Design & Development of E-Bike

Yogesh K. Mogal1, Sachin S. Dheringe2, Lalit S. Dhikale3, Praful M. Donde4, Tejas B. Firke5
1Asst.Prof., Department of Mechanical Engineering, Matoshri college of Engineering and Research Centre, Nasik.
2,3,4,5U.G. Students, Bachelor of Engineering, Department of Mechanical Engineering, Matoshri College of Engineering & Research Centre, Nasik.

Abstract – Now a Day world demands the high technology for solving the current and future problems. Fuel shortage is the main problem now-a-days. Considering current rate of usage of fossil fuels will let its life up to next five decades only. Undesirable climate change is the indication for not to use more fossil fuel any more. So the Best alternative for the automobile fuels to provide the mobility & transportation to peoples is only the E-bike. Future e-bike is the best technical application as a visionary solution for the better world and upcoming generation. E-bike comprises the features like high mobility efficiency, compact, electrically powered, comfortable riding experience, and light weight vehicle bike is the most versatile future vehicle considering its advantages. In upcoming days we can make more advance bikes or E-vehicle using clean energy like solar energy. This can make great impact worldwide.

Key Words: E-bike, Eco-Friendly, BLDC Hub Motor, Solar Powered Vehicle, Green Energy

I. INTRODUCTION

Main reason to identify the need of finding and modifying E-Bike is to overcome the issue of the pollution because of vehicles in metro towns & urban zones is swelling uninterruptedly. Considering the all Class of society So, combining both issues, environmental progress supporting and economical affordable alternative would be the best solution. Typical parts of E-bike a Brushless DC Motor (Hub Motor), Throttle (Accelerator), Battery Storage (48 V), hub motor, Frame and other common E-bike parts (fig.1). E-bikes are an attractive alternative to both conventional traditional automobiles, providing an environmentally friendly, fun, efficient and convenient way to travel. E-bikes are driven with the help of battery which is coupled with electric motor. E- Bike is the plug-in electrical vehicles with two or three wheels. The power on which this bike works is stored in a rechargeable battery which drives the motor. Typical parts used in bike are BLDC motor, battery, controller, throttle, Hub motor

a Brushless DC Motor
In this paper, we considered importance of easy vehicle mobility and compactness. In which we revealed that folding is the strategic feature of the e-bike which would not have been probable devoid of the folding arms. For the ease of sliding of the arms a bolt is provided. In order to provide rigidity to the bike a guide has been provided on the main frame. See fig.

The Hall Effect Sensors help to locate the position of the permanent magnets and which coils to activate to keep the motor spinning.

Then about the accelerator or say throttle, we discussed below working. Working of a Twist throttle is based on the principle of potentiometer which is also called variable resistor. It is used to fluctuate the voltage passing through the throttle. In order to pass more through the throttle, the more twist should be provided as a result less is the resistance. Therefore twist throttle offers the signal to the BLDC hub motor controller to increase or decrease the current passed to the motor.

B. Campus Mobility For The Future: The Electric Bike[3]

This paper presents the various outcomes and results of the study containing visions into the scheme. Electric bikes, of much sort have been surveyed by and by in a semi-open contract conspire on the Nanyang Technological University campus in Singapore. According to this campus, it is a famous and helpful administration, with a few models of electric bike being exceptionally very much utilized. Riders contemplate the premier of the electric bikes to be both agreeable and engaging while at the same time utilizing it, and extremely suitable for campus travel. Understudies and general society alike view the plan unhesitatingly, and creators have seen a lessening in the quantity of miles driven via auto inside the grounds for the dominant part of clients who are additionally drivers.

In this paper, we have sensibly inspected the utilization of bikes on campus, displaying and investigating review results that endeavor to clarify blocks to bigger acknowledgment of the bike. We likewise bolster the general public by giving arrangement that if this information is coordinates with a portion of the qualities of the campus encompassing, it is conceivable to suggest specialized, arranging and Reasonable arrangements that together should help the more prominent acknowledgment of bike transport. This is the concentration of the rest of the paper.
C. Design And Fabrication Of Dual Chargeable Bike[4]

In this paper, we discussed about the crucial components and its experiments of e-bike, alternator and batteries. The First alternator which is an electromechanical device that transforms mechanical energy to electrical energy in the form of alternating current. The brushes of a DC generator carries a small fraction of the current, which carry the generator’s whole output. A set of rectifiers (Diode-bridge) is essential to alter AC to DC. To provide direct current with low ripple, we used a three-phase winding and the pole pieces of the rotor are shaped (claw-pole) to produce a waveform similar to a square wave as an alternative of a sinusoid. Author used alternator of Yamaha bike which workings are done at high RPM since our e-bike is restricted to low RPM so we changed the windings of alternator and upsurge the drive ratio. Hence, it can function at low RPM.

