 

layers, but it is used in research as a method of deep learning that can solve linear inseparable problems by increasing the 

hidden layer.This neural network consists of connecting elements called neurons to perform simple vector calculations.FNN 

can be used for source code classification by vectorizing source code by arranging source code metrics. [13] ~ [15]. 

Figure 1 shows an example of a 3-layer FNN consisting of 8 neurons n11 to n32.The input and output of FNN are both vectors, 

and the dimension of the vector depends on the network structure. In the example in Figure 1, the input is a 3-D vector and the 

output is a 2-D vector. In addition, the function of the network depends on the values adjusted by learning, called weights and 

biases, which are set on the connections between each neuron. In the training of FNN, the input vector and output vector pairs 

are fed to FNN and the internal parameters of FNN are adjusted so that the corresponding output vector is output when the input 

vector is fed to FNN. This allows FNN to map input and output vectors.FNN was selected as a comparison target in the existing 

research on source code classification [6], and since it shows high classification accuracy, FNN was also selected as a 

comparison target in this study. 
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2. 2. 2 Recursive neural networks: In Recursive neural networks, RNN) [12] is a neural network in which a sequence of 

vectors 

 

                                                                                                                              

                                                                                                           

        
 

 

Figure 1 Example of a forward-propagating neural network                      Figure 2 Examples of recursive neural networks  

 

 

is given as an input, and the output is affected not only by the values of the input vectors but also by the order of the input 

vectors.Since the source code can be represented by a sequence such as a sequence of tokens, RNNs are used for source code 

classification[7],[16],[17]．An example of an RNN is shown in Figure 2.As can be seen from this figure, RNN contains a 

loop structure in the network unlike FNN.In RNN, the calculation is performed every time the vectors in the input vector 

series are input in order of 1 by one.In the calculation of the ith in the RNN, the hidden layer yi−1 of the neural network after 

the i−1th vector is input is input to the RNN at the same time as the ith vector xi.These 2 inputs are used to calculate the 

hidden layer yi and output zi of the RNN.Because the calculation is performed in such a procedure, the values and input order 

of all input vectors from 1 to i affect the output of the RNN.1. One of the typical RNNs is LSTM (Long short term Memory 

recurrent neural network) [18]. 

 

 

 
Figure  3: GCN Convolution Layer Example 

 

How to get started LSTM is a neural network that enables long-term dependency learning compared to general RNNs by 

replacing the hidden layer of RNNs with LSTM block. LSTM was selected as a comparison target in the existing research on 

source code classification[7], and since it recorded high classification accuracy, we also selected LSTM as a comparison target 

in this study. 

 

2. 2. 3 Graph Convolution network: Graph Convolution networks (GCN) [19] is a neural network that extracts nodes, edges, 

and features of the entire graph by convolution of adjacent nodes of the graph. Since the source code can be represented by 

graphs such as AST, GCN is used to classify the source code. [20]GCN is a relatively new neural network among neural 

networks that can learn graphs. Before GCN was proposed, Graph Neural Networks (GNN) [21] was first proposed as the 

predecessor technology of GCN.GNN is a neural network developed for deep learning of graph structures. Since convolution-

based neural networks in the field of image recognition show high accuracy, it is thought that convolution can be applied to 

graphs to improve accuracy, and GCN was proposed. Existing research on Source code classification using Deep 

Learning[6],[7],[17]In this paper, we transform the original graph according to the input format of the neural network when 

learning the graph.However, GCN does not need to transform the graph, so it has the advantage of not missing the structural 

information of the graph.Therefore, by using GCN, it is possible to use the information contained in the graph more accurately 
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than the neural network which needs to transform the graph.An example of the convolution layer of GCN is shown in Figure 

3. Figure 3 shows the procedure for calculating the vector representation of node 0 in the middle of the graph in the upper right 

is explained. For the vector in the convolution n+ 1 layer of node 0, an intermediate vector is calculated from the vector in the 

n-th layer of the adjacent node, the ingoing, outgoing, and self-loop weights of the edges looping to node 0, and the vector 

obtained by adding all the intermediate vectors for each edge is used as an activation function such as ReLU. It can be 

obtained by entering a function to correct the output of the network).In this way, the vector representation of node 0 is 

calculated based on the vector representation of node 0 and the vector representation of nodes 1, 2, and 3 adjacent to node 

0.Existing research on source code classification using neural Networks capable of graph learning [6],[7],[17],[20]In recent 

years, it is necessary to conduct a survey of classification accuracy. In addition, GCN is relatively new among neural networks 

applied to graphs, so high-precision classification can be expected. Therefore, in this study, GCN was selected as a 

comparison target. 

