
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e499

COST EFFECTIVE & AUTOMATED

CENTRALIZED PATCH MANAGEMENT FOR

LARGE SCALE HETEROGENEOUS AND

DISTRIBUTED SYSTEM

Vishal Gupta

Senior Engineer

Shilpa Singh

Deputy Manager

Varun Gupta

 Manager

Design and Engineering, Network Centric Systems

Bharat Electronics Limited, Ghaziabad, India

Abstract: Administration and management of application versions, system configurations and operation policies is a

challenging and costly activity for large enterprises. Currently organizations involved in building large scale distributed

systems deploy multiple applications written and implemented in different technologies and operating in heterogeneous

environment. Different computing nodes have unique set of applications and policies, to provide designated services. For

systems built to suit specific industry operation, periodic improvement of application logic and enhancement of

functionalities becomes a regular affair. However, every time a new application patch/version is released for correction of

bugs or enhancement of functionalities, it becomes a cumbersome task to timely and accurately deploys the right set of

application versions and policies at the intended target machine. In this paper we have envisaged a centralized patch and

configuration management framework through which the distribution of application patches and policies can be centrally

controlled, monitored and implemented for large scale systems with geographically distributed endpoints having

heterogeneous identities and operating environment. This allows centralized visibility of deployed managed resources/device

and eliminates the necessity of manual distribution and update operations at each endpoint. This caters the need of scalable,

centralized, authoritative repository, through independent and secure framework.

Keywords: patch management, version management, policy management, managed devices etc

1. Introduction

Keeping software systems up to date by applying security

patches and other applications patches is critical security

hygiene, and failing to timely patch software systems may

lead to devastating consequences. A significant number of

cyber security breaches have been a result of exploitation of

vulnerability for which patches have not been updated

centrally [1][2][3].

Security patch management in large and complex systems

is a hugely challenging task that involves different types of

stake holders making several interdependent technological

and socio-technical decisions. The high rate of security

patch releases, service disruptions caused by faulty patches

and reboots following patch installation make the process

even more challenging. The Patch updates are usually done

by manual intervenes. Because of manual intervenes and

manual processing, chances of happening of fatal error is

more [4][5]. Such evidence from a growing number of

security incidents indicate that a significant amount of

research is needed to help understand the prevailing

challenges in patch management that may cause delays in

applying security patches, and the available solutions to

overcome those challenges.

Manual Application patch management for large scale

heterogeneous and distributed systems is a costly affair for

organizations. The traditional methods range from plugging

of external media to individual systems and copying of files

to taking manual remote access of each endpoint in

sequence and copying files over the network[6]. Even with

provisioning of large number of correctly prepared similar

media and dedicating requisite amount of personnel to carry

a series of defined procedures, the task involves

considerable labor costs, errors and system downtime [7-8].

There may be different methods to manage the patches even

to cater the redundancy scenario but also in such methods,

though the patch may be available at multiple locations, in a

crisis situation the user realizes that there is no central

repository where a previously released patch can be

referred to for disaster recovery.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e500

Patch management refers to the process of applying

software patches. It is defined as the process for identifying,

acquiring, installing, and verifying patches for products and

systems [9-11]. The focus of patch management from a

software vulnerability life cycle point of view lies on the

time frame between when a patch is available until it's

installed, as highlighted with dash lines in Figure 1[12].

Figure1: General Layout of Patch Deployment [11]

The other sections of the paper are organized as follows.

Section 2, presents the related Literature survey, while

section 3 describes the proposed approach. Section 4

describes the implemented results and its explanation and

finally the conclusion in Section 5.

2. Literature Survey

Different Authors have proposed different approaches for the patch management and security vulnerability. There is large

diversity in the study of their research. We have summarized the research work of researchers in Table 1.

