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ABSTRACT  

                         In the paper we study hyperbolic and Euclidean area distortion of measurable sets under 

classes of K-Quasiconformal mapping, angular and radial Quasiconformal mapping from the upper half 

plane and the unit disk onto themselves respectively. 

INTRODUCTION 

Quasiconformal mapping are generalization of conformal mapping. They can be considered not only Riemann surface but also on 

Riemannian manifolds in all dimension and even an arbitrary metric space quasiconformal mapping occur nationally in various 

mathematical and often a priori unrelated contexts.In 1956 Beurling and Ahlfors solved the boundary value problem for 

quasiconformal mapping. If M ≥ 1 they gave an explicit formula for the extension of an M-quasisymmetric function h:ℝ → ℝ to 

a quasiconformal mapping 𝑓 = 𝑢 + 𝑖𝑣 from ℍ onto itself, where ℍ denotes the upper half-plane. The mapping 𝑓 is called the 

Beurling – Ahlfors extension of h. In particular 𝑓 satisfies  
𝟏

𝒄𝒚𝟐 ≤
𝑱𝒇(𝒁)

𝒗𝟐 ≤
𝒄

𝒚𝟐  

Where,𝐽𝑓is denoted the Jacobian of 𝑓 and 𝑐 = 𝑐(𝐾) > 0 depends on𝐾 = 𝐾(𝑀). Let 𝑓: Ω → ℂ be an ACL (absolutely 

continuous on lines) homeomorphism in a domain Ω ⊂ ℂ that preserves orientation. If 𝑓 satisfies,𝐷𝑓 =
|𝑓𝑧|+|𝑓�̅�|

|𝑓𝑧|−|𝑓�̅�|
≤ 𝐾 𝑎. 𝑒.For some 

K≥ 1, then 𝑓 is K-quasiconformal mapping, where,𝑓𝑧 =
1

2
(𝑓𝑥 − 𝑖𝑓𝑦) 𝑎𝑛𝑑 𝑓�̅� =

1

2
(𝑓𝑥 + 𝑖𝑓𝑦) 

𝐷𝑓is called the dilatation of 𝑓. The maximal dilatation of 𝑓 Thus for each measurable subset E of ℍ is holds that , 
𝐴𝐻(𝐸)

𝑐 
≤

 𝐴𝐻(𝑓(𝐸)) ≤ 𝑐𝐴𝐻(𝐸), 

Where, 𝐴𝐻(. ) Denotes the hyperbolic area in the half- plane H. 

  In 1994 Astala provedthat if 𝑓 is a K-quasiconformal mapping from the unit disk 𝔻 onto itself normalized by 𝑓(0) = 0 and 

if E is any measurable subset of the unit disk then, 

𝐴𝑒(𝑓(𝐸)) ≤ 𝑎(𝐾)𝐴𝑒(𝐸)
1

𝑘,  

Where, 𝐴𝑒(. ) is denotes the Euclidean area and 𝑎(K)→ 1when K→ 1+. 

In 1998 Resends and porter obtained some results about area distortion under quasiconformal mapping on the unit disk 𝔻 onto 

itself with respect to the hyperbolic measure. They also showed the existence of explodable sets has bounded hyperbolic area but 

under a specific quasiconformal mapping it is image has infinite hyperbolic area. In recent year harmonic quasiconformal 

mapping have been extensively studied and the paper cited therein.  
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   In this paper combining with the knowledge of a harmonic function and its harmonic conjugate function, we get several 

equivalent condition for a harmonic mapping of  ℍ onto itself to be a K-quasiconformal mapping and we use the hyperbolic area 

distortion under quasiconformal harmonic mapping from the unit disk into itself and analyze the hyperbolic and Euclidean area 

distortion under quasiconformal mapping.                                                                    

                                  𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑐𝑦,with𝑐 > 0                                                                                                                                                  

                                               

 QUASICONFORMAL MAPPINGS 

DEFINITION 1.1: 

                          Let Ω 𝑏𝑒 an open set in ℂ and 𝑓: Ω ⟶ ℂ be an oriented preserving homeomorphism we say that 𝑓: Ω ⟶ ℂis 

quasiconformal mapping. 

                       (𝒊)   𝑓isabsolutely continuous on lines (ACL) 

                       (ii)  For almost every 𝑧 ∈ Ωwe have  

         An orientation preserving homeomorphism 𝑓: Ω → ℂ is called quasi-conformal. 

DEFINITION 1.2: 

                       Let Ω be an open set in ℂ and 𝑓: Ω → ℂ be a continuous map.We say that, 

𝑓: Ω → ℂis ACL (absolutely continuous on line) if for each closed rectangle {z∈ ℂ, 𝑎 ≤ 𝑅𝑒(𝑧) ≤ 𝑏 , 𝑐 ≤ 𝐼𝑚(𝑧) ≤
𝑑} contained inΩ. We have,   The following two properties 

    (i) For almost all y∈ [𝑐, 𝑑] the function x→ 𝑓(𝑥 + 𝑖𝑦) is absolutely continuous on [a, b]. 

     (ii) For almost all 𝑥 ∈ [𝑎, 𝑏] the function y→ 𝑓(𝑥 + 𝑖𝑦) is absolutely continuous on [c, d]. 

DEFINITION1.3: 

                  Let 𝑓: Ω → ℂ and let u and v be a open subset of ℂ take K>1 and set 𝐾 ≔
𝐾−1

𝐾+1
 so that 0≤ 𝐾 ≤ 1.A mapping 𝑓: 𝑈 →

𝑉 is a K-quasiconformal map if it is homeomorphism whose distributed partial derivatives are in 𝐿2
𝑙𝑜𝑐(locally in 𝐿2 and satisfy  

|
𝝏𝒇

𝝏�̅�
| = 𝑲 |

𝝏𝒇

𝝏𝒛
| 𝑳𝟐

𝒍𝒐𝒄 𝒊𝒔 𝒂. 𝒆 

                     A map quasiconformal it is K-quasiconformal for some K. 

DEFINITION 1.4: 

                          The smallest K such that f is K-quasiconformal is called as a quasiconformal constant of 𝑓 denoted by K (f). 

THEOREM 1.1: 

                 Prove that the class of K – quasiconformal mapping 

Proof: 

    Let 1 ≤ 𝐾 ≤ ∞ &Ω ⊏ ℂ be a domain. Suppose that, 𝑓: Ω → ℂ𝑖𝑠 K- Quasiconformal mapping given by    𝑓(𝑥 + 𝑖𝑦) =
𝑢(𝑥, 𝑦) + 𝑣(𝑥, 𝑦)                                                                  (1.1)  

Then, f satisfies,   |
𝑓�̅�

𝑓𝑧
| ≤ 𝐾 𝑎. 𝑒,|

𝑓�̅�

𝑓𝑧
|
2

≤ 𝐾2 𝑎. 𝑒                                                    (1.2) 

Inequality of equation (1.2) is    |
1

2
[𝑢𝑥−𝑣𝑦+𝑖(𝑣𝑥+𝑢𝑦)]

1

2
[𝑢𝑥+𝑣𝑦+𝑖(𝑣𝑥−𝑢𝑦)]

|

2

≤ 𝐾2 

                      (𝑢𝑥 − 𝑣𝑦)2 + (𝑣𝑥 + 𝑢𝑦)2 ≤ 𝐾2(𝑢𝑥 + 𝑣𝑦)2 + (𝑣𝑥 − 𝑢𝑦)2is a.e 

𝑢𝑥
2 + 𝑣𝑦

2 − 2𝑢𝑥𝑣𝑦+𝑣𝑥
2 + 𝑢𝑦

2 + 2𝑣𝑥𝑢𝑦 ≤ 𝐾2 (𝑢𝑥
2 + 𝑣𝑦

2 + 2𝑢𝑥𝑣𝑦 + 𝑣𝑥
2 + 𝑢𝑦

2 − 2𝑣𝑥𝑢𝑦) 