 

3. Comparison of accuracy of Source Code Classification Method using Deep Learning: 

In recent years, various methods for source code classification using deep learning have been proposed. [6], [7]The deep 

learning model in these methods has a complex structure and uses various neural networks and source code 

representations.However, it is not clear to what extent these neural networks and source code representations affect the 

accuracy of source code classification.In this study, we compare the accuracy of the source code classification method using 

neural network and source code representation, which are widely used in existing research.By doing this comparison, we 

investigate the combination of neural network and source code representation which can classify source code with high 

accuracy. 

 

3. 1 Benchmark In this study, Bigclonebench [22] was used as a benchmark for source code classification.Bigclonebench is 

a benchmark that collects method-by-method source code from open source software developed in Java. The methods 

collected by the developers of Bigclonebench are classified into 43 functional classes based on the functionality they provide. 

The Therefore, Bigclonebench can be used to evaluate the source code classification method .bigclonebench is a reliable large-

scale benchmark created by developers by visual verification of about 6 million methods. 

 

 3. 2 Source code classification method for comparison : In 2, 3 neural networks which are widely used in source code 

classification are explained.In this study, we train each of 2 source code representations (token sequences or AST of source 

code) for each neural network, and compare the accuracy of a total of 6 source code classification methods.Therefore, in this 

section, 6 kinds of source code classification methods are explained.In addition to token columns and AST, there are control 

flow graphs and data flow graphs in the source code representation.Source code compilation is required to generate these 2 

source code representations.However, 3. As explained in Section 1, BIGCLONEBENCH is a benchmark that collects method-

by-method source code from open source software, so it is difficult to compile individual source code contained in 

BIGCLONEBENCH. Therefore, we do not use control flow graphs or data flow graphs, which are source code expressions 

that require compilation. The deep learning framework used in this study is Py-Torch1.5.0 (Note 1), the activation function 

used in each neural network is ReLU, the loss function is Crossentropy, and the optimization algorithm is Adam. The number 

of layers and nodes of the hidden layers of neural networks used in each method was determined by grid search. Grid search is 

a method to determine the appropriate hyperparameters by regularly determining the candidates of the hyperparameters, 

searching the combinations of each hyperparameters in order. In addition, as the number of dimensions increases, the quality 

of the vector tends to improve, and when the number of dimensions exceeds 300, the quality of the vector tends to change less. 

[23]Therefore, in this study, the number of dimensions of the embedded vector input to the neural network is set to 300. 

 

3. 2. 1 FNN+Token 

In this method, 2. 2. Let FNN described in 1 train the vector of token columns generated by Doc2Vec [24]. How to get 

startedDoc2Vec is a method to generate vectors of documents by unsupervised learning.Since the token sequence in the source 

code has meaning in the order of the tokens, it is necessary to use a method that can perform vectorization of the entire 

sequence based on the context of the word.In this method, Doc2Vec is used to vectorize the method.  

Specifically, the training data set (3. 3) Use javalang  (Note 2) to make the method contained in the token column. Next, the 

token sequence is treated as a document, the token is treated as a word, and the method is vectorized using Doc2Vec.The 

number of dimensions of the Doc2Vec vector is 300, the hidden layer of FNN is 4, and the number of nodes of the hidden 

layer is 128. 

 

 3.2.2 FNN+AST  
The method is set other than the source code representation to be trained 3. 2. It is the same as FNN+Token described in 1.In 

this method, 2. 2. Let FNN described in 1 learn a vector of AST generated by Doc2Vec.Specifically, the training data set (3. 3) 

Convert the methods contained in Eclipse JDT (Note 3) to AST using astparser.Next, we treat the AST nodes as documents 

and the AST nodes as words, and vectorize the methods using Doc2Vec. 

 

  3. 2. 3 LSTM+Token  

In this method, the token sequence of the method is used as the training data 2. 2. Let the LSTM described in 2 learn the order 

relationship of tokens. The token column of the method is generated using javalang.The number of dimensions of the 

embedded layer in LSTM is 300, and the number of nodes in the hidden layer in LSTM is 128. 

