ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

FIXED POINT THEOREM IN PROBABILISTIC G-METRIC SPACES

Prashant Namdeo ¹, Subhashish Biswas ² ¹ Research Scholar,Department of Mathematics, Kalinga University, Raipur (C.G.) ² Supervisor, Department of Mathematics, Kalinga University, Raipur (C.G.)

Abstract : In this paper we study some fixed point theorems in probabilistic G-metric spaces. We also generalized some previously known results.

Key words : G-meric spaces , Menger spaces, probabilistic G-metric space, t-norm,

1.1 Introduction and preliminaries

In 2006 the concept of generalized metric space was introduced [4]. For more results in these spaces one can see [2] and [3].

On the other hand, in 1942, Menger [1] introduced the notion of probabilistic metric space (briefly PM-space) as a generalization of metric space. Such a probabilistic generalization of metric spaces appears to be well adapted for the investigation of physical quantities and physiological thresholds. The development of fixed point theory in PM-spaces was due to Schweizer and Sklar [5, 6]. Fixed point theory has been always an active area of research since 1922 with the celebrated Banach contraction fixed point theorem.

Let X be a nonempty set, and let $G : X \times X \times X \rightarrow R^+$ be a function satisfying the following axioms:

- 1. G(x, y, z) = 0 if x = y = z,
- 2. G(x, x, y) > 0, for all $x, y \in X$, with $x \neq y$,
- 3. $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$, with $z \neq y$,
- 4. G(x, y, z) = G(x, z, y) = G(y, z, x) = G(z, y, x) = ...(symmetry in all three variables),
- 5. $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all x, y, z, $a \in X$, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically a G –metric on X, and the pair (X, G) is called a G –metric space. A sequence (x_n) in a G –metric space (X, G) is said to be G –convergent to x if

 $\lim_{n,m\to\infty} G(x,x_n,x_m) = 0; \text{ which means that, for any } \epsilon > 0, \text{ there exists } N \in N \text{ such that } G(x,x_n,x_m) < \epsilon, \text{ for all } n,m \geq N. \text{ Also a sequence } (xn) \text{ is called } G - Cauchy \text{ if for a given } \epsilon > 0, \text{ there is } N \in N \text{ such that } Cauchy \text{ there is } N \in N \text{ such that } Cauchy \text{ and } Cauchy \text{ if for a given } \epsilon > 0, \text{ there is } N \in N \text{ such that } Cauchy \text{ there is }$

 $G(x_n, x_m, x_l) < \varepsilon$, for all n, m, $l \ge N$; that is if $G(x_n, x_m, x_l) \rightarrow 0$ as n, m, $l \rightarrow \infty$.

We may construct G – metrics using an ordinary metric. Indeed if (X, D) is a metric space, then define

$$G_{s}(x, y, z) = d(x, y) + d(z, y) + d(x, z).$$

$$G_{m}(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}.$$

for all x, y, z \in X. One can verify that G_s and G_m are G –metric.

A distribution function is a function $F : [-\infty, \infty] = R \rightarrow [0,1]$ that is nondecreasing and left continuous on R; moreover, $F(-\infty) = 0$ and $F(\infty) = 1$.

The set of all the distribution functions is denoted by Δ and the set of those distribution functions such that F(0) = 0 is

denoted by Δ^+ .

A natural ordering in Δ is defined by $F \leq G$ whenever $F(x) \leq G(x)$, for every $\in R$. The maximal element in this order for Δ^+ is ε_0 , where for $-\infty \leq a \leq \infty$ the distribution function ε_a is defined by

$$\varepsilon_{a}(x) = \begin{cases} 0 & \text{if } -\infty \le x \le a \\ 1 & \text{if } a < x \le \infty \end{cases}$$

A binary operation on Δ^+ which is commutative, associative, nondecreasing in each place, and has ε_0 as identity, is said to be triangle function.