Table1:- Different approaches for the patch management and security vulnerability

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e501

3. Proposed Approach

3.1 General Illustration

As illustrated in Figure 2, at the first stage of the patch

management, process is patch information retrieval, where

practitioners learn about new patches, download and

distribute them to the relevant end points to be installed. In

the second stage, namely vulnerability scanning,

assessment and prioritization, the organizational systems

are scanned to identify existing vulnerabilities residing in

the software, which can include software bugs, missing

patches, insecure configurations, and vulnerable ports and

services [13]. It is followed by risk assessment of the

identified system vulnerabilities to quantify the

vulnerability risks, in order to prioritize patches to decide

the order of patch installation. It was found that several

socio-technical factors such as the applicability of patches

and their impact to managed systems, positive cost benefit

analysis, patch type and severity, patch reliability and

compliance to organization policies impact practitioners'

decisions to apply the patches during this stage [14, 18]. It

also requires managing coordination issues with multiple

stakeholders inside and outside organization to reach a

consensus on the time to install patches as well as receiving

organizational approval for patch installation. The last stage

is post-deployment patch verification, which includes

several activities such as patch monitoring to verify

successful installation of patches, handling post-

deployment issues in compliance to organization policies,

and patch auditing to verify and remedy exploitation of the

newly patched vulnerabilities. The post-deployment issues

are usually handled through uninstalling patches, rolling

back to snapshot or backup, reverting to the previous

software version, troubleshooting and finding workarounds

[20-23].

Technique Proposed Performan

ce matrices

Platform

used

Results Relate

d

work

HEFT: Heterogeneous

Earliest Finish Time

algorithm

Computatio

n Cost

Java based

simulator

In the results it was found that there is a huge

difference between the performances of

Heterogeneous Earliest Finish Time (HEFT) based

upon DAG for calculating weights.

[3]

Improved cost based

algorithm for task

scheduling in cloud

computing

Task

computation

time, cost

Cloudsim

1.0b

The results indicate that the proposed algorithm is

more efficient than activity based Cost- Effective

algorithm.

[5]

A cost based resource

scheduling cost

paradigm in cloud

computing.

Cost Java

Cloudware,

Pure java

based

platform in

cloud

This algorithm evaluates cost and is first such

algorithm used in cloud environment.

[8]

Deadline and budget

distribution based cost-

time optimization

workflow scheduling

algorithm for cloud

Execution

time, cost

Java and

randomly

generated

workflows

The proposed algorithm reduces the cost and

execution time and manages deadline and overall

budget simultaneously.

[11]

Customer-facilitated

cost-based scheduling

(CFCSC) in cloud.

Makespan,

monetary

cost

Cloudsim From the results it is recorded that the proposed

algorithm is helpful in load balancing and

minimizing the total monetary cost when compared

with HEFT.

[15]

Resource scheduling

base on fuzzy clustering

in cloud computing.

Response

time,

waiting

time,

running cost

Java based

simulator

The proposed algorithm is Cost – Based Clustering

(CBFCMP) is a fuzzy algorithm and is more efficient

and gives more accurate results when run in different

iterations.

[1]

Cost-effective task

scheduling using hybrid

approach in cloud.

Make span,

energy

consumptio

n, cost

Matlab 7.1 This paper proposed a novel heuristics called Nearest

Neighbor (NN) and a variant of PSO called

NNCA_PSO. NN heuristic achieved aligned

allocation of tasks to VMs by

reducing the difference between execution time

requirements of tasks and execution time

characteristics of VMs.

[16]

Optimization of task

scheduling and

cloudlets cost

scheduling algorithms

on cloud using cloud

simulator.

Execution

cost, task

completion

Cloudsim2.1.

2

Both the cost and time of completion are lessened by

the proposed algorithm, thus proving advantageous

over the sequential logic.

[17]

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e502

Figure 2: An overview of Patch Management system

using General Approach [17]

3.2 Proposed Technology

In our Environment, the Patch and Management is taken

care through Micro Focus tool ZENworks. This is the

centralized solution for provisioning patch management for

large enterprises which enhances the ease of

implementation, proper configuration, system availability

and improving end user expectations. The proposed

architecture is agent based centralized and automated patch

management framework which caters all aspects of patch

management from centralized control, efficient delivery,

proper configuration, timely implementation, centralized

repository and centralized reporting. We have implemented

the solution considering HA (High Availability) and DC-

DR (Data Center- Disaster Recovery) aspect to obtain the

24*7 operations redundancy.