 

  3. 2. 4 LSTM+AST  

In this method, the settings other than the source code representation to be trained are 3. 2. It is the same as the LSTM+Token 

described in 3.In this method, LSTM learns the ordering relationship of AST nodes by making the source code representation 

to be trained as a depth-first search permutation of AST nodes.Depth-first search permutations of AST nodes are generated 

using the astparser of Eclipse JDT. 
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 3. 2. 5 GCN+Token 

In this method, 2. 2. Let the GCN described in 3 learn the token sequence of the method. In order for GCN to train the token 

column, it is necessary to represent the token column in a graph This time, we treat each token contained in the token column 

as a node and treat a graph of 1 straight line connected to the previous and previous tokens by an edge.Pytorchgeometric (Note 

4) is used to implement GCN.The graph of the token sequence in this method is regarded as an undirected graph, and the 

weights of the edges are all the same.Vectorization of nodes is performed using WORD2VEC [25].Specifically, we treat the 

token sequence as a document and the token as a word, apply WORD2VEC to generate a vector of each token, and assign the 

generated vector to the node corresponding to each token.The token column of the method is generated using javalang.The 

number of dimensions of the node vector generated by word2vec is 300, the convolution layer of GCN is 4, and the number of 

nodes of the hidden layer of GCN is 128. 

 

3. 2. 6 GCN+AST  

In the method, the settings other than the source code representation to be trained are 3. 2. It is the same as the GCN+Token 

described in 5.In this method, the source code representation to be trained is the AST of the method. This allows the GCN to 

learn what nodes appear around a certain AST node. In this method, the AST is considered to be an undirected graph, and the 

edge weights are all the same.Vectorization of AST nodes is performed using WORD2VEC [25].Specifically, the AST nodes 

are arranged in depth-first search order, each node is considered as a word, and WORD2VEC is applied.Also, the AST of the 

method is generated using the astparser of Eclipse JDT. 

In addition to AST, there are control flow graphs and data flow graphs to represent the source code in a graph.However, it is 

necessary to compile the source code to generate control flow graph and data flow graph.3. The bigclonebench described in 1 

contains source code that is difficult to compile. Therefore, this method targets AST that does not require source code to be 

compiled for generation 

 

3. 3 Method of Investigation 

In this study, Top-k is used as an evaluation scale for the source code classification method. In this study, Top-k is the rate at 

which the correct class is contained within the k-order when each source code classification method calculates the 

classification probability for each function class for each method in the evaluation data set, and ranks it in order of class with 

high probability. This Here, the correct class is based on the function of each method, 3. 1 is a function class defined by 

Bigclonebench described in.The calculation procedure of Top-k is shown in Figure 4.The calculation of Top-k is performed 

according to the following 5 steps 

STEP A1  

The method of bigclonebench described in 1 is divided by each function class, and a unique ID is assigned to each function 

class. 

STEP A2  

The methods of each function class are randomly divided at a rate of 8:2, and 8% is the training data set and 2% is the 

evaluation data set. 

STEP A3  

Generate a source code representation from the method of the training data set and train it to the neural network. 

STEP A4 

 We classifies each method in the evaluation data set using the neural network that has learned the methods of the training data 

set. 

STEP A5  

Calculate Top-k from the classification result. 

In this study, 3. 2 For the 6 kinds of source code classification methods described above, the Top-1, Top-3, Top-5, and Top-10 

are calculated and compared according to the above procedure. However, since the method of each function class is divided 

randomly in the 2nd step of the procedure, the classification accuracy may change with each division attempt. In this study, we 

divide each functional class using a common random seed value in order to perform training and evaluation using the same 

data set in 6 different classification methods. This paper investigates the combination of neural network and source code 

representation which can realize high-precision source code classification. 

 

3. 4 Survey results and inspection  

The accuracy of each source code classification method is shown in Table 1.In this table, the highest number n Top-k is shown 

in bold. As can be seen from Table 1, among the classification methods, LSTM+Token had the highest classification accuracy 

in Top-1, Top-3, and Top-5, and GCN+AST had the highest classification accuracy in Top-10.In the source code 

classification, it is considered important that Top-1 is excellent.2. In order to realize the automatic assignment of the function 

tags listed in 1, the table How to get startedLSTM is a neural network that enables long-term dependency learning compared to 

general RNNs by replacing the hidden layer of RNNs with LSTM block.LSTM was selected as a comparison target in the 

existing research on source code classification [7], and since it recorded high classification accuracy, we also selected LSTM 

as a comparison target in this study. 
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It is assumed that it is necessary to choose between a classification method of"Top-1 is 0.943", which has the same accuracy 

as LSTM + Token in 1, and a classification method of"Top-10 is 1.0", which has an extremely high Top-10.The former is a 