Also a probabilistic metric space (abbreviated, PM-space) is an ordered triple (S, F, τ) where S is a nonempty set, τ is a triangle function and F : S × S → Δ^+ (F(p,q) is denoted by F_{p,q}) satisfies the following conditions:

1.
$$F_{p,p} = \varepsilon_0$$
,

2. If $p \neq q$, then $F_{p,q} \neq \varepsilon_0$,

3.
$$F_{p,q} = F_{q,p}$$
,

4. $F_{p,r} \geq \tau (F_{p,q}, F_{q,r}),$

for every $p, q, r \in S$.

If 1), 3), 4) and are satisfied, then (S, F, τ) is called a probabilistic pseudo-metric space.

In section 3.2, we introduce the notion generalized probabilistic metric space. Then Some examples and elementary properties of these spaces are discussed. In section 3.3, generalized Menger probabilistic G –metric space is studied. Finally in section 3.4, some fixed point theorem in generalized Menger probabilistic metric spaces are investigated.

2.1 Probabilistic G-Metric Space

Definition 2.1. Suppose X is a nonempty set, τ is a triangle function and $G : X \times X \times X \to \Delta^+$, is a mapping satisfying

 $G_1 G(p, p, p) = \varepsilon_0,$ $G_2 \text{ if } p \neq q, \text{ then } G(p, p, q) \neq \varepsilon_0,$ $G_3 \text{ if } q \neq r, \text{ then } G(p, p, q) \geq G(p, q, r),$ $G_4 G(p, q, r) = G(p, r, q) = G(q, r, p) = \dots,$

 $G_5 G(p,q,r) \geq \tau (G(p,s,s), G(s,q,r)),$

for all $p, q, r, s \in X$. Then (X, G, τ) is called a generalized probabilistic metric space (or briefly, probabilistic G-metric

space). (X, G, τ) is called a probabilistic pseudo G –metric space if G₁, G₃, G₄ and G₅ are satisfied.

A probabilistic G – metric space (X, G, τ) is said to be symmetric if for every x, y \in X,

$$G(x, y, y) = G(y, x, x).$$

A probabilistic G – metric space (X, G, τ) is called proper if τ ($\varepsilon_a, \varepsilon_b$) $\geq \varepsilon_{a+b}$, for all $a, b \in [0, \infty)$.

In the following two examples, we construct two probabilistic G-metric space using a PM –space and a G –metric

space, respectively.

Example 2.2. With $\tau(F,G) = \min\{F,G\}$, let (X,F,τ) be a probabilistic metric space. If $G_M : X^3 \to \Delta^+$ is defined by

defined by

$$G_{m}(p,q,r) = \min\{F_{p,q}, F_{p,r}, F_{q,r}\},$$
then (X, G_{M}, τ) is a probabilistic G -metric space.
Indeed if $p = q = r$ then
 $G_{m}(p,q,r) = \min\{F_{p,q}, F_{p,r}, F_{q,r}\} = \min\{\varepsilon_{0}, \varepsilon_{0}, \varepsilon_{0}\} = \varepsilon_{0}.$
Also for $p \neq q$ by definition of probabilistic metric, $F_{p,q} \neq \varepsilon_{0}$, so
 $G_{m}(p, p, q) = \min\{F_{p,q}, F_{p,p}\} = \min\{F_{p,q}, \varepsilon_{0}\} = F_{p,q} \geq \varepsilon_{0}.$
Now if $q \neq r$ then
 $G_{m}(p, p, q) = \min\{F_{p,q}, \varepsilon_{0}\} = F_{p,q}$
 $\geq \min\{F_{p,q}, F_{p,r}, F_{q,r}\} = G_{m}(p,q,r).$
Commutativity of G_{m} is trivial by commutativity of F. For proving G_{5} , let $p, q, r, s \in X$. We have
 $\min\{G_{m}(p, s, s), G_{m}(s, q, r)\} = \min\{F_{p,s}, F_{s,s}, F_{s,s}, F_{s,r}, F_{q,r}\}.$
Thus
 $G_{m}(p, q, r) = \min\{F_{p,q}, F_{p,r}, F_{q,r}\}$
 $\geq \min\{\min\{F_{p,s}, F_{s,s}\}, \min\{F_{p,s}, F_{s,r}, F_{s,r}, F_{s,r}\}\}$
 $= min\{\min\{F_{p,s}, F_{s,s}\}, \min\{F_{s,q}, F_{q,r}, F_{s,r}\}\}$
 $= r (G_{m}(p, s, s), G_{m}(s, q, r)).$
Example 2.3. Let (X, F) be a G-metric space. For every $p, q, r \in X$, define
 $G_{p,q,r} = \varepsilon_{F_{p,q,r}}.$
Also let τ is a triangle function for which
 $\tau (\varepsilon_{q}, \varepsilon_{p}) \leq \varepsilon_{a+b},$
for all $a, b \in \mathbb{R}^{+}$. Then it is strianghtforward to show that (X, G, τ) is a probabilistic G -metric space.
Also if a proper probabilistic G -metric space and there exists a function $F; X \times X \times X \to \mathbb{R}^{+}$, such that
 $G_{p,q,r} = \varepsilon_{F_{p,q,r}}$
then (X, F) is a G -metric space.
Indeed in this case