An automated and centralized patch management procedure

and solution caters to all these issues. Right from the

detection of a need to deploy a software patch, the entire

patch management process should be automated. The entire

process should be streamlined through a centralized patch

management server, allowing the operator deploy

heterogeneous patches from a central point of control.

The proposed patch management solution is agent server

based. We have deployed the servers in HA (High

Availability mode) that is there are two Active – Active

VMs to achieve redundancy. The VMs are further

configured through load balancer as shown in Figure 4. If

the work of load balancer to route the end points to the

second server if first server is down.

Figure 3: Access of VMs through Load Balancer [26]

3.2.1 Patch Management Solution Architecture

The patch management solution consists of various

components including Servers, Agents, Database, Web

Console and different services as shown in Figure 5 below.

All the sub components are discussed in brief.

Figure 4: Patch Management Solution Architecture

Solution Components

An automated and centralized Patch Management Software

should comprise of the following components.

 Server

 Agent

 Database

 Web Console

Server

The Patch Management server is required to facilitate

various patch-management tasks to help administrators

patch computers in the organization's network effectively.

Some of the tasks include the following:

 Installing the agent in computers in the customer's

network

 Creation of patch tasks

 Deploying patch tasks

 Generating reports. For example, reports related to

patch status or patch compliance

Distribution Server

The Distribution server facilitates:

 Management of patch content to facilitate its distribution

to the endpoints.

 Compression of patch files for optimized bandwidth

usage.

 Encryption of patch files to provide greater security

during transmission and storage on the distribution

server.

Agents

The Patch Management agent is a lightweight software

application that is installed in computers which are to be

managed using Patch Manager Solution.

 It facilitates the completion of various tasks that are

initiated in the Patch Management server.

 Automatic scheduling of patch installation procedure.

 Facilitate protection and automatic restoration of

configuration files and operating environment.

 Updates the Patch Management server with the status of

patches that are deployed.

 It checks the Patch Management server periodically for

instructions related to tasks and completes the same.

Database

 All data related to managed devices and patches is

updated to the patch database.

Web Console

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e503

 The Web console of Patch management Solution

provides a central point from where an

administrator can access all the tasks that are

related to patch management.

 Separate client installations are not required to

access the Web console.

3.2.2 Final Proposed Implemented

Architecture and Patch Deployment Flow

process
The Patch and Configuration Framework are implemented

using an automated Patch Management Solution. Two

numbers of Patch Management Servers are installed in

Active-Active configuration and a management zone for

defining the devices to be managed is created. The Patch

Management Agent is installed on all devices to be

managed through the server and each agent is registered to

the Patch Management Server. The TLS compliant web

console is integrated with an LDAP server for centralized

authentication and grant of privileges for secure access to

the patch management solution by an

Administrator/operator. The Distribution Servers are also

configured through the web console, for packaging,

compression and encryption of the patch files for efficient

and secure distribution to the managed devices. Figure 6

shows the Final Proposed Architecture.

A logical view of managed devices is created in the server

web console for segregating the different devices as per

their heterogenic nature and ease of patch deployment. On

availability of a released patch, the patch deployment rules

are defined through the web console. These rules include

copying of files to relevant directories, configuration of

execution environment, assignment of file permissions, and

other required configurations. The patch files and rules

configuration is stored by the server in the database and

also at the Distribution server in a proprietary encrypted

format which is not readable or modifiable by any user.

Once the patch file is imported and configured, a patch

schedule may be defined for installation at the managed

devices or the installation can be manually invoked by the

authorized user. Once the patch schedule is defined or

invoked, the proprietary patch package is automatically

distributed to the agents installed at the managed devices

and independently installed at the managed devices. The

status report of installation is synchronized between the

agents and the patch management server and available at

the web console for analysis.