Or equivalently 

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2 −
1 + 𝑘2

1 − 𝑘2
2𝑢𝑥𝑣𝑦 +

1 + 𝑘2

1 − 𝑘2
2𝑣𝑥𝑢𝑦 ≤ 0 𝑎. 𝑒                              (1.3) 
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We defined ∝=∝ (𝐾) ≔
1+𝐾2

1−𝐾2 ≥ 1.Then f satisfied inequality (1.2)  

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2 −  2 ∝ 𝑢𝑥𝑣𝑦 + 2 ∝ 𝑣𝑥𝑢𝑦 ≤ 0 𝑎. 𝑒                                         (1.4) 

From now on each expression that involves partial derivative will be true almost everywhereΩwilldenotes a domain of the 

complex planeℂ. In this part we focus on K-quasiconformal mapping from ℍ onto itself given by 𝑓(x + iy) = u(x, y) + iv(y). In 

particular f can be extended homeomorphically to ℍ̅ , u(x, y) is ACL and v(y) is absolutely continuous We know that f is satisfied  

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑦
2 − 2 ∝ 𝑢𝑥𝑣𝑦 ≤ 0 𝑎. 𝑒                                                      (1.5) 

In equation (1.5) we get the form is 𝑓(x + iy) = u(x, y) + iv(y).Hence,  

                                   The class of K-quasiconformal mapping 

 THEOREM 1.2:  

                      Let f be a K-quasiconformal mapping from ℍ onto itself given by f(x+iy) =u(x, y) +i𝑣(y) then,𝑣+
𝑦(0) =

lim 𝑠𝑢𝑝𝑦→0+𝑣𝑦(𝑦) &𝑣−
𝑦(0) = lim 𝑖𝑛𝑓𝑦→0−𝑣𝑦(𝑦) are finite and the partial derivatives of f satisfy the following inequalities 

              1. 
1

𝐾2 𝑣
+

𝑦(0) ≤  𝑣𝑦(𝑦) ≤ 𝐾2𝑣−
𝑦(0)𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑦 ∈ (0,∞) 

               2.
1

𝐾3
𝑣+

𝑦(0) ≤  𝑢𝑥(𝑥, 𝑦) ≤ 𝐾3𝑣−
𝑦(0) 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑥 + 𝑖𝑦 ∈ ℍ 

Proof:  

                let f be a K-quasiconformal mapping from ℍ onto itself given by  

𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑦) 

Then,   
1

𝐾2 𝑣
+

𝑦(0) ≤  𝑣𝑦(𝑦) ≤ 𝐾2𝑣−
𝑦(0) 

In equation (1.5) we get this inequality defines a circle a.e thus 𝑢𝑥𝑎𝑛𝑑 𝑣𝑦 satisfy in particular          𝛼𝑣𝑦 − 𝑣𝑦√𝛼2 − 1 ≤ 𝑢𝑥 ≤

 𝛼𝑣𝑦 + 𝑣𝑦√𝛼2 − 1 𝑎. 𝑒,  −𝑣𝑦√𝛼2 − 1 ≤ 𝑢𝑦 ≤ 𝑣𝑦√𝛼2 − 1  𝑎. 𝑒 

In fact the circle is a subset of the square described and observes that 

                       K= 𝛼 + √𝛼2 − 1    and,   
1

𝐾
= 𝛼 − √𝛼2 − 1                                                (1.6) 

Where K is maximal dilatation of f 

Let,                      𝑐 = √𝛼2 − 1 𝑡ℎ𝑒𝑛, 𝑐 ≥ 0 

𝑣𝑦 (𝛼 − √𝛼2 − 1) ≤  𝑢𝑥 ≤ 𝑣𝑦 (𝛼 + √𝛼2 − 1) 

𝑣𝑦

𝐾
≤ 𝑢𝑥 ≤ 𝑣𝑦𝐾       𝑎𝑛𝑑                  (1.7) 

−𝑐𝑣𝑦 ≤ 𝑢𝑦 ≤ 𝑣𝑦𝑐                                (1.8) 

Given 0 ≤ 𝑥 are integrate (1.7) on interval [0, x] 

 
𝑣𝑦

𝐾
[𝑥 − 0] ≤  𝑢𝑥(𝑥, 𝑦) − 𝑢𝑥(0, 𝑦) ≤ 𝐾𝑣𝑦(𝑦)𝑥 

If we choose any fixed y∈ (0,∞) such that u(x, y) is absolutely continuous with respect to x then we obtain  

𝑥

𝐾
𝑣𝑦(𝑦) + 𝑢𝑥(0, 𝑦) ≤  𝑢(𝑥, 𝑦) ≤ 𝐾𝑣𝑦(𝑦)𝑥 + 𝑢𝑥(0, 𝑦)                                        (1.9) 

For each x∈ ℝ and almost every y∈ (0,∞) using left hand side of the last inequality we get 

lim
𝑦→0+

sup [
𝑣𝑦(𝑦)𝑥

𝐾
+ 𝑢(0, 𝑦)] ≤ lim

𝑦→0+
sup 𝑢(𝑥, 𝑦) and, 

Since, u(x, y) is continuous we obtain 

𝑥

𝐾
lim

𝑦→0+
𝑠𝑢𝑝𝑣𝑦(𝑦) ≤ 𝑢(𝑥, 0) − 𝑢(0,0) < ∞ 
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For this reason lim
𝑦→0+

𝑠𝑢𝑝𝑣𝑦(𝑦)Exists and consequently lim
𝑦→0−

𝑖𝑛𝑓𝑣𝑦(𝑦) exists  

We defined, 𝑣+
𝑦(0) = lim 𝑠𝑢𝑝𝑦→0+𝑣𝑦(𝑦),𝑣−

𝑦(0) = lim 𝑖𝑛𝑓𝑦→0−𝑣𝑦(𝑦) 

  In this equation in (1.9) 

𝑣+
𝑦(𝑦)𝑥

𝐾
+ 𝑢(0,0) ≤ 𝑢(𝑥, 0) ≤ 𝐾𝑣−

𝑦(0)𝑥 + 𝑢(0,0)                                             (1.10) 

On the other hand we choose any fixed x∈ [0,∞] 

Such that, 𝑢(𝑥, 𝑦) is absolutely continuous with respect to y we integrate (8) on the interval [0, y] so,∫ −𝑐𝑣𝑦(𝑡)𝑑𝑡 ≤
𝑦

0

∫ 𝑢𝑦(𝑥, 𝑡)𝑑𝑡 ≤ ∫ 𝑐𝑣𝑦(𝑡)𝑑𝑡
𝑦

0

𝑦

0
 and since 𝑣𝑦  𝑖𝑠 absolutely continuous we obtain  −𝑐𝑣(𝑦) + 𝑢(𝑥, 0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝑐𝑣(𝑦) + 𝑢(𝑥, 0). 

For y∈ [0,∞]𝑎𝑛𝑑  𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ [0,∞] by an argument of continuity of the mapping f and density we have,   

−𝑐𝑣(𝑦) + 𝑢(𝑥, 0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝑐𝑣(𝑦) + 𝑢(𝑥, 0)                                                (1.11) 

For all (x, y)∈ [0,∞) × [0,∞) setting x=0 in the previous inequality to get 

 −𝑐𝑣(𝑦) + 𝑢(0,0) ≤ 𝑢(0, 𝑦) ≤ 𝑐𝑣(𝑦) + 𝑢(0,0)                                           (1.12) 

Thus combination (1.9) and (1.12) 

𝑣𝑦(𝑦)𝑥

𝐾
– 𝑐𝑣(𝑦) + 𝑢(0,0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝐾𝑥𝑣𝑦(𝑦) + 𝑐𝑣(𝑦) + 𝑢(0,0) 

For each x ∈ ℝ and almost every y ∈ (0,∞) in some way we use (10) and (11) 

𝑣+
𝑦

𝑥

𝐾
− 𝑐𝑣(𝑦) + 𝑢(0,0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝑥𝐾𝑣−

𝑦(0) + 𝑐𝑣(𝑦) + 𝑢(0,0) 

We combine the left and right hand sides 

𝑣𝑦(𝑦)𝑥

𝐾
– 𝑐𝑣(𝑦) + 𝑢(0,0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝑥𝐾𝑣−

𝑦(0) + 𝑐𝑣(𝑦) + 𝑢(0,0)               (1.13) 

𝑣+
𝑦

𝑥

𝐾
− 𝑐𝑣(𝑦) + 𝑢(0,0) ≤ 𝑢(𝑥, 𝑦) ≤ 𝐾𝑥𝑣𝑦(𝑦) + 𝑐𝑣(𝑦) + 𝑢(0,0)                   (1.14) 

For each x ∈ ℝ and almost every y ∈ (0,∞) 𝑠𝑖𝑛𝑐𝑒, the left and right hand side of the inequality (1.13)& (1.14) represent linear 

equation in the variable x, we compare their slopes and the fact that x>0 to conclude. 

