
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i53

Survey on Container Systems and Their Efficient

Orchestration Algorithms
1Pratham Jangra, 2Anuttam Anand, 3Dr. Amit Kumar Tyagi

1Student, 2Student, 3Assistant Professor,
1Computer Science and Engineering, School of Computer Science and Engineering,

1Vellore Institute of Technology Chennai (UGC), Chennai, 600127, Tamil Nadu, India
2Computer Science and Engineering, School of Computer Science and Engineering,

2Vellore Institute of Technology Chennai (UGC), Chennai, 600127, Tamil Nadu, India
3Computer Science and Engineering, School of Computer Science and Engineering,

3Vellore Institute of Technology Chennai (UGC), Chennai, 600127, Tamil Nadu, India

Abstract: Containerization is the way toward bundling a software with all of its essentially required runtime-libraries, frameworks

and system-configuration files so that it can be executed proficiently in a variety of computing environments [1]. Containers do not

put a strain on the system, requiring only the bare minimum of resources to operate the solution without the need to replicate an

entire operating system. Since the program requires less resources to run, it can run a greater number of applications on the same

hardware, lowering costs as compared to virtual machines which require separate guest OS for isolating the environment for the

program libraries. Docker is one of the platforms for containerization and has many orchestration programs for the efficiency. This

paper focus on the different algorithms proposed for allocation of resources and talks about their results obtained.

Index Terms - cloud-based computing, Kubernetes Docker-containers, Docker, container-orchestration, virtual machine,

microservices

I. INTRODUCTION

Containerization is the key to the issue of moving software from one computing environment to another and having it run reliably.

This might be from a designer's PC to a test setting, from arranging to yield, or from an actual bodily present data-centre-server to a

virtual machine in a private or public cloud. Issues emerge when the auxiliary programming environment isn't correspondent. For

example, one might test with Python 2.7 and then run it in production with Python 3 and something won't work, or one might run

and execute them for testing on Debian distribution of Linux, but the production is based on the platform of Red Hat organization,

and both of these issues arise due to different software and modified versions. A container is a whole runtime environment stuffed

into one bundle/package: an application, alongside the entirety of its libraries, conditions, different binaries, dependencies and

configuration setting files which are necessary for the execution.

Contrasts in operating system dispersions and basic framework are disconnected away by containerizing the application stack

and its conditions/dependencies. A container could be a many megabyte in size, yet a virtual machine with its own working

framework could be a few gigabytes. Subsequently, a solitary server will have a lot bigger number of containers than virtual

machines. One of the advantages is reduced loading time in containers than in virtual machines and applications can be broken

into modules and modules can be run on discrete containers for better execution. Common applications are microservices, batch

processing, machine learning, hybrid applications. Google developers also created Cgroups in Linux which can isolate resource

use for user processes which can is put into namespaces which are collection of processes that share same resources. Linux

Cgroups led to the creation of Linux containers (LXC).

LXC was the first major implementation of what we now call a container, using Cgroups and namespace isolation to construct

a virtual environment with distinct process and networking space. In Docker, the container's operating system is in the form of an

image. The distinction between this image and the full operating system on the host is that the image only contains the file system

and binaries for the OS, while the full OS contains the file system, binaries, and kernel. The image and its parent images are

downloaded from the repo, the Cgroup and namespaces are generated, and the image is used to create a virtual environment when

a container is booted. The files and binaries listed in the image appear to be the only files on the entire system from inside the

container. The main operation of the container is then begun, and the container is considered alive. Users have attempted to deploy

large scale applications over several virtual machines since the introduction of Linux containers, with each process running in its

own container. This necessitated the ability to effectively deploy tens to thousands of containers across hundreds of virtual

machines, as well as handle their networking, file systems, and other resources and led to introduction of orchestration like

Kubernetes, Docker Swarm.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i54

Orchestration do schedule, booting the containers, upgrading and rollbacking, responding to failures and restarting the

containers. Container-as-a-Service (CaaS) is a model for running containers on an enterprise platform; however, certain extra

highlights of these frameworks, like deployment in production and arrangement mechanization, render this stage an undeniable

Platform-as-a-Service (PaaS). In spite of the fact that CaaS will execute containers at scale on the computer, PaaS takes input of

the source-code, foster it, build containers, and ensure their execution. Organizations are normalizing platforms around

technologies which are based and executed on Kubernetes which is one of the major open-source technologies (also known as

K8S in short). Google dispatched K8S as an open-source project that is currently managed and developed by various huge

organizations which are also acting as platform vendors. Container workloads can also be moved between public clouds using

K8S. These are the reasons why Kubernetes is being used by an increasing number of technology companies.

