
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f760

Code Clone Analysis: Code Clone Types and

Detection

1Mrs Vani Dave,2Mr Sanjeev Kumar Shukla,

1M.tech Research Scholar,2Assistant Professor and Head of Department

1Computer Science and Engineering,
1Kanpur Institute of Technology,Kanpur,India

Abstract: A code clone is a Duplicate code exist in a whole source code. The main reason behind the code cloning is copying

existing code fragments and using them by pasting with or without minor modifications. Though it has some advantages like it

increase the reusability of the code segments but a survey shows that it is harmful more . One of the major problem in such

duplicated codes is that if an errors detected in a code fragment, all the other similar codes has to be checked for fixing the

same bug.

Another disadvantage is that it increases maintenance cost. So it is necessary to detect the code clone .

In this paper we explain various types of code cloning and the methods of Detecting the code clones.

Index Terms - Code clone ,Types of code clone,Clone Detection Process, Clone Detection Techniques,Clone

Detection Tools

I. INTRODUCTION

Code cloning is the process of duplicating existing source code for use elsewhere within a software system. Within the

research community, code cloning is generally a bad practice, so that code clones should be removed or refactored where

possible.

“The automated process of finding duplicate codes in source code is called clone detection” This paper is divided into

Following two categories:

1) Regarding the type of code clones.

2) Describe various detecting methods of Code cloning.

In the first part we describe all types of code clones.

Type I: Identical code fragments except for variations in whitespace and comments.

Type II: Type 2 category includes the code segments which are syntactically same but the changes are in identifiers, literals,

types, layout and comments.

Type III: These are the Copied fragments having some modifications. Like statements could be changed, added or deleted.

Type IV: Two or more code segments that perform the same work but implemented through different syntactic models.

In the second part of the paper we describe various approaches to Detecting code clones that are:

1) Text-based Techniques

2) Token-based Techniques

3) Tree-based Techniques.

4) PDG-based Techniques

5) Metrics-based Techniques

6) Hybrid Approaches

2.Code Clone Types

2.1 Type I Clones

Type I clones are identical copy of original. However, there might be some changes like whitespace (blanks, new line(s), tabs

etc.), comments and/or layouts. Type I is also known as Exact clones. Let us consider the following code fragment,

if (a >= b)

{

 c= d +b; // Comment1

 d =d+1;

}

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f761

else

 c =d-a; //Comment2

A duplicate copy of this original code could be as follows:

if (a>=b) {

//Comment1’

c=d+b;

d=d+1;}

 else// Comment2’

 c=d-a;

2.2 Type II Clones

A Type II clones are an extension to Type 1 except some possible changes. like name of variables, constants, class, methods

and so on, types, layout and comments. The keywords words and the sentence structures are essentially the same as the

original one. Let us consider the following code sequence:

if (a >= b) {

c = d = d + 1;}

else

c = d - a; //Comment2

 d + b; // Comment1

A Type II clone for the above code can be as follows:

if (m >= n)

{ // Comment1’

y = x + n;

x = x + 5; //Comment3

}

else

y = x - m; //Comment2’

We can easily compare that the two code segments change a lot in their structure, variable names and value

assignments. However, the syntactic structure is still similar in both codes.

2.3 Type III Clones

In Type III clones, the duplicate segment is further modified. May be statement(s) are changed, added and/or deleted.

Consider the original code segment,

if (a >= b) {

c = d + b; // Comment1

else

c = d - a; //Comment2

we add a statement e = 1 then we can get,

if (a >= b) {

c = d + b; // Comment1

e = 1; // This statement is added

d = d + 1; }

else

c = d - a; //Comment2

d = d + 1;}

above is an example of Type 3 code clone as we add 1 statement.

2.4 Type IV Clones

Type IV clones have the semantic similarity between two or more code fragments. Two code fragments may be

developed by two different programmers to implement the same logic making the code fragments similar in their

functionality. Let us consider the following code fragment 1, where the final value of ’j’ is the factorial value of the

variable VALUE.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f762

Fragment 1:

int i, j=1;

for (i=1; i<=VALUE; i++)

j=j*i;

Now consider the following code fragment 2, which is actually a recursive function that calculates the factorial of its

argument n.