𝑣𝑦(𝑦)

𝐾
≤ 𝐾𝑣−

𝑦(0)and,
𝑣+

𝑦(0)

𝐾
≤ 𝐾𝑣𝑦(𝑦).For each x ∈ ℝ and almost every y ∈ (0,∞) 

𝑣𝑦(𝑦) ≤ 𝐾2𝑣−
𝑦(0) 

𝑣𝑦(𝑦) ≤
𝑣+

𝑦(0)

𝑘2
 

𝑣+
𝑦(0)

𝑘2
≤ 𝑣𝑦(𝑦) ≤ 𝐾2𝑣−

𝑦(0) 

For each x ∈ ℝ and almost every y ∈ (0,∞) v(y) is absolutely continuous and we integrate the above inequalities on the 

interval [0, y] 

1

𝐾2
∫ 𝑣+

𝑦(0)𝑑𝑡 ≤ ∫ 𝑣𝑦(𝑡)𝑑𝑡 ≤ 𝐾2

𝑦

0

𝑦

0

∫ 𝑣−
𝑦(0)𝑑𝑡

𝑦

0

 

To get           
1

𝐾2 𝑣+
𝑦(0)(𝑦) ≤ 𝑣(𝑦) ≤ 𝐾2𝑣−

𝑦(0)𝑦                                                                     (1.15) 

In particular 0 ≤ 𝑣−
𝑦(0) ≤  𝑣+

𝑦(0) ≤ ∞ v has the dinis derivatives at 0  

Similarly, 
1

𝐾3 𝑣+
𝑦(0)(𝑦) ≤ 𝑢𝑥(𝑥, 𝑦) ≤ 𝐾3𝑣−

𝑦(0)𝑦 

THEOREM 1.3: 

                Let f be a K-quasiconformal mapping from ℍ onto itself given by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) then,   

                          1. There exists M>0 such that |𝑓𝑧| − |𝑓�̅�| ≤ 𝑀 𝑎𝑛𝑑|𝑓𝑧| − |𝑓�̅�| ≤ 𝐾𝑀 𝑎. 𝑒 
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                           2. The mapping f is Lipschitz in ℍ 

                           3. The mapping f is hyperbolically Lipschitz inℍ 

Proof: 

          1. Since,  

|𝑓𝑧| − |𝑓�̅�| =
1

2
√(𝑢𝑥 + 𝑣𝑦)2 + 𝑢𝑦

2 −
1

2
√(𝑢𝑥 − 𝑣𝑦)2 + 𝑢𝑦

2 

                              |𝑓𝑧| − |𝑓�̅�| ≤
1

2
√2(𝑢𝑥

2 + 𝑣𝑦
2 + 𝑢𝑦

2)  𝑎. 𝑒 

We estimate the last expression in above theorem       

 
1

2
√2(𝑢𝑥

2 + 𝑣𝑦
2 + 𝑢𝑦

2) =
√2

2
√(𝐾3𝑣−

𝑦(0))2 + (𝐾2𝑣−
𝑦(0))2 + (

𝐾2 − 1

2
𝐾𝑣−

𝑦(0))2 

                                                    =   
𝐾2𝑣−

𝑦(0)

2𝐾√2
√5𝐾4 + 2𝐾2 + 1 a.e 

              
1

2
√2(𝑢𝑥

2 + 𝑣𝑦
2 + 𝑢𝑦

2) =  
𝐾𝑣−

𝑦(0)

2√2
√5𝐾4 + 2𝐾2 + 1 a.e 

Thus we choose,    M = 
𝐾𝑣−

𝑦(0)

2√2
√5𝐾4 + 2𝐾2 + 1 

                    |𝑓𝑧| − |𝑓�̅�| ≤ 𝑀 𝑎𝑛𝑑 |𝑓𝑧| − |𝑓�̅�| ≤ 𝐾𝑀 𝑎. 𝑒 

2. Let 𝑧1, 𝑧2 ∈ ℍ and l be the Euclidean segment that joint 𝑧1, 𝑧2 then, 

|𝑓𝑧| − |𝑓�̅�| ≤  ∫|𝑑𝑓| 

𝑓(𝑙) 

 

≤ ∫|𝑓𝑧| + |𝑓�̅�||𝑑𝑧| 

𝑙 
|𝑓𝑧| − |𝑓�̅�|   ≤ 𝑀𝐾|𝑧1 − 𝑧2| 

3. Let  𝑧1, 𝑧2 ∈ ℍ and l be the hyperbolic segment that joint 𝑧1𝑤𝑖𝑡ℎ 𝑧2 

𝑑𝐻(𝑓(𝑧1), 𝑓(𝑧2)) ≤ ∫
|𝑑𝑤|

𝐼𝑚𝑤
 

       𝑑𝐻(𝑓(𝑧1), 𝑓(𝑧2)) ≤ 𝐿𝑀𝐾𝑑𝐻(𝑧1, 𝑧2) 

Where, 

                           L =
𝐾2

𝑣+
𝑦(0)

and 𝑑𝐻 denote the hyperbolic metric 

THEOREM 1.4: 

Let f be a K-quasiconformal mapping from ℍ onto itself given by  

                         𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) Then, 

                                       1. 
(𝑣+

𝑦(0))
2

𝐾5 𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾5(𝑣−
𝑦(0))2𝐴𝑒(𝐸) 

                                        2.
1

𝐾9 (
𝑣+

𝑦(0)

𝑣−
𝑦(0)

)
2

𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾9 (
𝑣−

𝑦(0)

𝑣+
𝑦(0)

)
2

𝐴𝑒(𝐸) 

Since, 𝑣−
𝑦(0) ≤ 𝑣+

𝑦(0) 

We have  
1

𝐾9 𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾9𝐴𝑒(𝐸)and these inequalities are asymptotically sharp when K→ 1+ 

Proof: 

          Let E⊂ ℍ be a measurable set the Jacobian of f 

                                                                𝐽𝑓 = 𝑢𝑥𝑣𝑦   

By equation 1.1 theorem 1.2 

                         1. We get  
1

𝐾2 𝑣+
𝑦(0)(𝑦) ≤ 𝑣(𝑦) ≤ 𝐾2𝑣−

𝑦(0)𝑦  a.e  

                                
1

𝐾3 𝑣+
𝑦(0)(𝑦) ≤ 𝑢𝑥(𝑥, 𝑦) ≤ 𝐾3𝑣−

𝑦(0)𝑦 a.e 

Comparing above equation we get  
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(𝑣+
𝑦(0))

2

𝐾5
≤ 𝑢𝑥(𝑥, 𝑦)𝑣𝑦(𝑦) ≤ 𝐾5(𝑣−

𝑦(0))2 

By Jacobian f 𝐽𝑓 = 𝑢𝑥𝑢𝑦 

                                           
(𝑣+

𝑦(0))
2

𝐾5 ≤ 𝐽𝑓 ≤ 𝐾5(𝑣−
𝑦(0))2 a.e 

The Euclidean area of f (E) is  

∫𝐽𝑓𝑑𝑥𝑑𝑦 = 𝐴𝑒(𝑓(𝐸)) 

                                                           E 

And in consequence 

(𝑣+
𝑦(0))

2

𝐾5
𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾5(𝑣−

𝑦(0))2𝐴𝑒(𝐸) 

On the other hand by hyperbolic area as sane way we get 

𝟏

𝑲𝟗
(
𝒗+

𝒚(𝟎)

𝒗−
𝒚(𝟎)

)

𝟐

𝑨𝒆(𝑬) ≤ 𝑨𝒆(𝒇(𝑬)) ≤ 𝑲𝟗 (
𝒗−

𝒚(𝟎)

𝒗+
𝒚(𝟎)

)

𝟐

𝑨𝒆(𝑬) 

THEOREM 1.5: 

Let f be a K-quasiconformal mapping from ℍ onto itself given by  

𝑓(x+iy) =u(x, y) +i𝑣(𝑦) then for each measure set E⊂ ℍ. 