This paper will focus on the algorithms used for different orchestration systems like Kubernetes and find which one is efficient

according to the conditions given.

II. RELATED WORKS

There are many orchestration tools available and have their own implementation and handling for the containers. The widely

used tool is the Kubernetes which was developed by Google. It has a whole wide working system which include pods, deployments,

nodes, clusters and services [2]. A Kubernetes pod is a set of containers that Kubernetes manages at the smallest scale and have a

single IP address that is assigned to all of the containers in the pod which share the same memory and storage resources. This allows

the individual Linux containers within a pod to be viewed as a single programme, as if they were all running on the same host in

more conventional workloads. It tends to be a solitary container when the program or process service is a solitary process that

necessities to operate, or it tends to be a multi-container pod unit when a few process cycles need to cooperate utilizing same

common information data volumes for suitable execution [25].

Kubernetes deployments allow you to specify the scale at which you want to run your application by specifying the specifics of

how pods should be replicated across your Kubernetes nodes. Deployments specify the number of identical pod replicas that should

be run as well as the chosen upgrade strategy for updating the deployment. Kubernetes can monitor pod health and remove or add

pods as required to achieve the desired state for your application deployment. If a pod dies due to a problem, Kubernetes is

responsible for replacing it so that the application does not experience any downtime. A service is a layer of abstraction over the

pods that serves as the only point of contact for the various application users. Internal names and IP addresses of pods can change

as they are replaced. A service maps pods with unreliable underlying names and numbers to a single system name or IP address and

guarantees that it appears to be the same to the outside network. The computer (whether virtualized or physical) that performs the

provided work is managed and operated by a Kubernetes node. A node gathers entire pods that act together, just as pods collect

individual containers that work together. All of the above components are combined into a single cluster [24].

Figure 1. The Kubernetes Architecture.

Next enterprise level orchestration tool is OpenShift, developed by Red Hat. Microservices-primarily based structure of lesser

big, decoupled devices that work collectively makes up the OpenShift Container Platform [3]. It's based on top of a Kubernetes

cluster band and uses etcd, a reliable grouped key & value store, to store information about the items. REST APIs disclose every of

the fundamental objects, and these services are broken down by function. Controllers read APIs, make modifications to rest of the

other objects, and either report the status of the object or write back to the object. To alter the state of the device, REST APIs are

utilized by the users. Controllers read the end-user's ideal state utilizing the REST API and then attempt to bring the rest of the

device into sync.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i55

Figure 2. The OpenShift Architecture

The next orchestrator is Nomad developed by HashiCorp. Nomad is a straightforward, adaptable, and simple to utilize

responsibility workload orchestrator to send and oversee by managing the containers and non-containerized applications across on-

prem and clouds at scale [4]. Nomad executes as a solitary binary with a little asset resource footprint impression (35MB) and

natively supported by Windows, macOS, Linux. Machine learning (ML) and artificial intelligence (AI) workloads are supported

natively by Nomad (AI). Device plugins enable Nomad to automatically detect and use resources from hardware devices like GPUs,

FPGAs, and TPUs. The simplicity, versatility, scalability, and high performance of Nomad set it apart from similar tools. Nomad's

synergy and integration points with HashiCorp Terraform, Consul, and Vault make it better suited for quick integration into an

organization's current workflows, reducing vital initiative time-to-market. [20] [21]

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i56

Figure 3. Nomad Architecture

Docker Swarm, built by Docker, is a top tool which is in competition to Kubernetes. Multiple Docker multitudes executes in

swarm mode and serve as managers (to deal with delegation and membership) and staff in a swarm (which executes swarm services)

