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Introduction:  

Nanotechnology resembles a toolbox for the hardware business. It  permits  to make nano 

materials with unique properties changed by super fine molecule size, crystallinity, structure 

or surfaces. These will turn out to be industrially significant  to make new items.  

 

The term 'nano' is utilized in science as a prefix meaning one billionth (utilizing billion in its 

American feeling of a one followed by nine zeros). A 'nanometer' hence implies one billionth 

of a meter and it is tiny – around 10 particles across. Nanotechnology alludes to advances that 

are working at the nanometer level (1) and, all things considered, incorporates both a) 

Abstract:    Employments of nanotechnology in gadgets and electrical merchandise 

that do give rise straightforwardly to natural and human wellbeing concern. This is the 

utilization of artificially created nanoparticles in 'nanomaterials' to make electronic 

segments or surface coatings for electrical merchandise. Nanomaterials are usually 

characterized as materials planned and created to have underlying highlights within 

any one component of 100 nanometers or less. In hardware, various distinctive 

nanomaterials are now being utilized economically or are being utilized for innovative 

work purposes. Probably the most regularly utilized nanomaterials for electronic and 

electrical hardware are carbon nanotubes and quantum dots nanomaterials are  being 

utilized as surface coatings in certain electrical products,  principally in the light of the 

fact that they have against microbial properties. Items previously showcased as having 

'hostile to microbial' nanomaterial coatings incorporate fridges, vacuum cleaners, 

clothes washers, cell phones and PC mice. 
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procedures used to fabricate items with nano-scale qualities and b) nanomaterials produced by 

whatever implies. The two viewpoints have significance in the field of present day gadgets. 

Nano particles can theoretically be produced artificially from any chemical (2). Such 

engineered nanomaterials are commonly defined as materials designed and produced to have 

structural features with at least one dimension of 100 nanometers of less (3). Presently, most 

nanoparticles that are in use have been made from transition metals, silicon, carbon (carbon 

nanotubes, fullerenes) and metal oxides (zinc oxide and titanium dioxide). In some cases, 

engineered nanoparticles exist as nanocrystals composed of a number of compounds such as 

silicon and metals (as is the case for quantum dots) (4).  

 

Some promising uses of nanomaterials in electronics are 

 use of carbon nanotubes in semiconductor chips; 

  nanomaterials in lighting advancements (light producing diodes or LEDs and natural 

light producing diodes or OLEDs), with business utilize expected soon;  

 use of 'quantum dots' in lasers, alongside progressing examination into utilization of 

other nanomaterials in laser innovation;  

  utilized in lithium-particle batteries, or which are being investigated for this utilization;  

 potential use of carbon nanotubes and other nanomaterials in fuel cells and by the solar 

industry for use in photovoltaics. 

 Research into utilization of nanomaterials to deliver without lead bind, just as the 

advancement of weld free gathering innovation 

 

Classification of NPs 

NPs are broadly divided into various categories depending on their morphology, size and 

chemical properties. Based on physical and chemical characteristics, some of the well-known 

classes of NPs are given as below. 

1. Carbon-based NPs 

Fullerenes and carbon nanotubes (CNTs) speak two significant classes of carbon-based NPs. 

Fullerenes contain nanomaterial that are made of globular empty pen, for example, allotropic 

types of carbon. They have made essential business interest because of their electrical 

conductivity, high strength, structure, electron partiality, and flexibility (5). These materials 

have masterminded pentagonal and hexagonal carbon units, while every carbon is sp2 

hybridized. Fig. 2 shows a portion of the notable fullerenes comprising of C60 and C70 with 

the distance across of 7.114 and 7.648 nm, separately.  
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Figure 2. Different forms of Fullerenes/bucky balls (A) C60 and (B) C70. 

CNTs are elongated, tubular structure, 1–2 nm in diameter (6). These can be predicted as 

metallic or semiconducting reliant on their diameter telicity (7). These are structurally 

resemble to graphite sheet rolling upon itself (3). The rolled sheets can be single, double or 

many walled and therefore they named as single-walled (SWNTs), double-walled (DWNTs) 

or multi-walled carbon nanotubes (MWNTs), respectively. They are widely synthesized by 

deposition of carbon precursors especially the atomic carbons, vaporized from graphite by 

laser or by electric arc on to metal particles. Lately, they have been synthesized via chemical 

vapor deposition (CVD) technique (8). Due to their unique physical, chemical and mechanical 

characteristics, these materials are not only used in pristine form but also in nanocomposites 

for many commercial applications such as fillers ( 9,10), efficient gas adsorbents for 

environmental remediation (11), and as support medium for different inorganic and organic 

catalysts (12). 

 

Figure 3. Rolling of graphite layer into single-walled and multi-walled CNTs. 

2. Metal NPs 

Metal NPs are purely made of the metal precursors. Due to well-known localized surface 

Plasmon resonance (LSPR) characteristics, these NPs possess unique optoelectrical properties. 