 (𝑖)    If v is differentiable at 0 then, 
(𝑣|

𝑦(0))
2

𝐾9 𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾9(𝑣|
𝑦(0))2𝐴𝑒(𝐸) 

(𝑖𝑖)  If v is continuously differentiable in a neighborhood of 0  

(𝑣|
𝑦(0))

2

𝐾5 𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾5(𝑣|
𝑦(0))2𝐴𝑒(𝐸)These inequality are asymptotically sharp when K→ 1+ 

Proof:  

If v is differentiable at 0 then we get in (1.15) 
1

𝐾2
𝑣+

𝑦(0)(𝑦) ≤ 𝑣|
𝑦(0) ≤ 𝐾2𝑣−

𝑦(0) 

       If v is continuously differentiable is neighbourhood of 0, then 

𝑣−
𝑦(0) = 𝑣|

𝑦(0) = 𝑣+
𝑦(0) 

We get above theorem results replace the value of 𝑣−
𝑦(0) = 𝑣|

𝑦(0) = 𝑣+
𝑦(0).hence 

(𝑣|
𝑦(0))

2

𝐾9 𝐴𝑒(𝐸) ≤ 𝐴𝑒(𝑓(𝐸)) ≤ 𝐾9(𝑣|
𝑦(0))2𝐴𝑒(𝐸)  

(𝒗|
𝒚(𝟎))

𝟐

𝑲𝟓
𝑨𝒆(𝑬) ≤ 𝑨𝒆(𝒇(𝑬)) ≤ 𝑲𝟓(𝒗|

𝒚(𝟎))𝟐𝑨𝒆(𝑬) 

 

 

EXAMPLE: 

  Let 𝑓:ℍ → ℍ given by 𝑓(𝑥 + 𝑖𝑦) = 2𝑥 + sin(𝑥 + 𝑦) + 𝑖𝑦 then, f is a  
11+√85

6
quasiconformal mapping with 𝑣−

𝑦(0) =

𝑣|
𝑦(0) = 𝑣+

𝑦(0) = 1 

 

2.HARMONIC QUASICONFORMAL MAPPING 
DEFINITION 2.1: 

                  A function F is called Harmonic in a region Ωif its laplacian vanishes inΩ. A topological mapping f ofΩ is said to 

be K- quasiconformal it is satisfies. 

                                        1.𝑓𝑖𝑠 𝐴𝐶𝐿 𝑖𝑛 Ω 

                                      2. 𝐿2
𝑓 ≤ 𝐾𝐿𝑓𝑙𝑓 , 𝐾 ≥ 1 𝑎. 𝑒 𝑖𝑛 Ω 

Where, 𝑳𝒇 = |𝒇𝒛| + |𝒇�̅�|, 𝒍𝒇 = |𝒇𝒛| − |𝒇�̅�| 

Then,        f is K- quasiconformal mapping. 

DEFINITION 2.2: 

              Let f is a harmonic mapping then there exists a holomorphic function 𝑔:ℍ → ℂ 

Such that, 𝑓(𝑧) = 𝑅𝑒𝑔(𝑧) + 𝑖𝑐𝑦 

Thus,|𝒇𝒛| =
𝟏

𝟐
|𝒈|(𝒛) + 𝒄|And|𝒇�̅�| =

𝟏

𝟐
|𝒈|(𝒛) − 𝒄|.We obtain that 𝑔|(𝑧) belongs to the circle 𝔻. 

DEFINITION 2.3: 

                 The hyperbolic density is 
𝟐𝒅𝒛

𝟏−|𝒛|𝟐 𝒂𝒏𝒅 
|𝒅𝒘|

𝑰𝒎 𝒘
 for the unit disk 𝔻 and the upper half – planeℍ. We denote also by 𝐴𝐻 

the hyperbolic area in the unit disk 𝔻. 
THEOREM 2.1: 

Let f be a harmonic mapping of ℍ onto itself and continuous up to its boundary withf (∞) = ∞.If f is a K-quasiconformal 

mapping then f can be represented by f = u+icy and the gradient of 𝑓 is such that 

𝐿𝑓 = |𝑓𝑧| + |𝑓�̅�| ≤ 𝑐𝐾 

Where, c is positive constant. 

Proof: 

                    By definition of K- quasiconformal mapping  

We have,             𝐿2
𝑓 ≤ 𝐾𝐿𝑓𝑙𝑓 
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This implies that, 𝐿𝑓 ≤ 𝐾𝑙𝑓                                                                                                 (2.1) 

We assume that 𝑓 = 𝑢 + 𝑖𝑐𝐼𝑚(𝑧)   , 𝑓 =
1

2
[𝑔(𝑧) + 𝑐(𝑧)] +

1

2
[𝑔(𝑧) − 𝑐(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

Hence,                           |𝑓𝑧| =
1

2
|𝑔|(𝑧) + 𝑐|, |𝑓�̅�| =

1

2
|𝑔|(𝑧) − 𝑐 |                                              (2.2) 

Equation (2.1) and (2.2) we have, 

|𝑓𝑧| + |𝑓�̅�| ≤ 𝐾[|𝑓𝑧| − |𝑓�̅�|] 
≤ 𝐾|𝑓𝑧| − 𝐾|𝑓�̅�| 

|𝑓𝑧| + |𝑓�̅�| −  𝐾|𝑓𝑧| + 𝐾|𝑓�̅�| ≤ 0 

−(𝐾 − 1)|𝑓𝑧| + (𝐾 + 1)|𝑓�̅�| ≤ 0 

(𝐾 + 1)|𝑓�̅�| ≤ (𝐾 − 1)|𝑓𝑧| 
≤ (𝐾 − 1)|𝑓�̅� + 𝑐| 

                       (K+1)|𝑓�̅�| − (𝐾 − 1)|𝑓�̅�| ≤ 𝑐(𝐾 − 1) 

                                                      2 |𝑓�̅�| ≤ 𝑐(𝐾 − 1) 

Put 𝑓�̅� value in above equation |𝑔|(𝑧) − 𝑐| ≤ 𝑐(𝐾 − 1)                                                                (2.3) 

It is easy to get |𝑓𝑧| =
1

2
|𝑐(𝐾 + 1)|, |𝑓�̅�| =

1

2
|𝑐(𝐾 − 1) | 

Thus we obtain |𝑓𝑧| + |𝑓�̅�| ≤
1

2
[𝑐𝐾 − 𝑐 +

1

2
𝑐𝐾 + 𝑐] ≤ 𝑐𝐾 

                                   ∴ 𝑳𝒇 = |𝒇𝒛| + |𝒇�̅�| ≤ 𝒄𝑲 

LEMMA 2.1: 

              Assume that f is a harmonic mapping of ℍ onto itself and continuous on ℍ ∪ ℝ with f (∞) = ∞. 𝑖𝑓 f is K- 

quasiconformal mapping then,𝑓(𝑧) =
1

2
(𝑔(𝑧) + 𝑐(𝑧) + 𝑔(𝑧) − 𝑐(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

Where, g is a holomorphic function in ℍ 𝑎𝑛𝑑 c is positive constant and the Jacobian of f is such that 𝐽𝑓 = |𝑓𝑧| − |𝑓�̅�| ≤ 𝑐2𝐾 

Proof: 

According to the definition of K-quasiconformal mapping and the inequality 

|𝑓𝑧| =
1

2
|𝑔|(𝑧) + 𝑐|,     |𝑓�̅�| =

1

2
|𝑔|(𝑧) − 𝑐 | 

                                              𝐽𝑓 = |𝑓𝑧| − |𝑓�̅�| 

                                              𝐽𝑓 ≤ 𝑐|𝑔|(𝑧)| 

                                |𝑔|(𝑧) − 𝑐| ≤ 𝑐(𝐾 − 1),|𝑔|(𝑧)| ≤ 𝑐𝐾 

                                               𝐽𝑓 ≤ 𝑐2𝐾 

𝑱𝒇 = |𝒇𝒛| − |𝒇�̅�| ≤ 𝒄𝟐𝑲 

THEOREM 2.2: 

Let f =u +i𝑣 be a harmonic mapping of ℍ onto itself and continuous up to its boundary with f (∞) = ∞.if f is K-

quasiconformal mapping then for any measurable subset E⊂ ℍ 

 𝐴𝑒𝑢𝑐(𝑓(𝑧)) ≤ 𝑐2𝐾𝐴𝑒𝑢𝑐(𝐸) 

Where,   𝐴𝑒𝑢𝑐(. ) Denotes the Euclidean area and c is positive constant. 