 $\varepsilon_0 = \mathbf{G}_{\mathbf{p},\mathbf{p},\mathbf{p}} = \varepsilon_{\mathbf{F}_{\mathbf{p},\mathbf{p},\mathbf{p}}} = \varepsilon_0,$

so $F_{p,p,p} = 0$. If $p \neq q$ then

$$\varepsilon_0 \neq G_{p,p,q} = \varepsilon_{F_{p,p,q}},$$

which implies that $F_{p,p,q} \neq 0$. Also if $q \neq r$ then the fact that $G_{p,p,q} \geq G_{p,q,r}$ implies that $F_{p,p,q} \leq F_{p,q,r}$. Commutativity of F follows from commutativity of G. For proving

$$F_{p,q,r} \leq F_{p,s,s} + F_{s,q,r}$$

we note that G is proper, so,

$$\varepsilon_{F_{p,q,r}} = G_{p,q,r} \ge \tau \left(\varepsilon_{F_{p,s,s}}, \varepsilon_{F_{s,q,r}} \right) \ge \varepsilon_{F_{p,s,s}} + F_{s,q,r}$$

which implies that (X, G) is a G –metric space.

In the following proposition, it is proved that we may construct a probabilistic G —metric space using a pseudo probabilistic G —metric space. To do this, we introduce the following relation:

Let (X, G, τ) be a probabilistic pseudo G –metric space. For $\,p,q\,\in\,X,$ we say $\,p\,\,\sim\,\,q$ if and only if

$$G(p, p, q) = \varepsilon_0$$
 and $G(p, q, q) = \varepsilon_0$.

This relation is an equivalence relation. Indeed if $p \sim q$ and $q \sim r$, then

JCR

 $G(p,p,q)=\epsilon_0$, $G(p,q,q)=\epsilon_0$ and $G(q,q,r)=\epsilon_0, G(r,r,q)=\epsilon_0$

But G is a probabilistic pseudo G –metric, so

 $G(p, p, r) = G(r, p, p) \ge \tau \left(G(r, q, q), G(q, p, p)\right) = \tau \left(\varepsilon_0, \varepsilon_0\right) = \varepsilon_0,$

which implies that $G(p, p, r) \ge \varepsilon_0$. Now maximality of ε_0 implies that $G(p, p, r) = \varepsilon_0$. Similarly $G(p, r, r) = \varepsilon_0$. This prove that ~ is transitive. The other properties of ~ to be an equivalence relation is trivial. **Proposition 2.4** Let (X, G, τ) be a probabilistic pseudo G –metric space, for every $p \in S$, let p^* denote the

equivalence class of p and let X^{*} denotes the set of these equivalence classes. Then the expression

$$G^{*}(p^{*},q^{*},r^{*}) = G(p,q,r), p \in p^{*},q \in q^{*},r \in r^{*}$$

define a function G^* from $X^* \times X^* \times X^*$ into Δ^+ and the triple (X^*, G^*, τ) is a probabilistic G – metric space, the

quotient space of (X, G, τ).