Fragment 2:

int factorial(int n) {

if (n == 0) return 1 ;

else return n * factorial(n-1) ;

}

From the semantics point of view both the code fragments are similar in their functionality and termed as Type IV .

3.Clone Detection Process

A clone detector mainly deals with to find the code similar to the system’s source code. The key issue is that we don’t

know in advance that which code fragments can be found multiple times. Thus the detector has to compare every

possible fragment with every other possible fragment essentially But this type of comparison is very expensive from a

computational point of view so several techniques has to be apply to reduce the domain of comparison before applying

the actual comparison. In this section, we attempt to provide an overall summary of the clone detection process. Figure

shows the phases that a clone detector may follow in its detection process. Below figure shows the phases in clone

detection process. we provides the brief description of each phase:

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f763

Clone Detection Process

3.1 Preprocessing: This is the first phase of any clone detection process. In this we determine the domain of the

comparison and then partitioned the target source code. There are mainly three objectives of this phase:

3.1.1 Remove uninteresting parts: All the source code uninteresting to the comparison phase is filtered

in this phase. For example, partitioning is applied to embedded code (e.g., SQL embedded in Java

code, or Assembler in C code) for separating

3.1.2 Determine Source Units: After removing the uninteresting code, the remaining source code is

partitioned into a set of disjoint fragments called source units. Source units are the Domains for the

code clones and involve in direct cloning . Granularity can be maintained at different levels of the

source code. such as Statements, blocks, procedures ,classes and objects and files or data bases.

3.1.3 Determine comparison unit/granularity: Source units may need to be further divided into

smaller units depending on the comparison function of a method. For example, source units can be

subdivided into lines or even tokens for comparison.

3.2) Transformation To make the comparison more easy the comparison units of the source code are transformed to another

intermediate internal representation. e.g., just removing the whitespace and comments [3] to very complex e.g., generating

PDG representation [10, 13] and/or extensive source code transformations [9]. Metrics-based methods usually compute an

attribute vector for each comparison unit from such intermediate representations. In the following section we briefly explain

transformation approaches. Comparison algorithm uses One or more of the following transformations

3.2.1) Pretty printing of source code: Pretty printing is a simple way of reorganizing the source code to a standard form.

source code of different layouts can be transformed to a common standard form by using this Technique. The text-based clone

detection process uses pretty printing to avoid the false positives that occur due to the different layouts of the similar code

segments. Cordy et al. [5] use an extractor which generate separate pretty-printed text file for each of the potential clones

obtained using an island grammar [7, 22].

3.2.2) Removal of comments: Most of the approaches (except Marcus & Maletic [14] and Mayrand et al. [15])

ignore/remove comments from the source code before performing the actual comparison. Marcus & Maletic search

for similarities of concepts extracted from comments and source code elements. Mayrand et al., on the other hand,

use metrics to measure the amount of comments and use that metric as a measuring metrics to find clones.

3.2.3) Removal of whitespace: Almost all the approaches (except line-based approaches) disregard whitespace. All

whitespace except line breaks can be removed by Line based approaches. Davey et al. [6] use the indentation pattern

of pretty printed source text as one of the features for their attribute vector. Mayrand et al. [15] use layout metrics

like number of non-blank lines.

3.2.4) Tokenization: Each line of the source code is divided into tokens by applying a lexical rule of the programming

language. Tokens of all lines are then used to form token sequence(s). All the whitespace (including line breaks and

tabs) and comments between tokens are removed from the token sequence. CCFinder [9] and Dup [3] are the leading

tools that use tokenization on the source code.

3.2.5) Parsing: In case of parse tree-based approaches, the entire source code base is parsed to build parse tree or

(annotated) abstract syntax tree (AST). In such representation, the source unit and comparison units are represented

as sub trees of the parse tree or AST. Comparison algorithm then uses these sub trees to find clones [4,18,19].

Metrics-based approaches may also use such representation of code to calculate of the sub trees and find clones based

on the metrics values [11, 15].