[5]. Any Docker host may be a staff, a boss, or both at the same time. You determine the optimum state of a service when you

develop it (number of networks, imitations and resource capacity storage assets accessible to it, ports the assistance opens to the

rest of the world, and that's only the tip of the iceberg). Docker always strives and attempt to keep the desired state of itself. Docker,

for example, schedules an operative worker node's tasks on other nodes if that node becomes unavailable. A job, as opposed to a

standalone container, is a running container that is essential part of a swarm service and which is operated by a swarm manager. To

expose the resources, one needs to make resources and assets available external remotely to the swarm, for which the swarm

manager utilizes the ingress load-balancing [23]. The swarm manager can allocate a PublishedPort to the service automatically, or

you can manually configure one. Any unused port may be defined. External elements, for example, such as cloud server load-

balancers, are able to get the access to the service through the PublishedPort of any node present in the cluster, regardless of whether

that node is currently performing the service's main task/aim/mission. Ingress connections are routed to a running task instance by

all nodes in the swarm. [22]

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i57

Figure 4. Docker Swarm Architecture

III. LOAD BALANCING ALGORITHMS

Load balancing is a method used by businesses to distribute workload through several servers in a server pool. It works like a

virtual traffic cop, routing client requests through servers in order to respond quickly and efficiently. It ensures that no single server

is overburdened or suffers performance degradation. The load balancer redirects traffic to the remaining online servers if one of the

servers goes down. If a new server is connected to the server pool, the load balancer can send requests to it automatically and will

rebalance the load around the pool. To intelligently stack load-balance client’s access requests through the server pools, a variety

of techniques and algorithms can be used. The technique used will be determined by the kind of administration service or application

being dealt with, just as the network and server status at that particular time the solicitation request is made. The algorithms defined

below will be consolidated to decide which server is better suited to handle new requests. The system used is also determined by

the existing number of requests to the load-balancers. One of the simple load balancing methods will suffice when the load is light.

The more complicated approaches are used in times of high load to ensure an even distribution of requests. Following are some of

the most used techniques and algorithms for load balancing:

a. Round Robin: The most basic essential, broadly and widely utilized load balancing algorithm is round-robin load-

balancing. In a pivoting rotating design, client service requests are disseminated to application servers. In the event if

we have three application servers, for e.g., the very 1st client request will be sent to the very 1st application server in

the stack, the 2nd client request will be sent to the 2nd application server, the 3rd client request will be sent to the 3rd

application server, the 4th client request will be sent to the 1st application server, and so on. Round-robin load-

balancing algorithm overlooks application server features, assuming that all application servers are indistinguishable

in terms of obtainability, computation, and load-handling.

b. Weighted Round Robin: Weighted Round Robin represents for different application server features, qualities. Robin

builds on the fundamental Round-robin load-balancing calculation algorithm. To exhibit the application server's

traffic-handling competence, the admin allocates a load to each application server based on constraints of their choice.

If 1st application server is twofold as powerful as 2nd application server (and 3rd application server), 1st application

server is provisioned with more weight and 2nd and 3rd application server get the same weight. Suppose there are 5

chronological client requests, the first two go to 1st application server, the 3rd goes to 2nd application server, the 4th

goes to 3rd application server and the 5th goes to 1st application server.

c. Least Connection: Client requests are distributed to the application server with the least number of dynamic

associative connections at the time the client request is submitted utilizing the least connection load-balancing

algorithm. In situations where application servers have comparative necessities, a server may be over-burden due to

longer-enduring connections; this algorithm considers dynamic connection load.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i58

d. Resource Based (aka Adaptive): The Resource Based (Adaptive) load-balancing algorithm necessitates the

installation of an agent on the application server that records the load balancer's current load. The application server's

availability and resources are monitored by the installed agent. To aid load balancing decisions, the load-balancer

queries the yield from the agent.

e. Fixed Weighing: Fixed Weighting is a heap-adjusting load-balancing algorithm where the administrator allocates a

weight to each application server which depends on set of rules of their electing to exhibit the application servers’

traffic-handling competence. The application server with the most elevated weigh will receive all of the traffic. If the

application server with the most elevated weight fizzles, all traffic will be coordinated to the next highest weight

application server.

f. Weighted Response Time: Weighted Response Time is a load-balancing algorithm where the response times of the

application servers governs which application server obtains the next request. The application server retort time to a

health check is used to calculate the application server weights. The application server that is retorting the quickest

obtains the next request.

g. Source IP Hash: Source IP hash is a load-balancing algorithm that generates a inimitable hash key by consolidating

the client and server's source and destination IP addresses. The key is used to allocate a client to a specific server. The

client request is guided to the same server it was using previously so the key can be redeveloped if the session is broken

up. This is useful if it's significant for a client to reconnect to an active session after a disengagement.