Proof. First we prove that G^* is well defined, i.e. if $r, r' \in p^*, q, q' \in q^*$ and $p, p' \in p^*$, then G(p, q, r) = G(p', q', r').

Since $q \sim q', p \sim p'$ and $r \sim r'$ and τ is a triangular function, we have

$$G(p,q,r) \ge \tau (G(p,p',p'),G(p',q,r)) = G(p',q,r)$$

$$\ge \tau (G(q,q',q'),G(q',p',r)) = G(q',p',r)$$

$$\ge \tau (G(r,r',r'),G(r',p',q') = G(r',p',q')$$

$$= G(p',q',r').$$

Similarly we get $G(p',q',r') \leq G(p,q,r)$, so G^* is well defined. Also trivially,

$$G^{\star}(p^{\star}, p^{\star}, p^{\star}) = G(p, p, p) = \varepsilon_0.$$

and if $p \neq q$, then $p \notin q^*$, $q \notin p^*$.

Hence $p \not\sim q$, so G(p, p, q) $\neq \epsilon_0$. Thus

$$G^{\star}_{(p^{\star},p^{\star},q^{\star})} = G(p,p,q) \neq \varepsilon_{0}.$$

By the f<mark>act that</mark>,

 $G(p, p, q) \geq G(p, q, r)$

we lead to

 $G^{\star}(p, p, q) \geq G^{\star}(p, q, r).$

It is trivial to verify the other properties of G^{*}.

3.1 Menger Probabilistic <mark>G —M</mark>et<mark>ric Spac</mark>e

In this section we introduce Menger probabilistic G – metric spaces. Recall that a mapping $T : [0,1] \times [0,1] \rightarrow [0,1]$

is called a triangular norm (abbreviated, t-norm) if the following conditions are satisfied

1. T(a, 1) = a, for every $a \in [0, 1]$,

2. T(a, b) = T(b, a), for every $a, b \in [0, 1]$,

3. $T(a, c) \ge T(b, d)$, whenever $a \ge b$ and $c \ge d$, $(a, b, c, d \in [0, 1])$,

4. $T(a, T(b, c)) = T(T(a, b), c), (a, b, c \in [0,1]).$

The following are the four basic t-norms:

(a) The minimum t –norm, T_M , is defined by $T_M(x, y) = \min\{x, y\}$.

(b) The product t –norm, T_P , is defined by $T_P(x, y) = xy$.

(c) The Lukasiewicz t -norm, T_L, is defined by

 $T_L(x, y) = \max\{x + y - 1, 0\}.$

(d) The weakest t –norm, the drastic product, $T_{\mbox{\scriptsize D}}$, is defined by

 $\int_{D} T_{D}(x, y) = \min\{x, y\}, \text{ if } \max\{x, y\} = 1$

0, otherwise

JCR

3.1

As regards the pointwise ordering, we have the inequalities

 $T_D < T_L < T_P < T_M.$

Definition 3.1. Suppose S is a nonempty set and T is a t –norm and $G : S^3 \rightarrow \Delta^+$ is a function. The triple (S, G, T) is called a Menger probabilistic G-metric space if for every p, q, r, s \in S and x, y > 0,

- 1. $G(p, p, p) = \varepsilon_0$,
- 2. If $p \neq q$, then $G(p, p, q) \neq \varepsilon_0$,
- 3. $G(p, p, q) \ge G(p, q, r)$,
- 4. G(p,q,r) = G(p,r,q) = G(q,r,p) = ...,
- 5. $G(p,q,r) (x + y) \ge T(G(p,s,s)(x),G(s,q,r)(y)).$