NPs of the alkali and noble metals i.e. Cu, Ag and Au have a broad absorption band in the 

visible zone of the electromagnetic solar spectrum. The facet, size and shape controlled 
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synthesis of metal NPs is important in present day cutting-edge materials (13). Due to their 

advanced optical properties, metal NPs find applications in many research areas. Gold NPs 

coating is widely used for the sampling of SEM, to enhance the electronic stream, which helps 

in obtaining high quality SEM images . There are many other applications, which are deeply 

discussed in applications section of this review. 

3. Ceramics NPs 

Ceramic NPs are inorganic nonmetallic solids, synthesized via heat and successive cooling. 

They can be found in amorphous, polycrystalline, dense, porous or hollow forms (14). 

Therefore, these NPs are getting great attention of researchers due to their use in applications 

such as catalysis, photocatalysis, photodegradation of dyes, and imaging applications. (15). 

4. Semiconductor NPs 

Semiconductor materials possess properties between metals and nonmetals and therefore they 

found various applications in the literature due to this property (16, 17a). Semiconductor NPs 

possess wide bandgaps and therefore showed significant alteration in their properties with 

bandgap tuning. Therefore, they are very important materials in photocatalysis, photo optics 

and electronic devices (Sun, 2000). As an example, variety of semiconductor NPs are found 

exceptionally efficient in water splitting applications, due to their suitable bandsgap and 

bandsedge positions (18). 

5. Polymeric NPs 

These are normally organic based NPs and in the literature a special term polymer 

nanoparticle (PNP) collective used for it. They are mostly nanospheres or nanocapsular 

shaped (19). The former are matrix particles whose overall mass is generally solid and the 

other molecules are adsorbed at the outer boundary of the spherical surface. In the latter case 

the solid mass is encapsulated within the particle completely (20). The PNPs are readily 

functionalize and thus find bundles of applications in the literature (21,22). 

6. Lipid-based NPs 

These NPs contain lipid moieties and effectively using in many biomedical applications. 

Generally, a lipid NP is characteristically spherical with diameter ranging from 10 to 

1000 nm. Like polymeric NPs, lipid NPs possess a solid core made of lipid and a matrix 

contains soluble lipophilic molecules. Surfactants or emulsifiers stabilized the external core of 

these NPs (23). Lipid nanotechnology (24) is a special field, which focus the designing and 

synthesis of lipid NPs for various applications such as drug carriers and delivery (25) and 

RNA release in cancer therapy (26). 
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Figure 1 

Color dependence of Au NPs on size and shape 

(Dreaden et al., 2012). 

Nanoparticles (NPs) have become widely used in electronics, agriculture, textiles , medicine, 

and many other industries and sciences (Figure 1) The International Organization for 

Standardization define NPs as structures whose sizes in one, two, or three dimensions are 

within the range from 1 to 100 nm [27,28,29,30,31]. Apart from size, NPs may be classified in 

terms of their physical parameters, e.g., electrical charge; chemical characteristics, such as the 

composition of the NP core or shell; shape (tubes, films, rods, etc.); and origin: natural NPs 

(NPs contained in volcanic dust, viral particles, etc.) and artificial NPs, which are the focus of 

this review [32]. NP toxicity for living organisms, however, is the main factor limiting their 

use in treatment and diagnosis of diseases. At present, researchers often face the problem and 

side effects related to their toxicity. In this respect, the choice of an adequate experimental 

model for estimating toxicity in vitro (cell lines) and in vivo (experimental animals) ones is of 

paramount importance. NPs can enter  the body through inhalation, skin, and digestion, 

depending on their physicochemical characteristics and mode of their production [33]. The 

interactive contact with the body, depending on the type of compounds in NPs, can be 

respiratory, digestive, or through skin or blood [34]. Some of NPs, such as ZnO and 

TiO2, have the ability to block UV rays and are extensively used in various health products on 

the market, which raise concerns about the risk to health, safety and the environment as they 

are dispersed in the environment. According to primary studies, NPs can enter human body in 

different ways and they can access vital organs in the body through the blood flow and induce 

damage to tissues and cells [27, 34, and 35]. Although the mechanism of NPs in this regard is 

not truly established, researchers have associated the toxicity of NPs to parameters such as 

particle shape, size, dispersity,  surface charge and protein corona effects. Several studies have 

indicated that NPs activate oxidative stress and expression of genes involved in inflammation 

[36, 37,38]. NPs can enter the human body through respiration, ingestion, and injection and 

consequently accumulate into different tissues and organs [39, 40,41,42]. NPs can even reach 

the brain by breaking the strong connection between cells and passing through the blood–brain 

barrier (BBB); they attach to the cells containing CXCR6 chemokine receptor and overcome 

tight injunction in the BBB [43]. The NPs’ passage through the membrane, their performance, 
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and their cell metabolism are still being studied and discussed. Thus, herein, we attempt to 

explain a part of the NPs performance that hopefully can answer whether NPs have 

destructive and toxic effects on organs, or are they safe enough [32]. Development of safe, 

biocompatible NPs that can be used for the diagnosis and treatment of human diseases can 

only be based on a complete understanding of the interactions between all of the factors and 

mechanisms underlying NP toxicity. 

