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ABSTRACT

In the paper we study hyperbolic and Euclidean area distortion of measurable sets under
classes of K-Quasiconformal mapping, angular and radial Quasiconformal mapping from the upper half
plane and the unit disk onto themselves respectively.

INTRODUCTION

Quasiconformal mapping are generalization of conformal mapping. They can be considered not only Riemann surface but also on
Riemannian manifolds in all dimension and even an arbitrary metric space quasiconformal mapping occur nationally in various
mathematical and often a priori unrelated contexts.In 1956 Beurling and Ahlfors solved the boundary value problem for
quasiconformal mapping. If M > 1 they gave an explicit formula for the extension of an M-gquasisymmetric function h:R — R to
a quasiconformal mapping f = u + iv from H onto itself, where H denotes the upper half-plane. The mapping f is called the
Beurling — Ahlfors extension of h. In particular f satlsfles — < 1,17(2) w3

Where,J(is denoted the Jacobian of f and ¢ = c(K) > 0 depends onK = K(M). Let f:Q — C be an ACL (absolutely
|fzl+1fz]

< K a.e.For some
|fzI=Ifzl —

continuous on lines) homeomorphism in a domain Q < C that preserves orientation. If f satisfies,D; =

K> 1, then f is K-quasiconformal mapping, where, f, = E(fx —ify) and f; = E(fx +ify)

Dyis called the dilatation of f. The maximal dilatation of f Thus for each measurable subset E of H is holds that ,
Au(f(B)) < cAu(E),

Ag(E) <
- =

Where, Ay (.) Denotes the hyperbolic area in the half- plane H.

In 1994 Astala provedthat if f is a K-quasiconformal mapping from the unit disk ID onto itself normalized by f(0) = 0 and
if E is any measurable subset of the unit disk then,

1
A(f(B)) < a(K)A.(EF,
Where, A,(.) is denotes the Euclidean area and a(K)— 1when K— 1%,

In 1998 Resends and porter obtained some results about area distortion under quasiconformal mapping on the unit disk D onto
itself with respect to the hyperbolic measure. They also showed the existence of explodable sets has bounded hyperbolic area but
under a specific quasiconformal mapping it is image has infinite hyperbolic area. In recent year harmonic quasiconformal
mapping have been extensively studied and the paper cited therein.
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In this paper combining with the knowledge of a harmonic function and its harmonic conjugate function, we get several
equivalent condition for a harmonic mapping of H onto itself to be a K-quasiconformal mapping and we use the hyperbolic area
distortion under quasiconformal harmonic mapping from the unit disk into itself and analyze the hyperbolic and Euclidean area
distortion under quasiconformal mapping.

f(2) = f(x + iy) = u(x,y) + icy,withc > 0

QUASICONFORMAL MAPPINGS
DEFINITION 1.1:

Let Q be an open set in C and f: Q — C be an oriented preserving homeomorphism we say that f: Q — Cis
guasiconformal mapping.

(i) fisabsolutely continuous on lines (ACL)
(ii) For almost every z € Qwe have
An orientation preserving homeomorphism f: Q — C is called quasi-conformal.
DEFINITION 1.2:
Let Q be an open setin C and f: Q — C be a continuous map.We say that,

f:Q — Cis ACL (absolutely continuous on line) if for each closed rectangle {ze C,a < Re(z) <b,c <Im(z) <
d} contained inQ. We have, The following two properties

(i) For almost all ye [c, d] the function x— f(x + iy) is absolutely continuous on [a, b].

(ii) For almost all x € [a, b] the function y— f(x + iy) is absolutely continuous on [c, d].

DEFINITIONL.3:

Let f: Q — C and let u and v be a open subset of C take K>1 and set K := i—: so that 0< K < 1.A mapping f: U —
V is a K-quasiconformal map if it is homeomorphism whose distributed partial derivatives are in L2;,.(locally.in L? and satisfy

af af ,
|£ =K |£| L?, isa.e

A map quasiconformal it is K-quasiconformal for some K.

DEFINITION 1.4:

The smallest K such that f is K-quasiconformal is called as a quasiconformal constant of f denoted by K (f).

THEOREM 1.1:
Prove that the class of K — quasiconformal mapping

Proof:

Let 1 <K <0&Qc C be a domain. Suppose that, f: Q — Cis K- Quasiconformal mapping given by f(x +iy) =
u(x,y) +vix,y) (1.1)

2

Lz <K?a.e (1.2)

fz

Then, f satisfies, r

<Ka.e,

z

2
< K?