Another important part is discussed is regarding batteries Electric Bikes industrialized in Switzerland in the late 1980s for the Tour de Sol solar vehicle race accompanied sunlight based charging stations yet these were later settled on rooftops and associated in order to nourish into the electric mains. The bikes were then charged from the mains, as is normal at this point. Battery frameworks being used incorporate lead-corrosive, NiCad, NiMH and Li-ion batteries. Range is a key thought with electric Bikes, and is influenced by elements, for example, engine productivity, battery limit, effectiveness of the driving gadgets, optimal design, slopes and weight of the Bike and rider. The scope of an electric Bike is typically expressed as somewhere close to 7km (tough one electric power only) to 70km (minimum assistance) and is profoundly subject to regardless of whether the Bike is tried on level streets or slopes. The vitality expenses of working electric bikes are little; however there can be noteworthy battery substitution costs. In lots of available preferences we selected 4 lead acid batteries of 12 volt 5 amp because of its easy availability and low cost and connected in series to get an output of 48 volt. Overall experimented results of this paper are: Speed of 40-45km/hr. is achieved when battery is fully charged. When coming down the hill charging can be achieved in 1hr. Driven mechanism wheel wear rapidly due to friction.

D. An Improved & Efficient Electric Bike System With The Power Of Real-time Information Sharing[5]

Firstly we are using the sun based board as a hotspot for E-Bike. In that we utilized the 20 KW sunlight based board and it is associated with the 48v battery. So the sun powered board is utilized to charge the battery. Here basic concept we applied that the solar energy is converted into electric energy by using photovoltaic effect. We connected the solar panel is in the series and it created the additional voltage, which is used to charge battery. The block diagram of their design requirements is shown in fig.

Figure 6 wiring diagram of E-bike design requirement

The second source of energy is that we are converting the mechanical energy into electrical energy by using dynamo. Dynamo is an electric device which generates the power with the help of commutator. In this paper, we mentioned the procedure of how mechanical energy is converted into electrical energy and it will utilized for run the electrical bike. We connect the dynamo in the front wheel of E-bike. As the wheel of bike is run along the wheel commutator also rotate and it will generate the power. So the mechanical energy gets converted into electrical energy and it will store in dynamo whenever it will be required, it will supply the energy to E-bike.

From this paper it can be found that we are focused on the improvement of efficiency of E-bike. Generally the speed of E-bike is in the range of 40-45 km/hr. at maximum. So there we increase the speed of E-bike and design the aerodynamic shape in such a way that the efficiency of E-bike is improved.
For the increasing the speed we are done the comparison of power transmission system. In that we found four power transmission systems. Based on Application the out of four any one of them power transmission system is used in E-bike. Generally the chain drive is used for transmitting the power. Along with that there are three different types of motor is also used like Gear hub motors, Crank drive motors and direct drive motors. So after completing experimental study it can be found that due to the specifications like light weight, inexpensive, compact, offering non-slip the chain drive is more efficient as compared to belts or gears.

In this paper we also show the design procedure of aerodynamic shape of E-bike. The importance of aerodynamic shape for the improvement of efficiency of E-bike is unavoidable. We mentioned the distribution of percentage of aerodynamics of E-bike enlisted below:

Aerodynamic in total (It means the combination of rider aerodynamic as well as bike aerodynamic) - 65%
Wheels - 7 to 8% of total aerodynamic
Fork - 6 to 9% of total aerodynamic
Frame - 4 to 9% of total aerodynamic
other – 2 to 4% of total aerodynamic

Drag coefficient is also essential characteristic in aerodynamic. So we described the different aerodynamic shape with their Drag coefficient as shown in Figure-7.

![Figure 7 Various Drag Coefficients](image)

In this paper, we carried the selections of different components of E-bike.

Determination of Battery: four Lead-acid Battery storing with 12V and 12amp-hour rating are kept in use. The variety of battery relies upon its voltage, ampere and wattage rating and so forth. The whole energy of totally charged battery in five hours is 350 Watt-hours.

Choice of Motor: A Brushless D C Motor (BLDC) for 300 Watts control with electronic compensation framework is painstakingly picked. Brushless DC Motors (BLDC) have many favored contrasted with mechanically moved DC motors in light of the fact that BLDC engines have permanent(long enduring) magnet , electronically drove. No twisting on rotors, frictionless operation, not so much commotion but rather more undeviating(uniform) torque.