THEOREM 2.3: 

               Let f be a harmonic mapping of ℍ onto itself and continuous up to its boundary with 𝑓(∞) = ∞.if f is a K-     

quasiconformal mapping then for any measurable subset E⊂ ℍwe get 

𝐴ℎ𝑦𝑝(𝑓(𝐸)) ≤ 𝑐2𝐾𝐴ℎ𝑦𝑝(𝐸) 

Where, 𝐴ℎ𝑦𝑝 denotes the hyperbolic area and c is positive constan 

    3.ANGULAR AND RADIAL QUASICONFORMAL MAPPING 
Proposition 3.1: 

                  Let f:Ω → ℂ be an ACL mapping. If𝑓(r𝑒𝑖𝜃) = 𝑢(𝑟𝑒𝑖𝜃) + 𝑖𝑣(𝑟𝑒𝑖𝜃)then for a.e inΩ 

Proof: 

               Let f:Ω → ℂ be an ACL mapping. Then,𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟𝑒𝑖𝜃) + 𝑖𝑣(𝑟𝑒𝑖𝜃) is a.e 

    We know that,|𝑓𝑧| =
1

2
|𝑓𝑥 − 𝑖𝑓𝑦|,|𝑓�̅�| =

1

2
|𝑓𝑥 + 𝑖𝑓𝑦| 

Taking square on above equation, 

                        4|𝑓𝑧|
2 = |(𝑢𝑥 + 𝑣𝑦) + 𝑖(𝑣𝑥 − 𝑢𝑦)|

2
 

                     4|𝑓�̅�|
2 = |(𝑢𝑥 − 𝑣𝑦) + 𝑖(𝑣𝑥 + 𝑢𝑦)|

2
, 𝑥 = 𝑟,

𝜃

𝑟
= 𝑦 

                      4|𝑓𝑧|
2 = |(𝑢𝑟 +

𝑣𝜃

𝑟
) + 𝑖 (𝑣𝑟 −

𝑢𝜃

𝑟
)|

2

, 

                      4|𝑓𝑧|
2 = (𝑢𝑟 +

𝑣𝜃

𝑟
)

2

+ (𝑣𝑟 −
𝑢𝜃

𝑟
)

2

                                         (3.1) 

                     4|𝑓�̅�|
2 = (𝑢𝑟 −

𝑣𝜃

𝑟
)

2

+ (𝑣𝑟 +
𝑢𝜃

𝑟
)

2

                                          (3.2) 

And the Jacobian of ‘f’ is  𝐽𝑓 = |𝑓𝑧|
2 − |𝑓�̅�|

2 

𝐽𝑓 =
1

4
[4𝑢𝑟

𝑣𝜃

𝑟
− 4𝑣𝑟

𝑢𝜃

𝑟
] 

                                                                 𝑱𝒇 =
𝟏

𝒓
[𝒖𝒓𝒗𝜽 − 𝒗𝒓𝒖𝜽]                              (3.3)     

DEFINITION 3.1: 

A mapping 𝑓:ℍ → ℍ is said to be radial at 𝑥 ∈ ℝ if f leaves invariant all Euclidean rays in ℍ that meet at x. Let 𝑓:ℍ → ℍ be 

a radial mapping at x.Since, hyperbolic area is invariant under horizontal translations.We can assume that, the point x∈
ℝ.Where,the Euclidean rays meet is x=0 if ‘f’ is a radial mapping then f is can be written in polar-coordinates (𝑟, 𝜃) as 
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𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝜃) = 𝜌(𝑟, 𝜃)𝑒𝑖𝜃  

                                     With 𝝆(𝒓, 𝜽) ∶ (𝟎,∞] × (𝟎, 𝝅) → (𝟎,∞) if z = r𝒆𝒊𝜽. 
THEOREM 3.1: 

                       Let f be a ACL mapping from ℍ onto itself suppose that f is a radial mapping at 0.then its Jacobian mapping at 

0 is 𝐽𝑓 =
𝜌𝜌𝑟

𝑟
 𝑎. 𝑒 If f preserves orientation then𝜌𝑟 > 0 𝑎. 𝑒 

Proof: 

Since,       𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝜃) = 𝜌(𝑟, 𝜃)𝑒𝑖𝜃 , 𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟𝑒𝑖𝜃) + 𝑖𝑣(𝑟𝑒𝑖𝜃) 

Then, (𝑟, 𝜃) = 𝜌(𝑟, 𝜃)𝑐𝑜𝑠𝜃 ,𝑣(𝑟, 𝜃) = 𝜌(𝑟, 𝜃)𝑠𝑖𝑛𝜃 

By Jacobian of ‘f’ is 𝐽𝑓 =
1

𝑟
[𝜌𝜌𝑟𝑠𝑖𝑛𝜃 − 𝜌𝜌𝑟𝑐𝑜𝑠𝜃] 

                                 𝐽𝑓 =
𝜌𝜌𝑟

𝑟
[𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃] 

                             𝜃 = 𝜋𝐽𝑓 =
𝜌𝜌𝑟

𝑟
[0+1]                                         ∴ 𝐽𝑓 =

𝜌𝜌𝑟

𝑟
 If 𝜌𝑟 > 0 

We get,            𝑱𝒇 =
𝝆

𝒓
 𝒂. 𝒆 

 

PROPOSITION 3.2: 

                        Let f be a K-quasiconformal mapping from ℍ onto itself. Suppose that f is a radial mapping at 0. Then the 

function  𝜌  satisfies the following 

  1. For 1≤ 𝑟 < ∞ 𝑟
1

𝐾 ≤
𝜌(𝑟,𝜃)

𝜌(1,𝜃)
≤ 𝑟𝐾  

 

    2. For 0<r<1 𝑟𝐾 ≤
𝜌(𝑟,𝜃)

𝜌(1,𝜃)
≤ 𝑟

1

𝑘 

Proof: 

              We first prove that the function (0,∞) ∋ 𝑟 ⟼ 𝐼𝑛𝜌(𝑟, 𝜃) is absolutely continuous for almost every 𝜃 ∈ (0, 𝜋)It is 

enough to prove that for every M > 1, 

        The function [
1

𝑀
, 𝑀] ∋ 𝑟 ↦ 𝐼𝑛 𝜌(𝑟, 𝜃) is absolutely continuous for almost every 𝜃 ∈ (0, 𝜋). 