IV. COMPARISON OF RESOURCE MANAGEMENT ALGORITHMS

Reference Objective Platform Algorithm Used Results

Maria A. Rodriguez

and Rajkumar Buyya

[6];

I. Donca, C. Corches,

O. Stan and L. Miclea

[17];

N. Estrada and H.

Astudillo [18];

Cost-Efficient

Autoscaling in Cloud

Computing

Environments

Implemented in Java Best Fit Bin Packing

Scheduler

Non-Binding Re-

scheduler

Binding Re-scheduler

Simple Auto-scaler-

Scale Out / Scale In

Simple Binding Auto-

scaler-Scale Out

For the mixed

workload and slow

workload, the lowest

cost and scheduling

duration is obtained by

the Non-binding Re-

scheduler and Binding

Auto-scaler (NBR-

BAS)

The median

scheduling time is the

fastest for the slow

workload and the

NBR-NBAS.

Xin Xu; Huiqun Yu;

Xin Pei [7]

Minimum Response

Time

Java Resource stable

placement algorithm

(RSP)

Resource Scheduling

Approach using

Stable Matching

Theory

The Strategy causes at

most 27.4%

degradation compared

with the common

virtual machine-based

clouds which using the

MinResTime strategy.

H. Zhang, H. Ma, G.

Fu, X. Yang, Z. Jiang

and Y. Gao [8]

Improve Resource

Utilization

Docker DRFA Resource

Allocation Algorithm

DRFA outperforms

the Filter Scheduler

and Vector Dot

methods, and the

utilization ratios of

CPU and memory are

all over 90%

C. Kaewkasi and K.

Chuenmuneewong [9]

Balance Resource

Usage

Docker SwarmKit Ant Colony

Optimisation (ACO)

Performance of

workloads placed by

ACO(A)gained

14.80% better than the

greedy algorithm

L. Yin, J. Luo and H.

Luo [10];

K. Chaowvasin, P.

Reduce Task Delays Docker Task Scheduling

Algorithm

Scheduling algorithm

can increase the

number of accepted

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i59

Sutanchaiyanonta, N.

Kanungsukkasem and

T. Leelanupab [19];

tasks by 5% and the

reallocation

mechanism can

significantly decrease

the execution time for

each task by 10%

Guerrero, C., Lera, I.

& Juiz, C [11]

Reduce Network

Overhead

Sock Shop Genetic algorithm

approach, using the

Non-dominated

Sorting Genetic

Algorithm-II (NSGA-

II)

The approach obtained

values up to

58.1%better for

Network Distance,

44.1% for Balanced

Cluster. Moreover,

44.1% for System

Failure, and 453.9%

for Threshold

Distances compared

with Kubernetes

allocation policies.

The solution also used

a smaller number of

physical machines,

except for in one of

the experiments, with

improvement ratios of

up to 4.888.

M. Xu, A. N. Toosi

and R. Buyya [12]

Reduce energy Docker Lowest Utilisation

Container First

(LUCF)

Minimum Number of

Components First

Policy (MNCF)

Random Selection

Container Policy

(RSC)

LUCF achieves better

energy consumption

than NPA, BOB and

Auto-S. According to

response time and

SLA violation

comparison, LUCF

outperforms Auto-S.

Compared with BOB,

LUCF has better

performance when

optional utilization

percentage is larger

than 30 percent.

J. Herrera and G.

Moltó [13]

Dynamic Distributed

Auto-scaling

Simulation Bio-inspired

algorithms

Sharper load peaks or

series with greater

number of outliers are

solved better with

horizontal scaling and

repetitive load are

conveniently solved

with vertical scaling

M. M. Rovnyagin, S.

O. Dmitriev, A. S.

Hrapov and V. K.

Kozlov [14]

Accelerating the Re-

scheduler

Docker Reinforcement

Learning based Re-

scheduler

The Re-scheduler can

work in a variety of

very different

situations. In addition,

the training process of

the Re-scheduler core

- ML-agent is

accelerated and

simplified.

Liu, B., Li, P., Lin, W.

et al [15]

Optimize Resource

Scheduling

Docker Swarm Multiopt algorithm Compared to Spread,

Binpack, and Random,

Multiopt increases the

maximum TPS by 7%

and reduces the

average response time

per request by 7.5%

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i60

while consuming

roughly same

allocation time.