In this paper, the solar powered tricycle as an auxiliary for

...
Auto rickshaw is carried out we mentioned key relevant features of the solar power assisted tricycle in this paper.

a. For higher power, motor of higher capacity can be used.
b. It works with a reasonable speed with less fatigue to the rider.
c. Source of power and shade utility by mounting solar panel.
d. The tricycle is steadier contrasted with a two wheel bike.
e. The parking place for solar powered vehicle does not involve a shed.
f. The battery can be charged even while riding the tricycle. This guarantees unremitting vitality contribution to the tricycle with no extra cost.

J. A Dynamic Model For The Performance And Environmental Analysis Of An Innovative E-Bike[10]

We have directed an ecological investigation of the considered vehicle, especially contrasting thee- Bike and a thermal moped, as far as ecological effect. This paper spoke to the natural examination of an electrically supported bike under genuine driving circumstances of mimicked speed-time profiles.

In think about, trial results of roller test seat estimations completed on a warm moped utilized so as to assemble the apropos emissive information amid genuine driving circumstances. The ecological appraisal was performed considering an examination with the emissive execution of this moped by utilizing kinematic parameters that assign the reenacted driving elements; an unmistakable advantage of e-Bike likened to thermal moped was appeared and figured as far as emanations spared of CO, HC and NOX, which was a general report finding of this paper.

In this paper we deliberate innovative Bike wheel concept which is used for comfortable ride of e-bike. The name of that wheel is known as Copenhagen wheel. The Copenhagen wheel is a bike wheel that can be effortlessly retrofitted into any normal Bike. It look for red center point not just contains engine, batteries and inward apparatus framework yet in addition incorporates ecological and area sensors which are controlled by the batteries in the haggle information for bike related versatile application.

L. Parametric Finite Element Analysis Of Steel Bike Frames :The Influence Of Tube Selection On Frame Stiffness[12]

We presented a parametric Finite Element model of road Bike frames using beam elements with waving tube profiles in this paper. In order to observe the impact of tube profiles on lateral stiffness and vertical compliance of the frames, wide range of current frame geometries had been subjected to several in plane and out of plane loading situations. This was postponement of preceding effort which considered the influence of overall frame geometries (tube lengths and angles) on the stiffness characteristics of frames. For a subset range of frame sizes (with seat tube lengths varying from 490-630mm), parameters were utilized to characterize measurements for roundabout tube profile shapes, shifting divider thicknesses related with butted tubes. In this paper just steel tubing was considered so as to segregate and accentuation inside and out on the effect of the tube profile geometries on the firmness attributes of the edges for a solitary material. We confines their work by setting future work to confirm this model by methods for a frame stiffness jig and to characterize the impact of material choice on the stiffness and attributes industrially open tube sets and their distributed solidness and quality esteems for steel, aluminum and titanium outlines frames.

M. Parametric Finite Element Analysis Of Bike Frame Geometries[13]

In this paper we include a Finite Element model by means of beam elements to signify a customary road Bike frame. The model simulation carries two standard loading constraints to undergo the vertical compliance and a lateral stiffness characteristic of 82 existing Bike frames from the Bike geometry project and compares these characteristics to an improved solution in these circumstances. Maybe obviously little ridges
(490mm seat tube) act the most thoughtfully as far as both vertical consistence and horizontal solidness, while the shorter best tube length (525mm) and bigger head tube edge (74.5°) brings about an along the side stiffer edge which relates with discoveries from literature outcomes. The upgraded esteems demonstrate an extensive improvement over the best of the current casings, with a 13% expansion in vertical dislodging and 15% decline in horizontal relocation when identified with the best of the dissected edges. Here general stacking conditions for frame structure and other auxiliary parts (rear dropouts, sections, handlebar, situate tube) are appeared in Figure 9 and 10.