             Let Ω = {𝑧 = 𝑥 + 𝑖θ ∈ ℂ(x, θ) ∈ (−∞,∞) × (0, π)} 
Then,  

           The mapping log∘ 𝑓 ∘ 𝑒𝑥𝑝: Ω → Ω is K-quasiconformal mapping 

Thus,  

           The function (−∞,∞) ∋ 𝑥 ↦ 𝐼𝑛𝜌(𝑒𝑥, 𝜃)is absolutely continuous for almost every 𝜃 ∈ (0, 𝜋). 
  Let,𝜖 > 0 There exists 𝛿 > 0 

Such that, for every finite collection of disjoint intervals (𝑎𝑗 , 𝑏𝑗) ⊂ ℝ, 𝑗 = 1,2… . 𝑛 with   ∑ (𝑏𝑗 − 𝑎𝑗) < 𝛿𝑛
𝑗=1  

Then,∑ (𝐼𝑛𝜌(𝑒𝑏𝑗 , 𝜃) − 𝐼𝑛 𝜌(𝑒𝑎𝑗 , 𝜃)) < 𝜖𝑛
𝑗=1  

Since, in r is absolutely continuous on [
1

𝑀
, 𝑀] there exists 𝛿 | > 0 such that, for every finite collection of disjoint intervals 

(𝑐𝑙 , 𝑑𝑙) ⊂ [
1

𝑀
, 𝑀] , 𝑙 = 1,2… . .𝑚 with, 

∑(𝑑𝑙 − 𝑐𝑙) < 𝛿|

𝑚

𝑙=1

 

Then,∑ (𝐼𝑛𝑑𝑙 − 𝐼𝑛𝑐𝑙) < 𝛿𝑚
𝑙=1  

And by the inequality,∑ (𝐼𝑛 𝜌(𝑑𝑙 , 𝜃) − 𝐼𝑛 𝜌(𝑐𝑙 , 𝜃)) < 휀𝑚
𝑙=1  

If,𝑓(𝑧) = 𝜌(𝑟, 𝜃)𝑒𝑖𝜃 from (1) and (2) 

|𝑓𝑧|
2 =

1

4
(𝜌𝑟

2 + 2
𝜌𝑟𝜌

𝑟
+

𝜌2

𝑟
+

𝜌𝜃
2

𝑟2
)  𝑎. 𝑒                                                                  (3.4) 

|𝑓�̅�|
2 =

1

4
(𝜌𝑟

2 − 2
𝜌𝑟𝜌

𝑟
+

𝜌2

𝑟
+

𝜌𝜃
2

𝑟2
)  𝑎. 𝑒                                                                   (3.5) 

By (4.4) and (4.5) in equation |𝑓𝑧|
2 ≤ 𝐾2 ≤ |𝑓�̅�|

2 
1

4
[(𝜌𝑟 −

𝜌

𝑟
)2 +

𝜌𝜃
2

𝑟2 ] ≤ 𝐾2 [
1

4
(𝜌𝑟 +

𝜌

𝑟
)2 +

𝜌𝜃
2

𝑟2 ]a.e 

Or equivalently, 

2(𝑟2𝜌𝑟
2 + 𝜌2 + 𝜌𝜃

2)

4𝑟𝜌𝑟𝜌
≤  

𝐾2 + 1

1 − 𝐾2
= 𝛼 𝑎. 𝑒 

Then,  
1

2
[
𝑟𝜌𝑟

𝜌
+

𝜌

𝑟𝜌𝑟
] ≤ 𝛼 𝑎. 𝑒 

And thus,(
𝑟𝜌𝑟

𝜌
)

2

− 2𝛼 (
𝑟𝜌𝑟

𝜌
) + 1 ≤ 0 𝑎. 𝑒 

𝜌𝑟

𝜌
[(

𝑟𝜌𝑟

𝜌
) − 2𝛼𝑟] + 1 ≤ 0 

(
𝑟𝜌𝑟

𝜌
)

2

+ 1 ≤ 2𝛼𝑟
𝜌𝑟

𝜌
 

1

𝐾𝑟
≤

𝜌𝑟

𝜌
≤  

𝐾

𝑟
     𝑎. 𝑒                  

Or equivalently 
1

𝐾𝑟
≤  

𝜕

𝜕
𝐼𝑛 𝜌 ≤

𝐾

𝑟
    𝑎. 𝑒  
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We choose any fixed 𝜃 ∈ (0, 𝜋) such that 𝐼n 𝜌(𝑟, 𝜃) is absolutely continuous on r and 

We interval [1, R] to get 

∫
1

𝐾𝑟

𝑅

1

𝑑𝑟 ≤ ∫
𝜕

𝜕𝑟

𝑅

1

𝐼𝑛𝜌𝑑𝑟 ≤ ∫
𝐾

𝑟

𝑅

1

𝑑𝑟 

Thus, 
1

𝐾
𝐼𝑛𝑟|1

𝑅 ≤ 𝐼𝑛𝜌(𝑟, 𝜃) ≤ 𝐾𝐼𝑛𝑟|1
𝑅

for almost every 𝜃 ∈ (0, 𝜋)𝑎𝑛𝑑 𝑅 ∈ (1,∞) 

By an argument of continuity of ‘f’ and density We finally obtain,𝑅
1

𝐾 ≤
𝜌(𝑅,𝜃)

𝜌(1,𝜃)
≤ 𝑅𝐾for all (R,𝜃) ∈ (1,∞) × (0, 𝜋).In a similar 

way, if we suppose that 0<R<1 

𝑅𝐾 ≤
𝜌(𝑅, 𝜃)

𝜌(1, 𝜃)
≤ 𝑅

1

𝐾 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑅, 𝜃) ∈ (0,1) ∈ (0, 𝜋) 

THEOREM 3.2: 

Let f be a K- quasiconformal mapping from ℍ onto itself that leaves invariant each ray in ℍ that meets a real base point of E⊂
ℍ is a measurable set then, 

1

𝐾
𝐴𝐻(𝐸) ≤ 𝐴𝐻(𝑓(𝐸)) ≤ 𝐾𝐴𝐻(𝐸). 

These inequalities are asymptotically sharp when K→ 1+  

DEFINITION 3.2: 

 A mapping 𝑓:𝔻 → 𝔻is said to be angular at 0 ∈ 𝔻 if ‘f’ leaves invariant each  

Circle in 𝔻 with center at 0. 

                          An angular mapping f at 0 can be written as𝒇(𝒛) = 𝒇(𝒓𝒆𝒊𝜽) = 𝒓𝒆𝒊𝝋(𝒓,𝜽), 
Where, 𝝋: [𝟎, 𝟏) × [𝟎, 𝟐𝝅] → ℝ 

LEMMA 3.1: 

                      Let f be a ACL mapping from 𝔻 onto itself suppose that f is angular at 0.then its Jacobian is    𝐽𝑓 = 𝜑𝜃. If ‘f’ 

preserves orientation then, 𝜑𝜃 > 0 𝑎. 𝑒 

Proof:           Since, 𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝜃) = 𝑟𝑒𝑖𝜑(𝑟,𝜃) 

Then, 𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟𝑒𝑖𝜃) + 𝑖𝑣(𝑟𝑒𝑖𝜃),𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟, 𝜃) + 𝑖𝑣(𝑟, 𝜃) 

𝑢(𝑟, 𝜃) = 𝑟𝑐𝑜𝑠𝜑(𝑟, 𝜃) 

𝑣(𝑟, 𝜃) = 𝑟𝑠𝑖𝑛𝜑(𝑟, 𝜃) 

We know that,𝐽𝑓 =
1

𝑟
[𝑢𝑟𝑣𝜃 − 𝑣𝑟𝑢𝜃] 

                       𝐽𝑓 =
1

𝑟
[𝑟𝑠𝑖𝑛𝜑(𝑟, 𝜃) − 𝑟𝑐𝑜𝑠𝜑(𝑟, 𝜃)] 

                     𝐽𝑓 = 𝑠𝑖𝑛𝜑(𝑟, 𝜃) − 𝑐𝑜𝑠𝜑(𝑟, 𝜃) 

           ∴ 𝑓 Is angular at o. then its Jacobian is 𝐽𝑓 = 𝜑𝜃  

PROPOSITION 3.3: 

Let f be a K-quasiconformal mapping from 𝔻onto itself which is angular at 0.then, 
1

𝐾
≤ 𝜑𝜃 ≤ 𝐾 𝑎. 𝑒 𝑖𝑛 [0,1) × [0,2𝜋] 

Proof: 

If 𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝜃) = 𝑟𝑒𝑖𝜑(𝑟,𝜃) 