3.2.6) Generating PDG: Semantics-aware approaches generate program dependence graphs (PDGs) from the source code.

Source units or comparison units are the sub graphs of these PDGs. Detection algorithm then looks for isomorphic

sub graphs to find clones [10, 13]. Some metrics-based approaches also use these sub graphs to form data and control

flow metrics and also then be used for finding clones [11,15].

3.2.7) Normalizing identifiers: Most of the approaches apply identifier normalizations before going to the comparison

phase. All identifiers of the source are replaced by a single token in such normalizations. However, Baker [3]

applies systematic normalizations of the identifiers to find parameterized clones.

3.2.8) Transformation of program elements: In addition to identifier normalizations, several other transformation rules

may be applied to the source code elements. In this way, different variants of the same syntactic element may treat

as similar to find clones [9, 17].

3.2.9) Calculate metrics values: Metrics-based approaches calculate several metrics from the raw and/or transformed

(AST, PDG, etc.) source code and use these metrics values for finding clones [15, 11].

3.2.10) Generating PDG: Semantics-aware approaches generate program dependence graphs (PDGs) from the source code.

Source units or comparison units are the sub graphs of these PDGs. Detection algorithm then looks for isomorphic

sub graphs to find clones [10, 13]. Some metrics-based approaches also use these sub graphs to form data and control

flow metrics and also then be used for finding clones [11,15].

3.2.11) Normalizing identifiers: Most of the approaches apply identifier normalizations before going to the comparison

phase. All identifiers of the source are replaced by a single token in such normalizations. However, Baker [3]

applies systematic normalizations of the identifiers to find parameterized clones.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f764

3.2.12) Transformation of program elements: In addition to identifier normalizations, several other transformation rules

may be applied to the source code elements. In this way, different variants of the same syntactic element may treat

as similar to find clones [9, 17].

3.2.13) Calculate metrics values: Metrics-based approaches calculate several metrics from the raw and/or transformed

(AST, PDG, etc.) source code and use these metrics values for finding clones [15, 11].

3.2.14) The above transformations just provide an overview of the current transformation techniques used for clone

detection. Several other types of transformations with different levels can be applied on the source code before going

to the match detection phase

3.3) Match Detection The next input to a suitable comparison algorithm is transformed code where these units are compared

to each other to find a match. Adjacent similar units are summed up to form larger units by using the order of comparison

units. For flexed granularity clones, all the comparison units that belong to a source unit are aggregated. On the other

hand, for free granularity clones, aggregation is continued till the aggregated sum is above a given threshold for the

number of aggregated comparison units. Aggregation is continued till the largest possible group of comparison units are

found.

At the end list of matches are found . These matches may be the clone pair candidates or have to aggregate to form

clone pair candidates. Each clone pair is normally represented with the location information of the matched

fragments in the transformed code. For example, for a token-based approach, a clone pair is represented as a

quadruplet (LeftBegin , LeftEnd, RightBegin, RightEnd), where LeftBegin and LeftEnd are the beginning and ending

positions (indices in the token sequence) of leading clone, and RightBegin and RightEnd refer to the other cloned

fragment that forms clone pair with the first one. Some popular matching algorithms are the su–x-tree [12,16]

algorithm [3,9], dynamic pat-tern matching (DPM) [8,11] and hash-value comparison [4, 15]. Several other

algorithms are used in the literature.

3.4) Formatting In this phase, line numbers on the original source files are found from each location of the clone pair

obtained from the previous phase. The general format of representing a clone pair can be a nested tupple ,

f(FileNameLeft, StartLineLeft, EndLineLeft), (File-NameRight, StartLineRight, EndLineRight)g where FileNameLeft

represents the location and name of the file containing the leading fragment with StartLineLeft and EndLineLeft showing

the boundary of the cloned fragment in that file with respect to the line numbers. In a similar way FileNameRight,

StartLineRight and EndlineRight represent the other cloned fragment that forms clone pair with the first.

3.5) Post-processing In this phase, false positive clones are filtered out with manual analysis and/or a visualization tool.

3.5.1) Manual Analysis After extracting the original source code, raw code of the clones of the clone pairs are

subject to the manual analysis. This phase is used to filtered out the false positive clones.