V. CONCLUSION

 In this paper, we talked about the basics of containers and how orchestration tools are applied to ease container management

and handling. We saw few examples of industry grade orchestration tools like Kubernetes, nomad and their architectures. We talked

about different load balancing algorithms upon which modern algorithms are based and how they determine best performance for

websites and applications. Next, we compared some proposed algorithms for different purposes based upon resource allocation and

discussed about the results and which platforms they were based on.

VI. FUTURE WORKS

For future works, one can establish a connection between the different algorithms discussed and can make a super algorithm

which reduces the resource space but also is time efficient, which utilizes the resource efficiently and also provides fast connections

and server response.

VII. REFERENCES

[1] Marutitech [online] Available: https://marutitech.com/containerization-and-devops/

[2] Kubernetes [online] Available: https://kubernetes.io/docs/concepts/architecture/

[3] RedHat OpenShift [online] Available: https://docs.openshift.com/container-platform/3.5/architecture/index.html

[4] Nomad [online] Available: https://www.hashicorp.com/resources/how-does-nomad-work

[5] Docker Swarm [online] Available: https://docs.docker.com/engine/swarm/key-concepts/

[6] Rodriguez, Maria and Rajkumar Buyya. "Container Orchestration with Cost-Efficient Autoscaling in Cloud Computing

Environments." Handbook of Research on Multimedia Cyber Security, edited by Brij B. Gupta and Deepak Gupta, IGI Global,

2020, pp. 190-213. http://doi:10.4018/978-1-7998-2701-6.ch010

[7] X. Xu, H. Yu and X. Pei, "A Novel Resource Scheduling Approach in Container Based Clouds," 2014 IEEE 17th

International Conference on Computational Science and Engineering, 2014, pp. 257-264, doi: 10.1109/CSE.2014.77.

[8] H. Zhang, H. Ma, G. Fu, X. Yang, Z. Jiang and Y. Gao, "Container Based Video Surveillance Cloud Service with Fine-

Grained Resource Provisioning," 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), 2016, pp. 758-765,

doi: 10.1109/CLOUD.2016.0105.

[9] C. Kaewkasi and K. Chuenmuneewong, "Improvement of container scheduling for Docker using Ant Colony Optimization,"

2017 9th International Conference on Knowledge and Smart Technology (KST), 2017, pp. 254-259, doi:

10.1109/KST.2017.7886112.

[10] L. Yin, J. Luo and H. Luo, "Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers for Smart

Manufacturing," in IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712-4721, Oct. 2018, doi:

10.1109/TII.2018.2851241.

[11] Guerrero, C., Lera, I. & Juiz, C. Genetic Algorithm for Multi-Objective Optimization of Container Allocation in Cloud

Architecture. J Grid Computing 16, 113–135 (2018). https://doi.org/10.1007/s10723-017-9419-x

[12] M. Xu, A. N. Toosi and R. Buyya, "iBrownout: An Integrated Approach for Managing Energy and Brownout in Container-

Based Clouds," in IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp. 53-66, 1 Jan.-March 2019, doi:

10.1109/TSUSC.2018.2808493.

[13] J. Herrera and G. Moltó, "Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container

Orchestration Platforms," in IEEE Access, vol. 8, pp. 52139-52150, 2020, doi: 10.1109/ACCESS.2020.2980852.

[14] M. M. Rovnyagin, S. O. Dmitriev, A. S. Hrapov and V. K. Kozlov, "Algorithm of ML-based Re-scheduler for Container

Orchestration System," 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering

(ElConRus), 2021, pp. 613-617, doi: 10.1109/ElConRus51938.2021.9396294.