%[ux—vy+i(vx+uy)]

1 -
E[ux+vy+1(vx—uy)]

Inequality of equation (1.2) is

(uy —vy)? + (v + uy)? S K?(uy + 1) + (v, —uy)%isae
u? +vy% = 2u vyt 2+ + 2vuy, < K2 (U, + vy® 4 2w,y + 1% +uy? - 2v,u)
Or equivalently

1+ k? 1+ k?

uxz + uyz + sz + Uyz - mZuxvy + m

2v,uy, <0a.e (1.3)
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2
We defined oc=ot (K) == —=— > 1.Then f satisfied inequality (1.2)
wl+u+ i+l —- 20w, +2xnu, <0ae (1.4)

From now on each expression that involves partial derivative will be true almost everywhereQwilldenotes a domain of the
complex planeC. In this part we focus on K-quasiconformal mapping from H onto itself given by f(x + iy) = u(x,y) + iv(y). In
particular f can be extended homeomorphically to H , u(x, y) is ACL and v(y) is absolutely continuous We know that f is satisfied

u’ +u’+ v -2xuw, <0ae (1.5)
In equation (1.5) we get the form is f(x + iy) = u(x,y) + iv(y).Hence,
The class of K-quasiconformal mapping
THEOREM 1.2:

Let f be a K-quasiconformal mapping from H onto itself given by f(x+iy) =u(x, y) +iv(y) then,v*,(0) =
lim sup,,_,o+v, (y) &v7,,(0) = lim inf,_-v, (y) are finite and the partial derivatives of f satisfy the following inequalities

1. Kivary(O) < v,(y) < K*v™,,(0)for almost every y € (0, )

2.%1;*3,(0) < u,(x,y) < K3v™,(0) for almost every x + iy € H
Proof:
let f be a K-quasiconformal mapping from H onto itself given by
fx +iy) = ulx,y) + iv(y)

Then, —v*,(0) < v,(y) < K?v™,,(0)

In equation (1.5) we get this inequality defines a circle a.e thus u,and v, satisfy in particular avy, —v,Va?—1<u, <
avy +yVa?—1la.e, —vyVa?—-1<u, < v,va?—-1 a.e

In fact the circle is a subset of the square described and observes that
K=a++VaZ—1 and, ;=a—m (1.6)
Where K is maximal dilatation of f
Let, c=vaz-1 then,c =0
vy(a—\/az—l) < u, < vy(a+ az—l)

4 <u,<vyK and 1.7)

K

—Cvy, S Uy, S YC (1.8)
Given 0 < x are integrate (1.7) on interval [0, x]

Zx = 0] < u,(x,y) = ux(0,) < Kvy (y)x
If we choose any fixed ye (0, «) such that u(x, y) is absolutely continuous with respect to x then we obtain
20y 0) +1(0,) < ux,y) < Kvy(0)x +1,(0,9) (19)

For each x€ R and almost every ye (0, «) using left hand side of the last inequality we get

vy (¥)x

yll)rggr sup[ T u(0,y)] < ylir})gr sup u(x,y) and,
Since, u(X, y) is continuous we obtain

x .
Eyll)%lJr supvy, (y) < u(x,0) —u(0,0) <

IJCRT2106632 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 322


http://www.ijcrt.org/

www.ijcrt.org © 2021 JCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882
For this reason lim_supwv, (y)Exists and consequently lim infv, (y) exists
y—0t y—0~

We defined, v*,,(0) = lim sup,,_+v, (¥),v™,(0) = liminf,_,-v,(y)
In this equation in (1.9)

vty ()x

e +u(0,0) < u(x,0) < Kv™,,(0)x +u(0,0) (1.10)

On the other hand we choose any fixed x€ [0, o]

Such that, u(x,y) is absolutely continuous with respect to y we integrate (8) on the interval [0, Y] so,foy—cvy(t)dt <
foy uy, (x, t)dt < foy cv, (t)dt and since v, is absolutely continuous we obtain —cv(y) + u(x,0) < u(x,y) < cv(y) +u(x,0).
For ye [0, 0]and almost every x € [0, %] by an argument of continuity of the mapping f and density we have,

—cv(y) + ulx,0) < ulx,y) < cv(y) +u(x,0) (1.11)
For all (x, y)€ [0, ) X [0, o) setting x=0 in the previous inequality to get
—cv(y) +u(0,0) < u(0,y) < cv(y) + u(0,0) (1.12)
Thus combination (1.9) and (1.12)