From equation 1 & 2 

                                                             
 4|𝑓𝑧|

2 = (1 + 𝜑𝜃)2 + 𝑟2𝜑𝑟
2 a. e 

 4|𝑓�̅�|
2 = (1 − 𝜑𝜃)2 + 𝑟2𝜑𝑟

2 a. e  }   (3.6) 

Since,
|𝑓�̅�|2

|𝑓𝑧|2
≤ 

(1−𝜑𝜃)2

(1+𝜑𝜃)2
≤ 𝐾2,

(1−𝜑𝜃)2

(1+𝜑𝜃)2
≤

|𝑓�̅�|2

|𝑓𝑧|2
≤ 𝐾2 a.e 

Taking square on both side
1−𝜑𝜃

1+𝜑𝜃
≤

|𝑓�̅�|

|𝑓𝑧|
≤ 𝐾 

                                                                                
1

𝑘
≤ 𝜑𝜃 ≤ 𝐾 𝑎. 𝑒      (3.7) 

THEOREM 3.3: 

 Let f be a K-quasiconformal mapping from 𝔻 onto itself which is angular at 0.if E⊂ ℍ is a measurable set then, 

1

𝐾
𝐴𝐻(𝐸) ≤ 𝐴𝐻(𝑓(𝐸)) ≤ 𝐾𝐴𝐻(𝐸) 

These inequalities are asymptotically sharp when K→ 1+ 
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4. PARTIAL DERIVATIVES OF K- QUASICONFORMAL MAPPING 

THEOREM 4.1: 

           Let 1≤ 𝐾 < ∞.if 𝑓: Ω → ℂ is a K-quasiconformal mapping by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥) + 𝑖𝑣(𝑦) 

 Then its partial derivative belong to one of the angular region defined by 

𝑢𝑥
2 + 𝑣𝑦

2 − 2𝛼𝑢𝑥𝑣𝑦 ≤ 0 𝑎. 𝑒 

Proof: 

       Then by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)𝑓 Satisfies inequality if and only if 

                          𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2 −  2 ∝ 𝑢𝑥𝑣𝑦 + 2 ∝ 𝑣𝑥𝑢𝑦 ≤ 0 𝑎. 𝑒    (4.1) 

In equation (1) its partial derivatives satisfy the inequality 

                                          𝑢𝑥
2 + 𝑣𝑦

2 −  2 ∝ 𝑢𝑥𝑣𝑦 ≤ 0   𝑎. 𝑒   (4.2) 

Since, 𝛼 ≥ 1 The discriminant of  𝑢𝑥
2 + 𝑣𝑦

2 −  2 ∝ 𝑢𝑥𝑣𝑦 is non-negative and equation (4.2) defines the interior of an angular 

region with the identification 𝑢𝑥~𝑥 − 𝑎𝑥𝑖𝑠 and 𝑣𝑦~𝑦 − 𝑎𝑥𝑖𝑠.That the Jacobian of ‘f’ is𝑱𝒇 = 𝒖𝒙𝒗𝒚 Is always positive  

 GENERAL CASE: 

If 𝑓 is a K-quasiconformal mapping given by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑦) 

Then reduces to, 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑦
2 −  2 ∝ 𝑢𝑥𝑣𝑦 ≤ 0   𝑎. 𝑒. Inequality suggests studying the quadratic from Q (x, y, w) = 𝑥2 +

𝑦2 + 𝑤2 − 2𝛼𝑥𝑤 .Whose, associated symmetric matrix is  

                                  𝑁 = (

𝑥2 𝑥𝑦 𝑥𝑤

𝑥𝑦 𝑦2 𝑦𝑤

𝑥𝑤 𝑤𝑦 𝑧2

),𝑁 = (
1 0 −∝
0 1 0

−∝ 0 1
) 

PROPOSITION 4.1: 

  There exists an invertible matrix P such that𝑃−|𝑁𝑃 = 𝐷. WhereD= (
1−∝ 0 0

0 1 0
0 0 1+∝

) 

Proof: 

The matrix N is,𝑁 = (
1 0 −∝
0 1 0

−∝ 0 1
) 

To find Eigen values of matrix N,Det(𝑁 − 𝜆I) = 0 

𝐼 = [
1 0 0
0 1 0
0 0 1

]and 𝜆𝐼 = [
𝜆 0 0
0 𝜆 0
0 0 𝜆

],𝑁 − 𝜆𝐼 = [
1 − 𝜆 0 −𝛼

0 1 − 𝜆 0
−𝛼 −0 1 − 𝜆

] 

det (𝑁 − 𝜆𝐼) = |
1 − 𝜆 0 −𝛼

0 1 − 𝜆 0
−𝛼 −0 1 − 𝜆

| 

det ( 𝑁 − 𝜆𝐼)= (1 − 𝜆)[(1 − 𝜆)2 − 𝛼2],det ( 𝑁 − 𝜆𝐼) = 0 

                      𝜆 = 1, 𝜆 = (1 ± 𝛼), 

The Eigen values of N are 𝜆1 = 1 − 𝛼, 𝜆2 = 1, 𝜆3 = 1 + 𝛼 

The Eigen vector is(N-𝜆𝐼)𝑥 = 0, 𝜆1 = 1 − 𝛼 

[
−𝛼 0 −𝛼
0 −𝛼 0

−𝛼 0 −𝛼
] [

𝑥
𝑦
𝑤

] = [
0
0
0
] 

By Cramer rule: 
𝑥

−𝛼2 =
𝑦

0
=

𝑤

𝛼2  ⇒ (𝑥, 𝑦, 𝑤) = (1,0, −1) 

Eigen vector is (1,0, −1). The norm of Eigen vector is ‖𝑣1‖ = √1 + 0 + 1 = √2 
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1

√2
‖𝑣1‖ =

1

√2
(1, 0, −1) 

= (
1

√2
, 0, −

1

√2
) 

Eigen vector (1, 0, −1)with normalized(
1

√2
, 0, −

1

√2
) 

By Cramer rule we get (𝑥, 𝑦, 𝑤) = (0,1,0). The norm of (0,1,0)is (0, 1, 0). 

By Cramer rule we get(𝑥, 𝑦, 𝑤) = (1,0,1).The norm of(1,0,1) 𝑖𝑠 (
1

√2
, 0,

1

√2
) 

𝑃 =

[
 
 
 
 
1

√2
0

1

√2
0 1 0
1

√2
0 −

1

√2]
 
 
 
 

= 𝑃−| 

𝑃−|𝑁 =

[
 
 
 
 
1 − 𝛼

√2
0

1 − 𝛼

√2
0 1 0

1 + 𝛼

√2
0

−1 − 𝛼

√2 ]
 
 
 
 

 

𝑃−1𝑁𝑃 = (
1 − 𝛼 0 0

0 1 0
0 0 1 + 𝛼

) = 𝐷 Where, D = (
𝟏 − 𝜶 𝟎 𝟎

𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 + 𝜶

) 

PROPOSITION 4.2: 

                        Let 1≤ 𝐾 < ∞.if 𝑓:Ω → ℂ is a K-quasiconformal mapping by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥) + 𝑖𝑣(𝑦) then its partial 

derivative 𝑢𝑥, 𝑢𝑦 , 𝑣𝑦belong to one branch of the elliptic cone 

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑦
2 − 2𝛼𝑢𝑥𝑣𝑦 ≤ 0 𝑎. 𝑒 

Proof: 

As we saw f is K- quasiconformal mapping iff𝑢𝑥, 𝑢𝑦 , 𝑣𝑦 satisfy Q (𝑢𝑥, 𝑢𝑦 , 𝑣𝑦 )≤ 0 

That describes the solid cone;𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑦
2 − 2𝛼𝑢𝑥𝑣𝑦 ≤ 0 .as f preserves orientation then, 

𝐽𝑓 = 𝑢𝑥𝑣𝑦 > 0 𝑎. 𝑒 

Since, 𝑣𝑦 > 0 𝑡ℎ𝑒𝑛 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑖𝑙𝑦 𝑢𝑥 > 0 𝑎. 𝑒 

GENERAL CASE: 

   That f is a quasiconformal mapping 𝑓: Ω ⊂ ℂ → ℂ given by 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) then by   𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 +

𝑣𝑦
2 − 2𝛼𝑢𝑥𝑣𝑦 + 2𝛼𝑢𝑦𝑣𝑥 ≤ 0a.e. 