The Patch Deployment Flow Process [Figure 7] highlights

the broad areas for release and implementation of a

software patch. All the involved processes such as Patch

release, patch review, testing and verification of patch in

development environment, and final verification after

deployment have their own cycle of completion and the

time taken to conduct these phases is more or less constant.

The phase of Patch Deployment holds the potential for

optimization and improvement impacting the overall cost of

Patch Management Process.

Figure 5: Patch Management Solution

Figure 6: Patch Deployment Flow Process

4. Experimental Results and Discussion

In our Environment we have tested various patches of

different categories for the deployment on the endpoints

from the centralized location. The proposed flow of

deployment is shown below in Figure 8.

Figure 7: Experiment Flow of Patch Deployment

The proposed solution is implemented on Zenworks 2017.

The Configuration Management is selected as the Patch

Management Solution and installed while the servers are

installed in a virtualized environment; the Agents are

involved on 100 physical machines of heterogeneous

hardware (Servers/ Workstations) and operating systems

(Microsoft Windows Server/ RHEL 7.1). For the prototype

of our proposed solution, we have tested 10 different

patches of different category for the deployment of various

applications ranging in size from 1kb to 1 GB. The

technological framework includes C++, JAVA, Web

Development Framework, COTS software, MATLAB

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e504

2018R for the development purpose. The patches in the

form of bundles were imported to the Zenworks server and

their rule files were created. Content of rule files is given

below:

 Copying of files

 Execution of environment parameter configuration

scripts

 Setting of permissions

 Configuration of policies

In previous methods the patches used to be deployed using

manual access of the end point which used to consume lot

of man power, time, efforts and some may lead to the error.

Since the manual deployment of patches requires

root/administrative credentials which may be vulnerable to

security. In our work, we have recorded the deployment

time of these applications on 100 managed devices and

compared with the previous used technology. We have also

analyzed our work in terms of accuracy which is calculated

using pass/fail status of the deployed patches.

Table 2: The workstation configuration for our

Environment

Processor Dual core i7

RAM 16 GB

Hard Disk 1TB

Software MATLAB 2018

Languages C++, java

OS Platform Windows, Linux, Suse

We have considered different cases in our study for the

experimental results and analysis. The previous and manual

process takes much time in deploying different applications

and patches. The repeated process may be mitigated by

using the automated proposed approach that too with the

increased accuracy.

Case 1: New Application received

Automated procedure:

a) Import of executables and configuration files in

Patch Management Server

b) Creation of package (Patch + deployment rules)

c) Automatic deployment at managed devices

Manual procedure (through release media):

a) Manual copying of executables and configuration

files in 100 systems

b) Manual configuration of operating environment

c) Manual assignment of file permissions

Case 2: New Application patch received

Automated procedure:

a) Import of executables and configuration files in

Patch Management Server in existing package

b) Automatic deployment at managed devices

Manual procedure (through release media):

a) Manual copying of executables and configuration

files in 100 systems

b) Manual assignment of file permissions

In real scenario, we have tested our prototype on more than

100 endpoints with different 100 applications/patches. Here

we have listed out only few mathematical results as shown

in table 3 and Table 4. Table 3 shows the time taken for a

patch to be successfully deployed at end machine. From our

mathematical expression, we can find out that the average

time taken using proposed method come out to be 4 min

which is far better from the previous method which gives

average time approximately equal to 22 min. Table 4 shows

the deployment status of few bundles which is helpful in

finding the proposed algorithm’s accuracy. The proposed

method provides approximate 90 percent of accuracy.

Figure 3 and Figure 4 shows the graphical representation of

the results.