DO ) +u(0.0) < u(x,y) = Kxv, ) + evy) +u(00)

For each x € R and almost every y € (0, ) in some way we use (10) and (11)
X
er”E —cv(y) +u(0,0) < u(x,y) < xKv~,,(0) + cv(y) + u(0,0)

We combine the left and right hand sides

2% cv(y) +u(0,0) < ulx,y) < xKv,(0) + cv(y) +u(0,0) (1.13)
v+y%— cv(y) +u(0,0) < u(x,y) < Kxv,(y) + cv(y) + u(0,0) (1.14)

For each x € R and almost every y € (0, ) since, the left and right hand side of the inequality (1.13)& (1.14) represent linear
equation in the variable x, we compare their slopes and the fact that x>0 to conclude.

v+y(0)
K

Uyliy) < Kv~, (0)and, < Kv, (y).For each x € R and almost every y € (0, )
vy (y) < K?v74,(0)

v*y,(0)
k2

vy, (y) <

v*,(0)
k2

<v,(y) < K?*v™,,(0)

For each x € R and almost every y € (0, ) v(y) is absolutely continuous and we integrate the above inequalities on the
interval [0, y]

y y y
1
e v*,(0)dt < fvy(t)dt < Kzfv‘y(o)dt
0 0 0
To get %wy(o)(y) <v(y) <K, (0)y (1.15)

In particular 0 < v~,,(0) < v*,(0) < oo v has the dinis derivatives at 0
similarly, = v*, (0)() < u,(x,) < K*v™,(0)y
THEOREM 1.3:

Let f be a K-quasiconformal mapping from H onto itself given by f(x + iy) = u(x,y) + iv(x, y) then,

1. There exists M>0 such that |f,| — |fz| < M and|f;| — |f;]| S KM a.e
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2. The mapping f is Lipschitz in H
3. The mapping f is hyperbolically Lipschitz inH
Proof:

1. Since,

1 1
1= 1l = 5 007+ 12 =5 [ =) 4,2

1
|fz| - |fz-| < E\/z(uxz + vyZ +uy2) a.e

We estimate the last expression in above theorem

2

2

%\/Z(u,f + 12 +u,?) = gj(mv—y(o»z + (K2v75,(0))% + ( Kv=,(0))2

.
= O BRI 2R F 1 ae
2KV2

1 2 _ kv (0)\/—
E\/Z(ux +1,2+uy?) = Nyz 5K*+2K2+1ae

Thus we choose, M = KUZ_JyE(O)VSK4 +2K2+ 1

Ifel = 1fzl S Mand |f;| = |fzl <KMa.e

2. Let z,,z, € H and | be the Euclidean segment that joint z;, z, then,

= Ifs < j|df|
FQ)
< f|fz| + 1f;l1dz]

l

Izl = Ifzl < MK|z, — z,|
3. Let z;,z, € H and | be the hyperbolic segment that joint z; with z,

d
(G, 1) < [ 1o

dy(f(z1), f(22)) < LMKdy (21, 2,)
Where,
2
L :%and dy denote the hyperbolic metric
THEOREM 1.4:
Let f be a K-quasiconformal mapping from H onto itself given by

flx+iy) =ulx,y) +iv(x,y) Then,

1. (V+Z(SO)) Ae(E) < Ae(f(E)) < KS(U_y(O))ZAe(E)
2.5 (29) 4.6 < 4.7 0) < 1 (222) 4, 8)
Since, v7,,(0) < v*,,(0)
We have

%AQ(E) < A,(f(E)) < K°A.(E)and these inequalities are asymptotically sharp when K— 1*
Proof:
Let Ec H be a measurable set the Jacobian of f
Jr = uxvy
By equation 1.1 theorem 1.2
1. We get %v’“y(o)(y) <v(y) <K*v~,(0)y ae

S04, (0)() < w(x,y) < K*v,(0)y ae

Comparing above equation we get
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2
v*,(0)
% < u(xY)vy () < K3, (0))*
By Jacobian f J; = u,u,
—(”2(50)) <J; < K5, (0))? ae

The Euclidean area of f (E) is

f Jpdxdy = Ay(f(E))
E

(v*)
v
S AE) < A((B)) < K07, (00)*Ac(E)

On the other hand by hyperbolic area as sane way we get
1 (v+y(0)
K°\v=,(0)

And in consequence

’ < < K° v (0 ’
) Ae(E) —Ae(f(E)) <K (m) Ae(E)

THEOREM 1.5:
Let f be a K-quasiconformal mapping from H onto itself given by
f(x+iy) =u(x, y) +iv(y) then for each measure set Ec H.