In the Menger probabilistic G – metric space (S, G, T) with

$$\sup_{0 < t < 1} T(t, t) = 1$$

a sequence $\{u_n\}$ in S,

i) is called convergent to $u \in S$ if for every $\epsilon, \lambda > 0$, there exists $N \in N$ such that, $\forall n \ge N$; $G_{u_n,u,u}(\epsilon) > 1 - \lambda$.

ii) is said to be a Cauchy sequence, if for every $\varepsilon, \lambda > 0$ there exists $N \in N$ such that, $\forall m, n, l \ge N$; $G_{u_m,u_n,u_l}(\varepsilon) > 1 - \lambda$.

As usual a Menger probabilistic G – metric space is said to be complete if every Cauchy sequence in S converges to a $u \in S$.

Theorem 3.2. Let (S, G, T_L) be a Menger probabilistic G –metric space and define,

 $G_{p,q,r}^{\star} = \sup\{t \ge 0 | G_{p,q,r}(t) \le 1 - t\}.$

Then,

i) G^{*} is a G –metric.

ii) S is G –complete if and only if it is G^{*} –complete.

Proof. For any t > 0, $G_{p,p,p} = \varepsilon_0(t) = 1$, so

$$G_{p,p,p}^{\star} = \sup\{t \ge 0 | G_{p,p,p}(t) = 1 \le 1 - t\} = 0.$$

Also if $p \neq q$, then $G_{p,p,q} \neq \varepsilon_0$. Hence

There exists $t \in (0,1)$ s.t. $G_{p,p,q}(t) < 1$,

so

$$G_{p,p,q}^{\star} = \sup\{t \ge 0 | G_{p,p,q}(t) \le 1 - t\} > 0.$$

Now for any p, q, $r \in S$ we know, $G_{p,p,q} \ge G_{p,q,r}$, so

$$\big\{t\big|G_{(p,p,q)}(t) \ \le \ 1-t\big\} \ \sqsubseteq \ \big\{t\big|G_{p,q,r}(t) \ \le \ 1-t\big\}.$$

Hence $G_{p,p,q}^{\star} \leq G_{p,q,r}^{\star}$.

These prove first, second and the third part of definition of G – metric for G^* . Commutativity of G^* is trivial.

We are going to prove that,

$$G_{p,q,r}^{\star} \leq G_{p,s,s}^{\star} + G_{s,q,r}^{\star}$$

for all $p, q, r, s \in S$.

To do this, put

$$A = \{t | G_{p,q,r} \le 1 - t\}$$

$$B = \{\lambda | G_{(p,s,s)(\lambda)} \le 1 - \lambda\}$$

$$C = \{\mu | G_{s,q,r} \le 1 - \mu\}.$$

Suppose $t_1 > G^*(p, s, s)$ and $t_2 > G^*_{s,q,r}$ are upper bounds for B and C, respectively. Then $G(p, s, s)(t_1) > 1 - t_1$ and $G_{s,q,r}(t_2) > 1 - t_2$. Therefore

$$\begin{split} G_{p,q,r}(t_1 + t_2) &\geq T_L \big(G_{p,s,s}(t_1), G_{(s,q,r)(t_2)} \big) \\ &\geq G_{p,s,s}(t_1) + G_{s,q,r}(t_2) - 1 \\ &> 1 - (t_1 + t_2). \end{split}$$

Thus $t_1 + t_2$ is an upper bound for A. Hence G^{*}satisfies 3.1. Consequently G^{*} is a G –metric.