N. Numerical Study On Materials And Design Optimization Of A Bike Frame[14]

In this paper the procedure of selecting a material for a robust frame structure is approached. We have taken materials like composites (HT Graphite epoxy and S-Glass Epoxy) and Aluminum Alloy 6061-T6 for Circular and Elliptical cross section. From ANSYS 14.5 simulation results it is determined that composites (HT Graphite epoxy and S-Glass Epoxy) can be used as Bike frame material due to its better results (stress, strain & displacement) when compared with Aluminum Alloy 6061-T6. Also, for the Bike frame the Circular cross section is more preferable than Elliptical cross-section because of high strength withstanding ability. Then in the two composite materials (HT Graphite epoxy and S Glass Epoxy) Due to less cost and reasonably high strength S-Glass Epoxy can be preferred when compared to HT Graphite Epoxy Figure-11 and Figure-12 shows the stress, strain values and deformation values for circular cross section frames and elliptical cross section frames respectively.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particular</th>
<th>Circular cross section</th>
<th>Elliptical Cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VON MISES STRESS(Pa)</td>
<td>Max 1.5896e7</td>
<td>1.6251e7</td>
<td>1.6332e7</td>
</tr>
<tr>
<td>2 VON MISES STRAIN(Pa)</td>
<td>Max 0.00023094</td>
<td>7.3595e-5</td>
<td>0.00018162</td>
</tr>
<tr>
<td>3 TOTAL DEFORMATION (mm)</td>
<td>Max 6.2309e-5</td>
<td>2.8539e-5</td>
<td>9.1385e-5</td>
</tr>
</tbody>
</table>

Table 11 Analysis for Circular Cross Section Frame

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particular</th>
<th>Aluminium Alloy 6061-T6</th>
<th>Graphite Epoxy</th>
<th>S-Glass Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VON MISES STRESS(Pa)</td>
<td>Max 3.8132e7</td>
<td>3.8362e7</td>
<td>3.8443e7</td>
<td></td>
</tr>
<tr>
<td>2 VON MISES STRAIN</td>
<td>Max 0.00020857</td>
<td>0.00066040</td>
<td>0.0001439</td>
<td></td>
</tr>
<tr>
<td>3 TOTAL DEFORMATION (mm)</td>
<td>Max 0.00015066</td>
<td>4.7270e-5</td>
<td>0.0001033</td>
<td></td>
</tr>
</tbody>
</table>

Table 12 Analysis for Elliptical Cross Section Frame

In this paper we discuss the configuration and overview of E-bike. In this we have classified the various possible components used to build an E-bike. As per shown in the figure13, the fundamental design of an electric Bike drive comprise of a controller that controls control stream the battery to the electric engine. It implies the power provided from electric engine is utilized to run E-Bike. Shown in table no.14

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Parameters</th>
<th>According to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor type</td>
<td>BLDC Motor</td>
</tr>
<tr>
<td>2</td>
<td>Motor assembly type</td>
<td>Gear Hub Motor</td>
</tr>
<tr>
<td>3</td>
<td>Throttle Type</td>
<td>Twist Throttle</td>
</tr>
<tr>
<td>4</td>
<td>Motor Placement</td>
<td>Rear Wheel</td>
</tr>
<tr>
<td>5</td>
<td>Battery Type</td>
<td>Lead acid</td>
</tr>
</tbody>
</table>

Table 13 Classifications of E-Bike Components

Motor Used-48v, 350 Watt
Battery Used-Lead acid, 12v*4=48 v

<table>
<thead>
<tr>
<th>1</th>
<th>Time Required To Charge</th>
<th>5-6 Hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Maximum Speed</td>
<td>40-45Km/Hr.</td>
</tr>
<tr>
<td>3</td>
<td>Mileage When Full charge</td>
<td>60-70 Km</td>
</tr>
<tr>
<td>4</td>
<td>Cycle of Charge</td>
<td>Up to 750</td>
</tr>
<tr>
<td>5</td>
<td>Power Consumption</td>
<td>200-700wh</td>
</tr>
<tr>
<td>6</td>
<td>On-Board Power Supply</td>
<td>12v-48v</td>
</tr>
<tr>
<td>7</td>
<td>Load carrying Capacity</td>
<td>150kg</td>
</tr>
<tr>
<td>8</td>
<td>Weight</td>
<td>75kg</td>
</tr>
<tr>
<td>9</td>
<td>Price Range</td>
<td>27500</td>
</tr>
</tbody>
</table>

Table 14 Performance of E-Bike

IV. CONCLUSION

The objective of a comfortable, compact, high speed and efficient Bike can be achieved by this various experiment results obtained by different Wes by advancement in current E-bike model. This advancement includes the pre-discovered results from literatures like the selection of materials of frame tubes, aerodynamic design.

It is cheap source of transport and affordable to anyone. The motor used in this bike has high Efficiency and the battery bank has less weight with high Speed. These bikes are environmental friendly, needs less Maintenance and can be also assembled to small component.

REFERENCES

[12] Derek Covill, Alex Blayden, Daniel Coren, Parametric finite element analysis of steel Bikeframes: the influence of tube selection on frame stiffness, Science Direct