method in which only 1 function tag is added to the source code, and the tag is correct with a 94.3% probability, while the 

latter is a method in which 10 function tags are added to the source code, and 1 correct tag is always present in the source 

code. Since the former"Top-1 is 0.943" method is much less likely to give wrong tags, it seems to be suitable for the purpose 

of facilitating reuse of existing source code by automatically giving tags. For the above reasons, it is desirable to mainly adopt 

a method with high Top-1 in source code classification, so from the results of this study, it was found that LSTM+Token, 

which has the highest accuracy of Top-1, is the best source code classification method, and LSTM+AST and GCN+AST are 

also relatively excellent source code classification methods. 

It was also found that the classification accuracy was greatly influenced by the neural network used rather than the source code 

representation to be trained. The method using LSTM has high classification accuracy on average, regardless of the source 

code representation to be trained. The GCN method was significantly inferior to the LSTM method in Top-1, and the Top-3 

and Top-5 methods were slightly inferior to the LSTM method, but the Top-10 methods were as accurate as the LSTM 

method, and the classification accuracy was higher on average than the FNN method. The classification accuracy of FNN was 

lower than that of other neural networks. Therefore, it was found that LSTM is a neural network that can realize the most 

accurate source code classification. Next, we consider the combination of neural network and source code representation. 

First, the classification accuracy of FNN+AST was higher than that of FNN+Token in the method using FNN.The cause of 

such a result is considered to be in Doc2Vec.Doc2Vec vectorizes documents with an unsupervised learning algorithm based 

on the idea of n-gram. Therefore, when training a sequence of tokens, tokens that frequently appear in the source code, such as 

parentheses and semicolons, become the noise of Doc2Vec training, and the generated source code vector could not express 

the characteristics of the source code well. On the other hand, since the depth-first search permutation of AST contains fewer 

elements such as nodes that can be noise of learning than token sequences, it is considered that a good source code vector 

representing the characteristics of the source code can be generated compared to token sequences. 

Next, in the LSTM method, the classification accuracy of LSTM + Token was slightly higher. In LSTM + AST, it is necessary 

to convert AST to some sequence in order to train AST to LSTM, so this time we are training depth-first search permutations 

of AST.However, since it is not possible to completely restore the source code from the depth-first search permutation of AST, 

the information in the original source code is slightly missing, and the classification accuracy is considered to have decreased 

by that amount. On the other hand, since LSTM + Token learns the token sequence, it is possible to learn the source code as it 

is, except for format information such as whitespace and indentation. Also, unlike Doc2Vec, LSTM can learn the long-term 

dependencies of tokens. Therefore, the learning of LSTM is considered to be less affected by frequent tokens such as 

parentheses and semicolons. Therefore, it is considered that token columns are more compatible with LSTM than AST. 

In the method using GCN, the classification accuracy of GCN+AST was higher than that of GCN+Token. Since there is no 

branch in the graph generated from the token sequence, we have not been able to take advantage of the neural network which 

can learn the graph. As with Doc2Vec, it is possible that frequent tokens are learning noise. On the other hand, since AST is a 

graph-like representation, it can be trained by GCN without deformation, and there are fewer nodes that can become learning 

noise compared to token sequences. Therefore, AST is considered to be more compatible with GCN than token sequence. 

From the above results, RQ's answer was “The combination of LSTM and token sequence can realize the most accurate source 

code classification, and the combination of depth-first search permutation of LSTM and AST, and the combination of GCN 

and AST can realize the source code classification with relatively high accuracy. 

 

4. Comparison with classification methods that do not use deep learning:  

In this paper, we compare the accuracy of the classification method using deep learning, and found that the method using 

LSTM is the most accurate. However, there is a possibility that high-precision source code classification can be achieved 

without using deep learning. To confirm this assumption, in this chapter, 3. We compare the accuracy of the source code 

classification method using deep learning and the source code classification method without deep learning described in 2.We 

also consider the advantages of using deep learning for source code classification. 
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4. 1. Classification method without deep learning: 

 In this section, we will explain the source code classification method without deep learning, which was selected as a 

comparison object with the method using deep learning. These methods are the latest methods that can search not only 

syntactically similar source code but also semantically similar source code, and the implementation is open (Note 5) (Note 6), 

so we selected them as a comparison target. 