For proving ii), let (S, G, T_L) be G –complete and (u_n) be a Cauchy sequence in the G^{*} –metric. We prove that (u_n) is Cauchy with the probabilistic G –metric G. Let $\epsilon, \lambda > 0$ be given. If $\epsilon < \lambda$ then for $\epsilon, N \in N$ s.t. $\forall m, n, l \ge N$; $G^*_{u_m,u_n,u_l} < \epsilon$,

since (u_n) is G^* –Cauchy. By definition of G^* , for every m, n, $l \ge N$

$$G_{u_m,u_n,u_1}(\varepsilon) > 1 - \varepsilon > 1 - \lambda$$

Now if $\lambda \, < \, \epsilon$ then for $\, , \, \exists N \, \in \, N \, , \, \forall m, n, l \, \geq \, N \, ; \, G^*_{u_m, u_n, u_l} \, < \, \lambda \, ,$

since (u_n) is G^* –Cauchy. By definition of G^* , the fact that G_{u_m,u_n,u_l} is nondecreasing implies that

$$G_{u_m,u_n,u_l}(\varepsilon) \geq G_{u_m,u_n,u_l}(\lambda) > 1 - \lambda.$$

Thus (u_n) is G – Cauchy. Now by G – completeness of S with G, there exists $u \in S$ such that (u_n) is G – convergent to u.

So for $\varepsilon > 0$ there exists N \in N such that, for every m, n \ge N,

$$G_{u_m,u_n,u}\left(\frac{\varepsilon}{2}\right) > 1 - \frac{\varepsilon}{2}$$

This means that $\frac{\varepsilon}{2}$ is an upper bound for the segment $\{t | G_{u_m,u_n,u} \le 1 - t\}$. Thus $G_{u_m,u_n,u}^* \le \frac{\varepsilon}{2} \varepsilon <$, i.e. (u_n) converges to u with G^{*} and so S is G^{*} – complete.

Conversely suppose that S is G^* –complete and (u_n) is a G –Cauchy sequence in S. Thus for given $\varepsilon > 0$, there exists

 $N \in N$ such that, for all $m, n, l \ge N$;

$$G_{u_m,u_n,u_l}\left(\frac{\varepsilon}{2}\right) > 1 - \frac{\varepsilon}{2}.$$

Hence $\forall m, n, l \ge N$;

$$G^*_{u_m,u_n,u_l} < \frac{\varepsilon}{2} < \varepsilon$$
.

This implies that (u_n) is a G^* – Cauchy sequence sequence and so is G^* – convergent to some u in S. Hence for given ε, λ , with $< \lambda$, there exists $N \in N$ such that $\forall m, n \ge N$;

$$G_{u_m,u_n,u}^{\star} < \varepsilon < \lambda$$
.

By definition of G^* , $\forall m, n \ge N$;

$$G_{u_m,u_n,u}(\varepsilon) > 1 - \varepsilon > 1 - \lambda.$$

Now if $\lambda \leq \varepsilon$ then $\exists N > 0$ s.t. $\forall m, n, l \geq N$;

$$u_{m,u_{n},u_{l}}(\varepsilon) > G_{u_{m},u_{n},u_{l}}(\lambda) > 1-\lambda \ge 1-\varepsilon$$
,

since (u_n) is G – Cauchy. By definition of G^{*} $\forall m, n, l \ge N$;

$$G_{u_m,u_n,u_l}^{\star} < \varepsilon$$

But S is G^* –omplete, so there exists $u \in S$ such that (u_n) is G^* –convergent to u. This implies that there exists $N \in N$ such that $\forall m, n \ge N$;

$$G_{u_m,u_n,u}^{\star} < \lambda < \varepsilon$$
.

Finally by definition of $G^* \forall m, n \ge N$;

$$G_{u_m,u_n,u}(\epsilon\,)\,\geq\,G_{u_m,u_n,u}(\lambda\,)\,>\,1-\lambda\,.$$

Hence (u_n) is G – convergent and so S is G – complete.

JOR

4.1 Fixed Points Of Contractive Maps In Menger Probabilistic G – Metric Space

In this section, first we introduce the concept of G – contractive mapping in Menger probabilistic G-metric space and then its relation with G-contractive map in its dependent G-metric space is studied. This result shows that the existence of a convergent subsequence of an iterate sequence (of a contractive map) implies the existence of a fixed point.