(i) Ifvis differentiable at O then, (”'ﬁff)) A,(E) < A,(F(E)) < K°(0),(0))2 4, (E)

(ii) If vis continuously differentiable in a neighborhood of 0
(vy )"
KS
Proof:
If v is differentiable at 0 then we get in (1.15)

1
ﬁv+y(0)(y) < Uly(O) < sz_y(o)
If v is continuously differentiable is neighbourhood of 0, then
v, (0) = v1,,(0) = v*,,(0)
We get above theorem results replace the value of v~,,(0) = v|y(0) = v*,(0).hence

A.(E) < A.(f(B)) < K°(',(0))?A,(E) These inequality are asymptotically sharp when K— 1*

@Aeaﬂ < A(f(E)) < K°(v',(0))?A.(E)
(v|y(0))2 o
~—5Ae(E) < A,(f(B)) < K3(v!,(0))?A.(E)
EXAMPLE:

11++/85

Let f:H — H given by f(x + iy) = 2x + sin(x + y) + iy then, fis a -

v, (0) =v*,(0) =1

quasiconformal mapping with v=,,(0) =

2.HARMONIC QUASICONFORMAL MAPPING
DEFINITION 2.1:
A function F is called Harmonic in a region Qif its laplacian vanishes inQ. A topological mapping f ofQ is said to
be K- quasiconformal it is satisfies.
1.fis ACL in Q
2. 1% < KLfl;,K 2 1a.einQ

Where, Ly = |f,| + |fzl, r = |f,] — |fzl

Then, f is K- quasiconformal mapping.

DEFINITION 2.2:

Let f is a harmonic mapping then there exists a holomorphic function g: H — C

Such that, f(z) = Reg(z) + icy

Thus,|f,| = % |g'(2) + c|And|f;| = % |g'(2) — c|.We obtain that g'(z) belongs to the circle D.

DEFINITION 2.3:

The hyperbolic density is —2=

1-|z|2

and % for the unit disk D and the upper half — planeH. We denote also by Ay

the hyperbolic area in the unit disk D.

THEOREM 2.1:

Let f be a harmonic mapping of H onto itself and continuous up to its boundary withf (o) = co.If f is a K-quasiconformal
mapping then f can be represented by f = u+icy and the gradient of f is such that

Ly = |f;l + |fzl < cK
Where, ¢ is positive constant.
Proof:
By definition of K- quasiconformal mapping
We have, L?; < KLgl,

IJCRT2106632 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | f325



http://www.ijcrt.org/

www.ijcrt.org © 2021 JCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

This implies that, Ly < K, (2.1)
We assume that f = u + icIm(z) ,f = %[g(z) + c(2)] +%[g(z) —c(2)]
Hence, 1 =219'@) +clIfl =5 ]g'@) — ¢ | (22)

Equation (2.1) and (2.2) we have,
1121 + 112l < K[Ifz| = I 21]
< Klfz| — KIf
Ifzl + 1fzl = KIfzl + KIfzl <0
—K - DIfl + K+ DIfzl <0
K+ DIfzl = (K = DIf
S K =DIfz+cl
(K+DIfzl = (K = DIfzl < c(K = 1)
2|fzl Sc(K—-1)
Put £, value in above equation |g'(z) — ¢| < c(K — 1) (2.3)
Itis easy to get |, = ZIc(K + D Ifsl =5 lc(K — 1) |
Thus we obtain |f,| + |fz] < %[cl( —c +%cK + c] <cK
“ L= |f,l +1fzl < cK
LEMMA 2.1:
Assume that f is a harmonic mapping of H onto itself and continuous on H U R with f (c0) = co.if f is K-
quasiconformal mapping then,f (z) = %(g(z) +c(2)+9(2) —c(2)
Where, g is a holomorphic function in H and c is positive constant and the Jacobian of f is such that J; = |f,| — |f;| < c*K
Proof:
According to the definition of K-quasiconformal mapping and the inequality

1 1
|2 =E|g|(z) +c| Ifsl =§|gl(z) —c|

Ir = = If2

Jr < clg'@|

|9'(@) —c| < c(K = 1),|g'(2)| < cK
]f < C2K
Jr = 1f:l = Ifzl < ?K
THEOREM 2.2:

Let f =u +iv be a harmonic mapping of H onto itself and continuous up to its boundary with f () = co.if f is K-
quasiconformal mapping then for any measurable subset Ec H

Aeuc(f(z)) < CZKAeuC(E)
Where, A,,.(.) Denotes the Euclidean area and c is positive constant.
THEOREM 2.3:

Let f be a harmonic mapping of H onto itself and continuous up to its boundary. with f(o) = co.if f is a K-
quasiconformal mapping then for any measurable subset Ec Hwe get

Anyp(f(E)) < 2K Apy,p (E)
Where, A,,, denotes the hyperbolic area and c is positive constan
3.ANGULAR AND RADIAL QUASICONFORMAL MAPPING
Proposition 3.1:
Let f:Q > C be an ACL mapping. Iff(re’®) = u(re') + iv(re'®)then for a.e inQ
Proof:
Let f:Q — C be an ACL mapping. Then,f(re®®) = u(re®) + iv(re®®) isa.e
We know that || = 2 |f, = ify | Ifzl = 5 |fe + ify ]
Taking square on above equation,
4|f,1% = |(ux + vy) +i(v, — uy)|2
. 2 6
4|f51? = |(ux - vy) + l(Ux + uy)| X=T,-=y
2
At =(u+2) oo 2.
2 2
452 = (u+%2) + (v -2 (3.1
v, 2 u 2

41£17 = (= 2)" + (v, +22) (32)

And the Jacobian of ‘f* is J; = |f,|* — |fz[
_ 1 Vo Ug
]f = Z[‘l-u,-?— 4177-7]

Iy = ;lrvo = vyug) (3.3)
DEFINITION 3.1:
A mapping f: H — H is said to be radial at x € R if f leaves invariant all Euclidean rays in H that meet at x. Let f: H — H be
a radial mapping at x.Since, hyperbolic area is invariant under horizontal translations.We can assume that, the point xe
R.Where,the Euclidean rays meet is x=0 if ‘f* is a radial mapping then fis can be written in polar-coordinates (r, 8) as
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f(2) = f(re) = p(r,0)e"
With p(r,0) : (0,0] X (0,7) - (0,) if z=re®.

THEOREM 3.1:
Let f be a ACL mapping from H onto itself suppose that f is a radial mapping at 0.then its Jacobian mapping at
OisJr = % a.e If f preserves orientation thenp, > 0 a.e
Proof:
Since,  f(2) = f(re®) = p(r,0)e?, f(re®) = u(re'd) + iv(re'?)
Then, (r,8) = p(r,0)cosd ,v(r,8) = p(r,0)sind
By Jacobian of ‘f* is J; = %[pprsinB — pp,cosB]
Jr= % [sind — cosB]
0=mnj= ”rﬂ[o+1] “Jp = % Ifp, >0
We get, ]fzi—)a.e

PROPOSITION 3.2:
Let f be a K-quasiconformal mapping from H onto itself. Suppose that f is a radial mapping at 0. Then the
function p satisfies the following

1
1. FOI’lST<ooT‘E§MSrK
p(1,6)

1

K5M< %

. <r<
2. ForO<r<lr oi8) =

Proof:

We first prove that the function (0, ) 3 r — Inp(r, ) is absolutely continuous for almost every 8 € (0, )t is

enough to prove that for every M > 1,
The function [%M] 3 r e In p(r,0) is absolutely continuous for almost every 8 € (0, ).

LetQ={z=x+i0 € C(x,0) € (—0,0) X (0,1)}

Then,
The mapping loge f o exp: Q — Q is K-quasiconformal mapping

Thus,

The function (—o, ) 3 x = Inp(e”*, 6)is absolutely continuous for almost every 8 € (0, ).
Let,e > 0 There exists § > 0

Such that, for every finite collection of disjoint intervals (a;, b)) € R,j = 1,2....nwith 37, (b; —a;) <&

Then, Y7, (Inp(ebf,H) —In p(eaf,H)) <e€

Since, in r is absolutely continuous on [%,M] there exists 8! > 0 such that, for every finite collection of disjoint intervals
(cLd) © [%,M],l =12 .....m with,

m

D -c)<ol

1=1
Then, Y12, (Ind; — Inc)) < 6

And by the inequality, %72, (In p(d,, 8) — In p(c,,8)) < €
If.f (2) = p(r,0)e'® from (1) and (2)