In the case we study the quadratic formQ (x, y, z, w) = 𝑥2+𝑦2 + 𝑧2 + 𝑤2 − 2𝛼𝑥𝑤 + 2𝛼𝑦𝑧 

With the associated symmetric matrix𝑁 = (

  1     0      0    − 𝛼
    0     1      𝛼         0  
  0     𝛼     1          0
−𝛼     0      0         1

) 

PROPOSITION 4.3: 

         There exists an invertible matrix P such that  𝑃−|𝑁𝑃 = 𝐷 𝑤ℎ𝑒𝑟𝑒, 

                                 D = (

1 − 𝛼
0
0
0

0
1 − 𝛼

0
0

0
0

1 + 𝛼
0

0
0
0

1 + 𝛼

) 

Proof:  

The characteristic polynomial of the matrix N isdet(𝑁 − 𝜆𝐼) = 0 
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|

1 − 𝜆
0
0

−𝛼

0
1 − 𝜆

𝛼
0

0
𝛼

1 − 𝜆
0

−𝛼
0
0

1 − 𝜆

| = 0 

The characteristic polynomial is (1−𝜆)4 − 𝛼2(1 − 𝜆)2 − 𝛼2(1 − 𝜆)2 + 𝛼4 = 0 with Eigen value 𝜆1 = 1 + 𝛼, 𝜆2 = 1 − 𝛼 and 

both with multiplicity two. The Eigen vector is(𝑁 − 𝜆𝐼) = 0 put the value𝜆1 = 1 + 𝛼, 𝜆2 = 1 − 𝛼. The Eigen vectors are 

𝜆1(1,0,0, −1) 𝑎𝑛𝑑 (0,1,1,0)𝑎𝑛𝑑 𝑓𝑜𝑟𝜆2 𝑎𝑟𝑒 (1,0,0,1)&(0,1, −1,0) . After normalization we obtain the matrix. 

 P=

(

 
 
 
 

1

√2
0

1

√2
0

0
1

√2
0

1

√2

0
1

√2

−
1

√2

0

0
1

√2

−
1

√2
0)

 
 
 
 

  with inverse  𝑃−| =

(

 
 
 
 

1

√2
0 0

1

√2

0
1

√2
−

1

√2
0

1

√2

0

0
1

√2

0 −
1

√2
1

√2
0 )

 
 
 
 

 

Thus 𝑃−𝑁𝑃 =

(

 
 
 
 

1

√2
0 0

1

√2

0
1

√2
−

1

√2
0

1

√2

0

0
1

√2

0 −
1

√2
1

√2
0 )

 
 
 
 

(

  1     0      0    − 𝛼
    0     1      𝛼         0  
  0     𝛼     1          0
−𝛼     0      0         1

)

(

 
 
 
 

1

√2
0

1

√2
0

0
1

√2
0

1

√2

0
1

√2

−
1

√2

0

0
1

√2

−
1

√2
0)

 
 
 
 

 

𝑃−|𝑁𝑃 = (

1 − 𝛼
0
0
0

0
1 − 𝛼

0
0

0
0

1 + 𝛼
0

0
0
0

1 + 𝛼

) 

∴ 𝑷−|𝑵𝑷 = 𝑫 

THEOREM 4.2: 

The quadratic form 

𝑄 ̂ (�̂�, �̂�, �̂�, �̂�) = (1 − 𝛼)�̂�2 + (1 − 𝛼)�̂�2 + (1 + 𝛼)�̂�2 + (1 + 𝛼)�̂�2Represents the quadratic form Q (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥2 + 𝑦2 +
𝑧2 + 𝑤2 − 2𝛼𝑥𝑤 + 2𝛼𝑦𝑧 in the basis 

𝑐 = {(
1

√2
, 0,0. −

1

√2
) , (0,

1

√2
,

1

√2
, 0) , (

1

√2
, 0,0,

1

√2
) , (0,

1

√2
, −

1

√2
, 0)}  

Where, 

(

𝑥
𝑦
𝑧
𝑤

) =

(

 
 
 
 
 
 

1

√2
0

1

√2
0

0
1

√2
0

1

√2

0
1

√2

−
1

√2
0

0
1

√2

−
1

√2
0
)

 
 
 
 
 
 

(

�̂�
�̂�
�̂�
�̂�

) 

In particular Q (x, y, z, w)≤ 0 𝑖𝑓𝑓 �̂�(𝑥,̂ 𝑦,̂ 𝑧,̂ �̂�) ≤ 0 

Proof: 

 We have the relations  (

𝑥
𝑦
𝑧
𝑤

) =

(

 
 
 
 

1

√2
(�̂� + �̂�)

1

√2
(�̂� + �̂�)

1

√2
(�̂� − �̂�)

1

√2
(�̂� − �̂�))

 
 
 
 

 

Thus,𝑄(𝑥, 𝑦, 𝑧, 𝑤) = 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 − 2𝛼𝑥𝑤 + 2𝛼𝑦𝑧 

                               = (1 − 𝛼)�̂�2 + (1 − 𝛼)�̂�2 + (1 + 𝛼)�̂�2 + (1 + 𝛼)�̂�2 

           𝑄(𝑥, 𝑦, 𝑧, 𝑤) =  �̂�(�̂�, �̂�, �̂�, �̂�) 
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And this means that𝑄(𝑥, 𝑦, 𝑧, 𝑤) ≤ 0 𝑖𝑓𝑓 �̂�(�̂�, �̂�, �̂�, �̂�) ≤0. 

CONCLUSION 

The classes of mapping introduced in this paper have precise geometrical mapping in particular the class of quasiconformal 

mapping (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑦). We have obtained left and right asymptotic bound for the hyperbolic or Euclidean area 

distortion. Moreover the example showed that the different classes of mapping defined in the paper are not empty and coincides 

or not with the region of variation of the partial derivatives of quasiconformal mapping𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑦). 

BIBLIOGRAPHY: 

1. Astala, K: Area distortion of quasiconformal mappings. Acta Math.173, 37-60(1994) 

2. Porter, RM,Resendis,LF:Quasiconformallyexplodablesets. Complex var.Theory Appl.36, 379-392(1998) 

3. Emerenko, A, Hamilton, DH: On the area distortion by quasiconformal mapping Proc.Am.Math.Soc.123, 2793 – 

2797(1995) 

4. Chen, X, Qlan, T: Estimate of hyperbolically partial derivatives of 𝜌 – harmonic quasiconformal mapping and its 

applications. Complex var.Elliptic Equ 60, 875 – 892(2015) 

5. Dongmian, F, Xinzhong, H: Harmonic K-quasiconformal mapping from the unit disk onto half planes. Bull, Malavs Math. 

Soc, 39(1), 339-347(2016) 

6. Kalaj, D.Mateljevi, M: Quasiconformal harmonic mapping and generalizations. In: proceeding of the ICM2010 Satellite 

Conference International Workshop on Harmonic and Quasiconformal Mapping (HQM2010), vol. 18, pp. 239-260 (2010) 

7. Partyka. D. Sakan, K: On a asymptotically sharp variant of Heinz’s inequality.Ann. Acad.Sci.Fenn, Math, 30, 167-

182(2005) 

8. Knezevic,M, Mateljevic, M: On the quasi-isometries of harmonic quasiconformal mapping. J.Math. Anal. Appl.334 (1), 

404-413 (2007) 

9. Chen, M, Chen. X: (K,𝐾|)-quasiconformal harmonic mapping of the upper half plane onto itself. Ann.Acad. Sci. Fenn., 

Math. 37, 265-276 (2012) 

10. Axler, S Bourdon, P, Ramey, W:Harmonic Function Theory, pp. 1-259.Springer, New York (2001) 

11. Anderson, J: Hyperbolic Geometry, pp. 1-230. Springer, London (2003) 

12. Beardon, A: The Geometry of Discrete Groups, pp. 1-338. Sprionger, new york (1983) 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/