3.5.2) Visualization The obtained clone pair list can be used to visualize the clones with a visualization tool. For

removing false positives a visualization tool can speed up the process of manual analysis or other associated

analysis.

3.6) Aggregation The clone pairs are aggregated to clusters, classes, cliques of clones, or clone groups in order to reduce the

amount of data

The clone detection phases described above are very general.

4.CLONE DETECTION TECHNIQUES
In this section we defines the techniques for code clone detection [1] [2]:

4.1) Textual Approach (Text Based technique)
This approach states that there is no source code transformation before the comparison has done on both sides. In variety of

cases, the original source code is used as it is presented in the process of clone detection. For example, NICAD, SDD, Simian

1 etc.
4.2) Lexical Approach (Token Based technique)

To perform the compiler style lexical analysis. initially source code is converted in the lexical sequence, known as tokens.

The sequence later scans the identical token sequence of the original code that is resulted as clones. These types of approaches

are normally more resilient for small variations in the code. It is defined as spacing, formatting and renaming which is

different as compare to textual techniques. For example CCFinder, Dup, CPMiner and so on.

4.3) Syntactic Approach

This approach utilizes a parser for converting a source program in abstract syntax trees or parse trees that can be processed by

using structural metrics or tree matching for finding the clones. For example: Deckard, Clone Dr and Clone Digger and so on.

4.4) Semantic Approach

Static program is used in this approach. In comparison to the syntactic similarity it gives the in-depth data. Semantic approach

is given in the form of PDG (Program dependency graph) or in the form of

Statements or expressions but the edges shows the dataor Duplex and so on control dependencies. For example, GPLAG,

Duplex and so on.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f765

5) Code clone Classification and Technique

6.Clone Detection Tools

In this section, we list the different clone detection tools available in the literature in a tabular form (however, there are

several others). Table 12 shows the tool details where the first column represents the tool name, 2nd column refers the

citations for that tool, the 3rd column indicates the languages currently supported by the tool, the 4th column shows

whether the tool is a clone detection tools or plagiarism detection tool or designed for other reengineering task, the 5th

column represents the approach used in developing the tool, the 6th column indicates whether the tool is for commercial

or academic use, the 7th column shows the maximum input size used in validating the tool and the last and 8th column

tells us whether the tool was empirically validated or not.

7.Conclusion:

 We justify that code clone is a harmful in software development process. Code clone detection is a current issue in

software development industry. The tools of code clone detection have to be integrated with standard IDEs. This

paper mails focuses on describing actually what is code clone, Varity of code clones .we also describe the detection

process and give the brief of Detection tools and Techniques .I conclude that this paper may serve as a Roadmap to

potential users of code detection techniques .It may help them in selecting the right tool or technique.

8. Acknowledgement:

I would like to thank with deep sense of gratitude and respect to my Project Guide Mr. Sanjeev Kumar Shukla ,

Kanpur Institute of Technology, Kanpur for his Valuable suggestions ,guidance and constant encouragement

during the paper writing.

I am very much thankful to the College Management and the Director Prof(Dr) Brajesh Varshney of the Institute

for the help they provided me during the writing the content of this paper .

I would also like to give special thanks to Mr. Ayush Mishra for his help and support for writing the paper.

I am also thankful to my Family and friends for their true blessings and encouragement for the completion of paper.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106684 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f766

References

[1] A. Aiken. A system for detecting software plagiarism (moss homepage). URL http:

//www.cs.berkeley.edu/aiken/moss.html. 2002.

[2] Raihan Al-Ekram, Cory Kapser, Michael Godfrey. Cloning by Accident: An Empir-ical Study of Source Code

Cloning Across Software Systems.International Symposium on Empirical Software Engineering (ISESE’05), pp.

376-385, Noosa Heads, Australia, November 2005.

[3] Brenda S. Baker. A Program for Identifying Duplicated Code. In Proceedings of Computing Science and Statistics:

24th Symposium on the Interface, Vol. 24:4957, March 1992.