[15] Liu, B., Li, P., Lin, W. et al. A new container scheduling algorithm based on multi-objective optimization. Soft Comput 22,

7741–7752 (2018). https://doi.org/10.1007/s00500-018-3403-7

http://www.ijcrt.org/
https://marutitech.com/containerization-and-devops/
https://kubernetes.io/docs/concepts/architecture/
https://docs.openshift.com/container-platform/3.5/architecture/index.html
https://www.hashicorp.com/resources/how-does-nomad-work
https://docs.docker.com/engine/swarm/key-concepts/
https://doi.org/10.1007/s10723-017-9419-x
https://doi.org/10.1007/s00500-018-3403-7

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105852 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i61

[16] M. Rostanski, K. Grochla and A. Seman, "Evaluation of highly available and fault-tolerant middleware clustered

architectures using RabbitMQ," 2014 Federated Conference on Computer Science and Information Systems, 2014, pp. 879-884,

doi: 10.15439/2014F48. http://ieeexplore.ieee.org/document/6933108

[17] I. Donca, C. Corches, O. Stan and L. Miclea, "Autoscaled RabbitMQ Kubernetes Cluster on single-board computers," 2020

IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2020, pp. 1-6, doi:

10.1109/AQTR49680.2020.9129886. http://ieeexplore.ieee.org/document/9129886

[18] N. Estrada and H. Astudillo, "Comparing scalability of message queue system: ZeroMQ vs RabbitMQ," 2015 Latin

American Computing Conference (CLEI), 2015, pp. 1-6, doi: 10.1109/CLEI.2015.7360036.

http://ieeexplore.ieee.org/document/7360036

[19] K. Chaowvasin, P. Sutanchaiyanonta, N. Kanungsukkasem and T. Leelanupab, "A Scalable Service Architecture with

Request Queuing for Resource-Intensive Tasks," 2020 17th International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology (ECTI-CON), 2020, pp. 67-70, doi: 10.1109/ECTI-

CON49241.2020.9158114. http://ieeexplore.ieee.org/document/9158114

[20] V. M. Ionescu, "The analysis of the performance of RabbitMQ and ActiveMQ," 2015 14th RoEduNet International

Conference - Networking in Education and Research (RoEduNet NER), 2015, pp. 132-137, doi:

10.1109/RoEduNet.2015.7311982. http://ieeexplore.ieee.org/document/7311982

[21] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge and R. E. Grant, "Enabling HPC Workloads on Cloud Infrastructure

Using Kubernetes Container Orchestration Mechanisms," 2019 IEEE/ACM International Workshop on Containers and New

Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), 2019, pp. 11-20, doi: 10.1109/CANOPIE-

HPC49598.2019.00007. http://ieeexplore.ieee.org/document/8950981

[22] C. Link, J. Sarran, G. Grigoryan, M. Kwon, M. M. Rafique and W. R. Carithers, "Container Orchestration by Kubernetes for

RDMA Networking," 2019 IEEE 27th International Conference on Network Protocols (ICNP), 2019, pp. 1-2, doi:

10.1109/ICNP.2019.8888116. http://ieeexplore.ieee.org/document/8888116

[23] D. Ermolenko, C. Kilicheva, A. Muthanna and A. Khakimov, "Internet of Things Services Orchestration Framework Based

on Kubernetes and Edge Computing," 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic

Engineering (ElConRus), 2021, pp. 12-17, doi: 10.1109/ElConRus51938.2021.9396553.

http://ieeexplore.ieee.org/document/9396553

[24] A. Tesliuk, S. Bobkov, V. Ilyin, A. Novikov, A. Poyda and V. Velikhov, "Kubernetes Container Orchestration as a

Framework for Flexible and Effective Scientific Data Analysis," 2019 Ivannikov Ispras Open Conference (ISPRAS), 2019, pp.

67-71, doi: 10.1109/ISPRAS47671.2019.00016. http://ieeexplore.ieee.org/document/8990167

[25] R. Eidenbenz, Y. Pignolet and A. Ryser, "Latency-Aware Industrial Fog Application Orchestration with Kubernetes," 2020

Fifth International Conference on Fog and Mobile Edge Computing (FMEC), 2020, pp. 164-171, doi:

10.1109/FMEC49853.2020.9144934. http://ieeexplore.ieee.org/document/9144934

http://www.ijcrt.org/
http://ieeexplore.ieee.org/document/6933108
http://ieeexplore.ieee.org/document/9129886
http://ieeexplore.ieee.org/document/7360036
http://ieeexplore.ieee.org/document/9158114
http://ieeexplore.ieee.org/document/7311982
http://ieeexplore.ieee.org/document/8950981
http://ieeexplore.ieee.org/document/8888116
http://ieeexplore.ieee.org/document/9396553
http://ieeexplore.ieee.org/document/8990167
http://ieeexplore.ieee.org/document/9144934