1 prp  P° . Po°

|fz|2=1<pr2+2—; o+ ae 34
1 prp | P2 Po’

Ifz—I2=Z<pr2—2 ; +—+ ) ae (3.5)

By (4.4) and (4.5) in equation |£,|? < K? < |f;]?
1 P po* 1 P po*
|Gor =27 + 2 <K [20or + 27 + 5 e
Or equivalently,
2(r?p,% + p? + p?) - K*+1

4rp,p S{-gz-aae
Then,l[ﬂ+L]Saa.e
2Lp " rpr
o\t _ o (Ter
Andthus,(p) 20{(p)+1£0a.e i
&[<ﬂ)—2ar]+1<o
pL\p ,
T
(pr +1S2ar&
1 ) K
—Sp—rS— a.e
Kr— p T
Or equivalently
< —] <K
kr—a tP=3 *°
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We choose any fixed 8 € (0, ) such that In p(r, 8) is absolutely continuous on r and

We interval [1, R] to get
R RK
—dr<| —Inpdr<| —d
fl Kr r f npdr f r

Thus, %Inth < Inp(r,8) < Kinr|,"for almost every 8 € (0, n)and R € (1 )

By an argument of continuity of ‘f” and density We finally obtain,RK < p(( < R¥for all (R,0) € (1, %) x (0,m).In a similar
way, if we suppose that 0<R<1
< PRO) ok forall (R,6) € (0.1) € (0,)
p(l 6)

THEOREM 3.2:
Let f be a K- quasiconformal mapping from H onto itself that leaves invariant each ray in H that meets a real base point of Ec
H is a measurable set then,

1
7 An(E) < Au(f(E)) < KAL(E).
These inequalities are asymptotically sharp when K— 1%
DEFINITION 3.2:
A mapping f: D — Dis said to be angular at 0 € D if ‘f* leaves invariant each
Circle in D with center at 0.
An angular mapping f at 0 can be written asf(z) = f(re'®) = rel*™9,
Where, ¢:[0,1) X [0,27] -» R
LEMMA 3.1:
Let f be a ACL mapping from D onto itself suppose that f is angular at 0.then its Jacobian is  J; = @q. If f°
preserves orientation then, pg > 0 a.e
Proof: Since, f(z) = f(re®®) = rel¢™®
Then, f(re®?) = u(re®) + iv(re®®),f(re®®) = u(r,0) + iv(r, )
u(r,8) =rcose(r,0)
v(r,0) = rsing(r,0)
We know that,/, = %[urvg — vug]

Jf= %[rsin(p(r, 6) —rcosp(r,0)]
J5 = sing(r,8) — cosp(r, 0)
~ f Isangular at o. then its Jacobian is J; = ¢,
PROPOSITION 3.3:
Let f be a K-quasiconformal mapping from Donto itself which is angular at 0.then,

% <@g <Ka.ein[0,1) x [0,27]
Proof:
If f(2) = f(re®) = rel*™
From equation 1 & 2
4f12 = A+ @e)? +1r2p 2 ae
4lfz1° = (1= @g)* +r’p > ae ¢ (36)

IfzI? < a- ?9)? < K2 (1-9g)? Ifz < K2?ae

Since,~=%= < < , < <
"If21? (1+¢g)? (1+9g)? |f212

Taking square on both S|de1 %o 2< llj;zll <K

<@pg<Kae (37

ol

THEOREM 3.3:

Let f be a K-quasiconformal mapping from D onto itself which is angular at 0.if Ec H is a measurable set then,

1
= Au(E) < Ay(f(B)) < KAy(E)

These inequalities are asymptotically sharp when K— 1%
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4. PARTIAL DERIVATIVES OF K- QUASICONFORMAL MAPPING

THEOREM 4.1:

Let 1< K < o0.if f: Q — C is a K-quasiconformal mapping by f (x + iy) = u(x) + iv(y)
Then its partial derivative belong to one of the angular region defined by
u,® + 1% = 2au,v, < 0a.e

Proof:

Then by f(x + iy) = u(x,y) + iv(x, y)f Satisfies inequality if and only if

u +u+ vl + v - 20w, +2xvu, <0ae (4.1)
In equation (1) its partial derivatives satisfy the inequality
ul+v? - 2xuw, <0 ae (42)

Since, @ = 1 The discriminant of u,? + vyz — 2 o« u,v, is non-negative and equation (4.2) defines the interior of an angular
region with the identification u,~x — axis and v, ~y — axis.That the Jacobian of ‘f” is] s = u,v,, Is always positive