[4] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant Anna. Clone Detection Using Abstract Syntax Trees. In

Proceedings of the 14th International Conference on Software Maintenance (ICSM’98), pp. 368-377, Bethesda,

Maryland, November 1998.

[5] James Cordy, Thomas Dean, Nikita Synytskyy. Practical Language-Independent Detection of Near-Miss. In

Proceedings of the 14th IBM Centre for Advanced Studies Conference (CASCON’04), pp. 1 - 12, Toronto, Ontario,

Canada, October 2004.

[6] Neil Davey, Paul Barson, Simon Field, Ray J Frank. The Development of a Software Clone Detector. International

Journal of Applied Software Technology, Vol. 1(3/4):219-236, 1995

[7] A.van Deursen, T. Kuipers. Building Documentation Generators. In Proceedings of International Conference on

Software Maintenance (ICSM’99), Oxford, England, UK, August 1999.

[8] Stephane Ducasse, Matthias Rieger, Serge Demeyer. A Language Independent Ap-proach for Detecting Duplicated

Code. In Proceedings of the 15th International Confer-ence on Software Maintenance (ICSM’99), pp. 109-118,

Oxford, England, September 1999.

[9] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code. Transactions on Software Engineering, Vol. 28(7): 654- 670, July

2002.

[10] Raghavan Komondoor and Susan Horwitz. Tool demonstration: Finding duplicated code using program

dependences. In Proceedings of the European Symposium on Pro-gramming (ESOP’01), Vol. LNCS 2028, pp.

383386, Genova, Italy, April 2001.

[11] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M.Bernstein. Pattern Matching for Clone and Concept

Detection. In Automated Software Engineering, Vol. 3(1-2):77-108, June 1996.

[12] S. Rao Kosaraju. Faster algorithms for the construction of parameterized su–x trees. In In Proceedings of the 36th

Annual Symposium on Foundations of Computer Science (FOCS95), pp. 631638, October 1995.

[13] Jens Krinke. Identifying Similar Code with Program Dependence Graphs. In Proceed-ings of the 8th Working

Conference on Reverse Engineering (WCRE’01), pp. 301-309, Stuttgart, Germany, October 2001.

[14] Andrian Marcus and Jonathan I. Maletic. Identiflcation of high-level concept clones in source code.In Proceedings of

the 16th IEEE International Conference on Automated Software Engineering (ASE’01), pp. 107-114, San Diego, CA, USA,

November 2001.

[15] Jean Mayrand, Claude Leblanc, Ettore Merlo. Experiment on the Automatic Detection of Function Clones in a Software

System Using Metrics. In Proceeding the 12th International Conference on Software Maintenance (ICSM’96), pp. 244-253,

Monterey, CA, USA, November 1996.

[16] E. McCreight. A space-economical su–x tree construction algorithm. In Journal of the ACM, 32(2):262272, April 1976.

[17] S.M. Nasehi, G.R. Sotudeh, and M. Gomrokchi. Source Code Enhancement using Reduction of Duplicated Code. In

Proceedings of the 25th IASTED International Multi-Conference, pp. 192-197, Innsbruck, Austria, February 2007.

[18] V. Wahler, D. Seipel, Jurgen Wolfi von Gudenberg, and G. Fischer. Clone detection in source code by frequent itemset

techniques. In Proceedings of the 4th IEEE Inter-national Workshop Source Code Analysis and Manipulation (SCAM’04), pp.

128135, Chicago, IL, USA, September 2004.

[19] Wuu Yang. Identifying syntactic difierences between two programs. In SoftwarePrac-tice and Experience, 21(7):739755,

July 1991.

[20] Definition of code clone used in intro:Cory J. Kapser:University of Waterloo, Ontario, Canada, 2009

[21] Chanchal Kumar Roy and James R. Cordy, A Survey on Software Clone DetectionResearch:In proceedings of Technical

Report No. 2007-541 School of Computing Queen’s University at Kingston Ontario, Canada, September 26, 2007

[22] L. Moonen. Generating robust parsers using island grammars. In Proceedings of the 8th Working Conference on Reverse

Engineering (WCRE’01), pp. 1322, Stuttgart, Germany, October 2001.

http://www.ijcrt.org/