In order to do this, we introduce the following definition;

Definition 4.1. Let (S, G, T) be a Menger probabilistic G – metric space. a mapping $f: S \rightarrow S$ is said to be a G – contraction

if for any $t \in (0, \infty)$,

$$G_{p,q,r}(t) > 1-t$$

implies that

$$G_{f(p),f(q),f(r)}(kt) > 1 - kt$$

for some fixed $k \in (0,1)$.

One can easily see that if $f: S \rightarrow S$ is a G – contraction and (u_n) is a convergent sequence to some u in the Menger probabilistic G – metric space S, then $(f(u_n))$ converges to f(u).

We recall that a function f on a G <u>—metric</u> space with a G —metric G^{*} is called G —contraction if for any t \in (0,∞),

the relation $G_{p,q,r} < t$ implies that $G_{f(p),f(q),f(r)} < kt$, for some $k \in (0,1)$.

Lemma 4.2. Let (S, G, T_L) be a Menger probabilistic G – metric space and

$$G_{p,q,r}^{\star} = \sup \left\{ t \middle| G_{p,q,r}(t) \le 1 - t \right\}$$

then a function $f: S \rightarrow S$ is a G – contraction mapping if and only if it is G^* – contraction.

Proof. We know that G^* is a G – metric on S.

Let f be a G – contraction in the Menger probabilistic G – metric space and for $t \in (0, \infty)$

```
G_{p,q,r}^{\star} < t.
```

By definition of G^{*}, we get

$$G_{p,q,r}(t) > 1-t$$

But f is G – contraction, so

 $G_{f(p),f(q),f(r)}(kt) > 1 - kt,$

for some fixed $k \in (0,1)$. Now definition of G^{*} implies that

$$G_{f(p),f(q),f(r)}^{\star} < kt$$

which means that f is G^* –contraction. The converse of this lemma can be proved similarly.

Theorem 4.3. Let (S, G, T_L) be a Menger probabilistic G – metric space. Suppose A is G – contraction on S and for some u in S, $A^{n_i}(u)$ is a convergent subsequence of $A^n(u)$, then $\xi = A\left(\lim_{i\to\infty} A^{n_i}(u)\right)$ is the unique

fixed point of A.

Proof. Let $A(\xi) \neq \xi$, then there exists $t_0 \in (0, \infty)$ such that,

$$G_{A(\xi),\xi,\xi}(t_0) \neq 1.$$

So there exists $\lambda \in (0,1)$, such that

$$1 - \lambda < G_{A(\xi),\xi,\xi}(t_0) < 1.$$

By letting $t = \max\{t_0, \lambda\}$ we get

$$G_{A(\xi),\xi,\xi}(t) \ge G_{A(\xi),\xi,\xi}(t_0) > 1 - \lambda > 1 - t_0$$

But A is a G – contraction so for some $k \in (0,1)$,

$$G_{A^2(\xi),A(\xi),A(\xi)}(kt) > 1 - kt.$$

Using induction argument one can see that

IJCRT2102627 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 5190

4.1

4.3

JCR

$$G_{A^{n+1}(\xi),A^n(\xi),A^n(\xi)}(k^n t) > 1 - k^n t.$$

Taking n and n_i large enough such that

 $k^n t < 1$ and $k^{n_i} t < 1$

and putting $p = A^n(\xi)$, we obtain

$$p = A^{n}(\xi) = A^{n}\left(\lim_{i \to \infty} A^{n_{i}}(u)\right) = \lim_{i \to \infty} \lim_{i \to \infty} A^{n_{i}}(u) + n(u)$$