GENERAL CASE:
If f is a K-quasiconformal mapping given by f(x + iy) = u(x,y) + iv(y)

Then reduces to, u,” + u,* + v,* — 2 < u,v, <0 a.e. Inequality suggests studying the quadratic from Q (x, y, w) = x* +
y? + w? — 2axw .Whose, associated symmetric matrix is

x2 xy aw 1 0 -
N=(xy y* yw ,N=<O 1 0)
xw wy z2 - 0

PROPOSITION 4.1:
1-< 0 0
There exists an invertible matrix P such thatP~'NP = D. WhereD= ( 0 1 0 )
Proof:
1 0 —«x
The matrix N is,N = ( 0 1 0 )

—-x 0 1

To find Eigen values of matrix N,Det(N — Al) = 0

1 0 0 A 0 O 1-1 0 —a
I=[0 1 Oland/ll:[o A O,N—/11=[ 0 1-2 0 ]
0 0 1 0 0 A —a -0 1-21

1-2 0 —a

det(N—-AD)=| 0 1-2 0

—a -0 1-2

det(N—AD=1-D[1 -2 —a?]det(N—-A) =0
A=1,1=0%a),

The Eigenvaluesof Nare A, =1—a, 4, =1,4; =1+«

& < Zlkl-f

By Cramer rule: %“2 =%= % = (x,y,w) = (1,0,—1)

The Eigen vector is(N-ADx =0,4;, =1 -«

Eigen vector is (1,0, —1). The norm of Eigen vector is |[v,|| =vV1+0+1 =+2
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1
\/—§||V1|| = \/—7(1, 0,-1)
V2' T N2

Eigen vector (1, 0, —1)with normalized(%, 0,— \/_17)

By Cramer rule we get (x, y,w) = (0,1,0). The norm of (0,1,0)is (0, 1, 0).

By Cramer rule we get(x, y,w) = (1,0,1).The norm of(1,0,1) is ( L o, i)

Neiiadvss
L, L]

V2 2
p=|lo 1 o0 |=P!
1 1
- 0 -

V2 V2
[1—0( 0 l—a]
V2 V2
PIN=] o0 1 0
1+« 0 -1—a
V2 V2

1—-a 0 0 1
P‘lNP=< 0 1 0 >=DWhere,D:<

0 0 1+a

oo |

a 0 0
1 0
0 1+«

Let 1< K < o0.if f:Q > C is a K-quasiconformal mapping by f(x + iy) = u(x) + iv(y) then its partial
derivative u,, u,, v,belong to one branch of the elliptic cone

PROPOSITION 4.2:

u? +u,” + 1,2 - 2au,v, < 0a.e
Proof:
As we saw f is K- quasiconformal mapping iffu,, u,, v, satisfy Q (uy, u,, v, )< 0
That describes the solid cone;u,* + u,,* + v,2 — 2au, v, < 0 .as f preserves orientation then,
Jr=uyv, >0a.e
Since, v, > 0 then necessarily u, > 0a.e
GENERAL CASE:

That f is a quasiconformal mapping f:Q c C — C given by f(x + iy) = u(x,y) + iv(x,y) then by u,* +u,* +v,* +
vy? = 20u, vy, + 2au, v, < 0ae.

In the case we study the quadratic formQ (X, y, z, W) = x?+y? + z2 + w? — 2axw + 2ayz

With the associated symmetric matrixN =

PROPOSITION 4.3:

There exists an invertible matrix P such that P~'NP = D where,

1-a 0 0 0
b=[ 0 1-a 0 0
0 0 1+a 0

0 0 0 1+a

Proof:

The characteristic polynomial of the matrix N isdet(N — AI) =0
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1-2 0 0 —a
0 1—-2 a 0 -0
0 a 1-2 0 [~
—a 0 0 1-2

The characteristic polynomial is (1-2)* — a?(1 — )2 — a?(1 — 1)? + a* = 0 with Eigenvalue , =1+ a, A, =1 — a and
both with multiplicity two. The Eigen vector is(N — AI) = 0 put the valued; = 1+ a, 1, = 1 — a. The Eigen vectors are

4:(1,0,0,—1) and (0,1,1,0)and fori, are (1,0,0,1)&(0,1, —1,0) . After normalization we obtain the matrix.