 

4. 1. 1 Facoy 

Facoy [8] is a semantic similarity source code retrieval method that does not use deep learning. This method searches for 

similar source code using the developer Q&A site StackOverflow (Note 7).Specifically, Facoy first searches from 

StackOverflow for ns answers containing source code similar to a given piece of code, in order of high degree of similarity of 

the source code. In this case, the similarity of the source code is calculated by dividing the 2 source code into TF-IDF (Term 

Frequency) and TF-IDF (Term Frequency). - Inverse document frequency) Calculate using the cosine similarity between 2 

vectors when vectorized with [26].Next, the query is a question sentence corresponding to the searched answer sentence, and 

the search is performed again from StackOverflow, and the source code included in the nq answer sentence from the beginning 

of the search result is output as a search result up to a total of nc number. In such a procedure, Facoy searches for source code 

similar to the piece of code given as input.The key idea of this method is that”source code that appears in a form 

corresponding to similar question sentences in a Q&A site is semantically similar", and this idea allows you to search not only 

syntactically similar source code but also semantically similar source code. In this method, TF-IDF is applied to the input code 

piece and the searched source code to vectorize it, calculate the cosine similarity between 2 vectors, and arrange them in 

descending order to create a ranking of the searched source code. 

There are 3 hyperparameters that affect the code search performance of Facoy: ns, nq, and nc. In this study, we compare ns= 3, 

nq= 3, and nc= 100.This setting was used in the application experiment of Facoy to Bigclonebench in literature[8]. 

 

4.1. 2 Siamese  

Siamese [9] is a semantic similarity source code search method that does not use deep learning. This method uses n-gram to 

search for similar methods, and in the evaluation experiment using Big-Clonebench, it has been confirmed that pairs of 

methods that are semantically similar but have low syntactic similarity can be searched with high accuracy. In this method, the 

method is represented by 4 different arrays (token sequence, n-gram array, n・gram array after normalizing identifier, string, 

and type, and n・gram array after normalizing non-parentheses and semicolons) .Next, the score θ (0-100%) is calculated 

considering the frequency of occurrence of tokens and n-grams for each expression method in the set of search target method 

and input method. Finally, a set of methods whose score θ is higher than the threshold value T is output as a similar method. 

 

4. 2 Comparison method 

In this paper, we apply semantic similarity source code search method without using deep learning to source code 

classification.3.The accuracy is compared with the 6 source code classification methods used in this paper.The benchmarks 

and evaluation scales to be used are 3.This is similar to a comparative survey of the study. 

 

 
 

Figure 4: How to create a ranking using semantic Similarity source code Search method 

 

In the 2 semantic similarity source code search methods selected in this study, the source code of the search query and the 

source code output as a search result are semantically similar. Also, 2. In the definition of source code classification described 

in Section 1, semantically similar source code is classified into the same class. Therefore, in this study, the source code of a 

search query is considered to be classified into the class to which the source code of the search result belongs, and the 

semantic similarity source code search method is applied to the source code classification.In addition, the source code of the 

search results is ranked in order of similarity with the search query. In this study, we replace the source code of the search 

results in the ranking with the class to which the source code belongs, and based on the ranking output by the semantic 

similarity source code search method, Create a ranking to calculate the Top-k described in 3. 

 

4. 3 Comparison results and examination 

Table 1 shows the classification accuracy of the classification method using deep learning and the classification method 

without it. The bottom 2 lines of this table show a source code classification method that does not use deep learning. In this 

table, the highest number in Top-k is expressed in bold. As can be seen from Table 1, the accuracy of the LSTM method in all 

of the Top-1, Top-3, Top-5, and Top-10 methods surpassed that of the classification method without deep learning. The source 

code classification accuracy of the LSTM method was higher than that of the method without deep learning. The order 

relationship between tokens and AST nodes, which are information that can be learned by LSTM, and their long-term 
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dependencies, may have been important for classifying the source code of Bigclonebench. However, in a method that does not 

use deep learning, it is possible to classify the relationships and long-term dependencies of tokens and nodes. 

It is difficult to do this. Since Siamese uses n-gram; it can capture short-term dependencies of tokens, but not long-term 

dependencies. Therefore, the classification accuracy is considered to have decreased. Facoy also uses questions and answers 

on the Q&A site to capture source code similarities. There are certain similarities in the source code contained in similar 

answers, but the classification accuracy may have been reduced because this similarity was different from the similarity 

required to classify bigclonebench source code. As described above, it was found that the classification method using LSTM 

can perform the source code classification with higher accuracy than the existing method without using deep learning selected 

in this study. 