Medical Applications of Nanoparticles 

In medicine, NPs can be used for diagnostic or therapeutic purposes. In diagnosis, they can 

serve as fluorescent labels for detection of biomolecules and pathogens and as contrast agents 

in magnetic resonance and other studies. In addition, NPs can be used for targeted delivery of 

drugs, including protein and polynucleotide substances; in photodynamic therapy and thermal 

destruction of tumors, and in prosthetic repair [44]. Some types of NPs have been used 

extensively in drug delivery, diagnosis of diseases and the provision of biologic sensors; 

several nanometals have been produced and evaluated, but gold and silver are the most widely 

used. These particles can be prepared in different sizes and shapes, with  small particle size 

distribution. One of the unique features of these particles is their optical behavior change by 

changing the particle size, meaning that NPs of different sizes exhibit different colors at 

visible wavelengths. This feature can be used for diagnosis of the disease and eventual drug 

delivery to facilitate both these processes. The surface variation of these particles is easy to 

manipulate as various ligands such as sugars, peptides, proteins, and DNA can bind to these 

particles [45]. 

Mechanisms of Nanoparticle Toxicity: NP-Cell Interactions 

Surface properties of NPs, to be specific hydrophobicity and hydrophilicity, influence a 

considerable number of  natural ecological reactions of these structures, for example, 

connection with plasma proteins, cell take-up and phagocytosis, incitement of the safe 

framework and molecule expulsion. The surface properties of nanoparticles bring about 

various cell reactions, for example, grip, development and separation. The oxidative pressure 

is instigated by NPs through physicochemical communication in the cell film as they produce 

particles which are harmful in the cell layer surface and that can be misused to dispense with 

malignant cell [46]. The higher the breadth of the NPs, the more their collaboration with the 

outside  layer and the higher the degree of cell harmfulness. The cell layer is perplexing and 

dynamic containing proteins and extracellular polymeric materials. 

The Effect of NP on the Protein Conformational Changes 

A number of techniques such as nuclear magnetic resonance (NMR) spectroscopy [47], X-ray 

crystallography [48], circular dichroism spectroscopy [49], isothermal calorimetry [50], 

differential scanning calorimetry [51], fluorescence spectroscopy [52], and UV-visible 
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spectroscopy [53] have been widely used for analyzing the protein-NP interactions. The NP-

induced conformational changes and subsequent corona formation depends on several factors 

such as, protein type, NP type, size of NP, shape of NP, PH and the temperature. 

The use of materials in nanoscale provides unparallel freedom to modify fundamental 

properties such as solubility, diffusivity, blood circulation half life drug release characteristics 

and immunogenity. In the last two decades, a number of NP based therapeutic and diagnostic 

agents have been developed for the treatment of cancer, diabetes, pain, asthma, allergy, 

infection and so on. These nanoscale agents may provide more effective and/or more 

convenient routes of administration lower therapeutic toxicity extend the product life cycle 

and ultimately reduce health care costs. Therapeutic delivery systems and diagnostic 

applications of NP allow targeted delivery, controlled release and detection on the molecular 

scale, may help identify abnormalities such as fragments of viruses, precancerous cells and 

disease makers that cannot be detected with traditional diagnostics. NP based imaging contrast 

agents have also been shown to improve the sensitivity and specificity of magnetic resonance 

imaging. 

Other Application of Nanotechnology:  

 Chemical sensors, including Hydrogen and glucose sensors; 

 Read heads for hard disk drives; 

 Transistors, interconnects and integrated circuits (semiconducting and conducting 

wires); Photo sensors; 

 Deposition control systems, a spin off technology for high precision control of particle 

deposition in the sub-monolayer regime. 

 

Conclusion:  

 

Nanoparticles have many biomedical applications owing to their unique characteristics such as 

size, shape, chemistry and charge. However, the signaling pathways through which NPs can 

produce toxic effects are needed to be understood better. Recent studies have shown that 

inflammation, necrosis, ROS and apoptosis are key factors that mediate the mechanism of 

toxicity of NPs. These results may create a barrier to the use of NPs in diagnosis and in the 

treatment of diseases for which they are ideally suited. It is important to identify the dose, 

shape, and the properties of NPs that are responsible for their toxicity in order to reduce their 

side effects by appropriately modifying the formulation or to use a NP with lower toxicity. 

The dose of NPs is an important factor in their toxicological profile, along with their 

accumulation, distribution, metabolism and disposal. In line with this, intravenously injected 

NPs have a higher toxicity than those administered to the skin. According to the results of 

various studies,  protocols explain which doses and what structures of NPs are more toxic. In 

general, the problems in the evaluation of NP toxicity are due to the disparity between 

different toxicological studies performed on the NPs of diverse origins and make-up. 
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Accordingly, the study of NP toxicity in various applications, especially biomedicine 

applications such as drug delivery, bio-security and NP toxicity, is very crucial. Consequently, 

there is a need for the development of accepted and specific protocols to identify the actual 

particle with its surface surroundings and the composition of NPs that renders them toxic. It is 

hoped that the increased knowledge of NPs lead to develop safer design with reduced toxicity 

so that they can be used for treatment of assorted diseases and drug delivery. 
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