1 1 1 1
{ﬁ 0 5 0\‘ = 0 0 5\
1 1 1 1
0o +~ o0 — 0 — — 0
pP= 2 ‘/f with inverse Pl = V2o V2 )
o _1 0 = 1 .0 0 —=
1 = 1«7 F o, vz
A 0 ~7 0 0 vz NG 0
% 0 0-% % 0 % 0
1 1 0 1 0 0 - a 1 0 1
Thusp-Np=| @ 01 a o0}1% % vz
N 1 0 1 0 1
1 0 0 —-= a 0o _* 0 —=
G 1 o, Z\-a 0 0 1/{1 THm
0 vz 5 0 0 -5 0
1—a 0 0 0
vp—| 0 1-a 0 0
e 0 0 14a O
0 0 0 1+a
~PINP=D
THEOREM 4.2:

The quadratic form

Q@®,9,2w)=0-a)x>+ (1 —a)y?+ (1 +a)2? + (1 + a)W?Represents the quadratic form Q (x,y,z,w) = x + y? +
z% + w? — 2axw + 2ayz in the basis

e ={(700-3). (0550 (7 003) (05 -5 0P

Where,
- 0 ! 0
V2 V2
X 0 i 0 i x
y|_ V2 V2 {9
’ 0 1 0 ! z
v 1 ——= V2 | \W
N 21 0
2 0 ——
\2
In particular Q (x, y, z, W< 0 iff Q(%,7,Z,W) < 0
Proof:
/%@+@\
X
. y Iiz(f/+vT/)|
We have the relations > =1 f |
[ L -9 |
w V2
1 ..
& =2

Thus,Q(x,y,z,w) = x? + y%2 + z%2 + w? — 2axw + 2ayz
=1-a)22+ 1 -a)P*+(1+a)2?+ (1 + a)w?

Q(X.Y,Z.W) = Q(f,f,f: W)
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And this means thatQ (x, y,z,w) < 0 iff Q(%,9,2,w) <O0.

CONCLUSION
The classes of mapping introduced in this paper have precise geometrical mapping in particular the class of quasiconformal
mapping (z) = u(x,y) + iv(y). We have obtained left and right asymptotic bound for the hyperbolic or Euclidean area
distortion. Moreover the example showed that the different classes of mapping defined in the paper are not empty and coincides
or not with the region of variation of the partial derivatives of quasiconformal mappingf (z) = u(x,y) + iv(y).

BIBLIOGRAPHY:

1. Astala, K: Area distortion of quasiconformal mappings. Acta Math.173, 37-60(1994)
2. Porter, RM,Resendis,LF:Quasiconformallyexplodablesets. Complex var.Theory Appl.36, 379-392(1998)

3. Emerenko, A, Hamilton, DH: On the area distortion by quasiconformal mapping Proc.Am.Math.Soc.123, 2793 —
2797(1995)

4. Chen, X, Qlan, T: Estimate of hyperbolically partial derivatives of p — harmonic quasiconformal mapping and its
applications. Complex var.Elliptic Equ 60, 875 — 892(2015)

5. Dongmian, F, Xinzhong, H: Harmonic K-quasiconformal mapping from the unit disk onto half planes. Bull, Malavs Math.
Soc, 39(1), 339-347(2016)

6. Kalaj, D.Mateljevi, M: Quasiconformal harmonic mapping and generalizations. In: proceeding of the ICM2010 Satellite
Conference International Workshop on Harmonic and Quasiconformal Mapping (HQM2010), vol. 18, pp. 239-260 (2010)

7. Partyka. D. Sakan, K: On a asymptotically sharp variant of Heinz’s inequality.Ann. Acad.Sci.Fenn, Math, 30, 167-
182(2005)

8. Knezevic,M, Mateljevic, M: On the quasi-isometries of harmonic quasiconformal mapping. J.Math. Anal. Appl.334 (1),
404-413 (2007)

9. Chen, M, Chen. X: (K,K-quasiconformal harmonic mapping of the upper half plane onto itself. Ann.Acad. Sci. Fenn.,
Math. 37, 265-276 (2012)

10. Axler, S Bourdon, P, Ramey, W:Harmonic Function Theory, pp. 1-259.Springer, New York (2001)
11. Anderson, J: Hyperbolic Geometry, pp. 1-230. Springer, London (2003)

12. Beardon, A: The Geometry of Discrete Groups, pp. 1-338. Sprionger, new york (1983)

IJCRT2106632 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 332


http://www.ijcrt.org/