 

5. Threat of validity:  

These 4 points can be cited as a threat to the validity of the study. The first is that there are few types of neural networks set 

for comparison.  

1 In this study, 3 widely used neural networks were investigated. However, various other neural networks that can be applied 

to source code classification are considered, so it is necessary to examine them in the future. 

2nd, since 1 benchmark was used in the accuracy comparison survey of the source code classification method, it may be 

strongly dependent on the benchmark used in the survey results. However, the bigclonebench used in this study is a very large-

scale benchmark created by developers manually checking about 6 million methods, and contains source code for various 

software. Therefore, it is thought that it is possible to perform general evaluation of source code classification by using 

Bigclonebench. In the future, it is necessary to carry out comparative research using other benchmarks to investigate whether 

the trend similar to this study can be obtained.  

The 3rd point is that the results of this study can vary depending on various factors. Hyperparameters such as the number of 

hidden layers and the number of nodes, activation functions, loss functions, optimization algorithms, and data set segmentation 

methods are among the factors that influence the learning results of neural networks. Also，The method of preprocessing to 

input the source code into the neural network is also considered to be a factor affecting the result. Techniques using FNN. 

The 4th point is that the machine learning method may have better classification accuracy than LSTM because it has not been 

compared with machine learning methods such as support vector machine (SVM) and random forest (RF).In this regard, since 

the source code classification accuracy of source code classification methods using deep learning and machine learning 

methods has already been compared in the existing research [6] and [7], we did not make a new comparison in this research, 

and compared with FaCoY and Siamese, which are the latest methods that can search for semantic similarity source code 

without machine learning. However, the data set used in the existing research [6] and [7] is not Bigclonebench. In addition, 

only SVMs were selected for comparison. Therefore, if we conduct experiments in this study, it is possible that machine 

learning methods such as SVM and RF will have better classification accuracy, so it is necessary to investigate in the future. 

 

6. Related research:  

In recent years, research on analyzing source code using deep learning has been published. First, we proposed a method to 

search for similar code blocks using FNN in the past. [15]In this study, we compare the accuracy of FNN-based source code 

search using BoW and Doc2Vec 2 source code vectorization methods, and show the high accuracy of Bow. However, because 

BIGCLONEBENCH is a data set with a very large number of source code, when using BoW in this study, the vector 

generated by BoW has a huge number of dimensions, and it takes a very long time to learn.Therefore, Doc2Vec was adopted 

in this study.Saini et al. [13] and Nafi et al. [14] also use source code metrics to determine the source code Vectorization is 

performed, and similar source code detection is performed using FNN.Saini et al. [13] compared the accuracy of the proposed 

method using FNN with the existing method without deep learning, and showed that the proposed method has excellent 

detection accuracy of similar source code.Nafi et al. [14] compared the method for calculating cosine similarity of generated 

vectors with the method using FNN, and show that the method using FNN is more accurate in detecting similarity source code. 

In this study, we compared the accuracy with existing methods that do not use deep learning, such as those of Saini et al. [13] 

and Nafi et al. [14], and compared the accuracy of methods that use neural networks. 

 

7. Summary and Future issues: 

In this study, we compared the source code classification accuracy using Bigclonebench as a benchmark and Top-k as an 

evaluation scale. In order to investigate the combination of neural network and source code representation which can realize 

high-precision source code classification, 6 kinds of methods using deep learning were applied to source code classification, 

and the source code classification accuracy was compared using Bigclonebench as a benchmark and Top-k as an evaluation 

scale. As a result, the method of learning token sequence in LSTM can realize the most accurate source code classification, 

and the method of learning depth-priority search permutation of AST in LSTM and the method of learning AST in GCN can 

realize the relatively accurate source code classification. On the other hand, the classification accuracy of the FNN method 

was not very high. In addition, the source code classification accuracy of the method using deep learning and the method 

without deep learning is compared. As a result, it was found that the method of deep learning which learns the structure 

information of the source code using LSTM can realize the source code classification with higher accuracy than the method 

which does not use the deep learning selected in this study. 

The following points can be cited as future issues: 

It is necessary to investigate the classification accuracy for neural networks and source code expressions other than those used. 

In addition, it is necessary to investigate the classification accuracy for machine learning methods such as SVM and RF.* 

Since the source code classification benchmark is only Big-Clonebench, it is necessary to compare using other benchmarks 

and investigate whether similar trends can be obtained.* It is necessary to investigate the classification accuracy when 

parameter setting and pretreatment method which were not investigated in this study were adopted. 
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