Table 3

Types of

Patches

Previous

Approach(Time

taken in min)

Proposed

Approach(Time

taken in min)

Type 1 25 5

Type2 20 4

Type 3 27 6

Type 4 25 3

Type 5 15 5

Table 4

Bundles Deployment

Status

 1 Pass

 2 Pass

 3 Fail

 4 Pass

 5 Pass

Figure 8: Experimental Results showing Time Taken

Figure 9: Experimental Results showing Accuracy

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105500 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e505

CONCLUSION

The implemented patch management framework solution

with the agent and server modules has shown great

improvement in patch distribution and installation time and

efficiency. For large organizations, the initial cost of setting

up and provisioning such framework shall prove far less as

compared to dependency on manual procedures and provide

substantial business returns in the longer run.

REFERENCES

[1] Cohen, Fred. (January 2004) Enterprise Patch

Management: Strategies, Tools, and Limitations, SANS

Institute http://www.burtongroup.com

[2] N. A. O_ce, Investigation: Wannacry cyber attack and

the nhs (2017).

[3] Evaluation of Patch Management Strategies by

HamedOkhravi and David M. icol,http://web.mit.edu

[4] Islam, M. A. Babar, S. Nepal, A multi-vocal review of

security orchestration, ACM Computing Surveys (CSUR)

52 (2) (2019) 1-45.

[5] Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J.

Bailey, S. Linkman, Systematic literature reviews in

software engineering{a systematic literature review,

Information and software technology 51 (1) (2009) 7-15.

[6] A. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based

software engineering, in: Proceedings. 26th International

Conference on Software Engineering, IEEE, 2004, pp. 273-

281.

[7] M. Souppaya, K. Scarfone, Guide to enterprise patch

management technologies, NIST Special Publication 800

(2013) 40.

[8] F. Li, V. Paxson, A large-scale empirical study of

security patches, in: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, 2017, pp. 2201-2215.

[9] F. Li, L. Rogers, A. Mathur, N. Malkin, M. Chetty,

Keepers of the machines: Examining how system

administrators manage software updates for multiple

machines, in: Fifteenth Symposium on Usable Privacy and

Security (fSOUPSg 2019), 2019.

[10] Tiefenau, M. H•aring, K. Krombholz, E. von

Zezschwitz, Security, availability, and multiple information

sources: Exploring update behavior of system

administrators, in: Sixteenth Symposium on Usable Privacy

and Security (fSOUPSg 2020), 2020, pp. 239-258.

[11] S. Frei, D. Schatzmann, B. Plattner, B. Trammell,

Modeling the security ecosystem-the dynamics of (in)

security, in: Economics of Information Security and

Privacy, Springer, 2010, pp. 79-106.

[12] Chalvatzis, D. A. Karras, R. C. Papademetriou,

Evaluation of security vulnerability scanners for small and

medium enterprises business networks resilience towards

risk assessment, in: 2019 IEEE International Conference on

Artificial Intelligence and Computer Applications

(ICAICA), IEEE, 2019, pp. 52-58.

[13] G. Stoneburner, A. Goguen, A. Feringa, Risk

management guide for information technology systems,

Nist special publication 800 (30) (2002) 800-30.

[14] U. Lakhina, N.Singh,I. Elamvazuthi, F. Meriaudeau, P.

Nallagownden, G. Ramasamy and Ajay Jangra “Threshold

based Load Handling Mechanism for Multi-Agent Micro

grid using Cloud Computing,” in International Conference

on Intelligent and Advanced System, kuala lumpur, 2018.

[15] D. S. Linthicum, “Connecting Fog and Cloud

Computing,” IEEE Cloud Computing, pp. 18 - 20, 2017.

[16] P.-J. Maenhaut, H. Moens, B. Volckaert, V. Ongenae

and F. D. Turck, “Resource Allocation in the Cloud: From

Simulation to Experimental Validation,” in IEEE 10th

International Conference on Cloud Computing (CLOUD),

california, 2017.

[17] P. Geetha and C. R. Robin, “A comparative-study of

load-cloud balancing algorithms in cloud environments,” in

International Conference on Energy, Communication, Data

Analytics and Soft Computing (ICECDS), chennai, 2017.

http://www.ijcrt.org/
http://www.burtongroup.com/