Let $s = max\{k^n t, k^{n_i} t\}$. By 4.1

$$G_{A(p),p,p}(s) > G_{A(p),p,p}(k^n t) > 1 - k^n t > 1 - s.$$

If G^{*} is the G – metric introduced in Lemma 4.1, then

$$G^{\star}_{A(p),p,p} = \sup\{t | G_{A(p),p,p}(t) \le 1 - t\}.$$

So

$$G^{\star}_{A(p),p,p} < s < 1.$$

By the fact that $A^{n_i}(u) \to \xi$ and $A^{n_i+1}(u) \to A(\xi)$, for every $t, \lambda > 0$, there exists $N \in N$, such that for every $n_i > N$,

$$G_{A^{n_{i}}(u),\xi,\xi}(t) > 1-\lambda, G_{A^{n_{i}+1}(u),A(\xi),A(\xi)}(t) > 1-\lambda$$

Let $l > j > n + n_i$. We are going to prove that,

$$G_{A^{n_{l}}(u),A^{n_{l}+1}(u),A^{n_{l}+1}(u)}^{\star} \leq k^{l-j} G_{A^{n_{j}}(u),A^{n_{j}+1}(u),A^{n_{j}+1}(u)}^{\star} \cdot 4.2$$

If we prove this inequality, then the this together with the facts that $k \in (0,1)$ and

$$G_{A^{n_{j}}(u),A^{n_{j}+1}(u),A}^{*}$$

imply that $\lim_{l\to\infty} A^{n_l}(u) = \lim_{l\to\infty} A^{n_l+1}(u)$ in the generalized metric G^{*} and so is valid in the Menger probabilistic G. This leads to the equality $\xi = A(\xi)$ which is a contradiction.

First we prove that,

$$G_{A^{n_{l}}(u),A^{n_{l}+1}(u),A^{n_{l}+1}(u)}^{\star} \leq k G_{A^{n_{l}-1}(u),A^{n_{l}}(u),A^{n_{l}}(u)}^{\star}$$

To do this, let

$$s \in \{t | G_{A^{n_{l}}(u),A^{n_{l+1}}(u),A^{n_{l+1}}(u)}(t) \le 1 - t\}$$

then

$$G_{A^{n_l}(u),A^{n_l+1}(u),A^{n_l+1}(u)}(s) \le 1-s.$$

Put t = $\frac{s}{r}$. We find that

$$G_{A^{n_l-1}(u),A^{n_l}(u),A^{n_l}(u)} \le 1-t,$$

since otherwise by contractivity of A it should be

$$G_{A^{n_{l}}(u),A^{n_{l}+1}(u),A^{n_{l}+1}(u)}(kt) = G_{A^{n_{l}}(u),A^{n_{l}+1}(u),A^{n_{l}+1}(u)}(s)$$

> 1 - kt = 1 - s.

which is not the case. Therefore

$$t = \frac{s}{k} \in \{t | G_{A^{n_{l}-1}(u),A^{n_{l}}(u),A^{n_{l}}(u)}(t)(t) \le 1 - t\}$$

or equivalently

$$s \in k\{t|G_{A^{n_{l}-1}(u),A^{n_{l}}(u),A^{n_{l}}(u)}(t) \le 1-t\}.$$

So

 $sup\{t \big| G_{A^{n_{l}}(u),A^{n_{l}+1}(u),A^{n_{l}+1}(u)}(t) \leq 1-t \} \leq \ sup\{t | G_{A^{n_{l}-1}(u),A^{n_{l}}(u),A^{n_{l}}(u)}(t) \leq 1-t \}$ and consequently 4.3 is valid. Now by induction argument, one leads to 4.3 which completes the proof.

References

- 1. Menger, K.: Statistical metric, Proc. Nat. Acad. Sci. U.S.A., 28(12) (1942), 535-537.
- Mustafa Z., Sims B., Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Application, , Article ID 917175, vol. 2009, (2009)10 pages.
- Mustafa Z., Shatanawi W. and Bataineh M., Existence of fixed point results in G-metric space, International Journal of Mathematics and Mathematical Sciences, Article ID 283028,vol. 2009, (2009)10 pages.
- 4. Mustafa Z. and Sims B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7 (2)(2006) 289-297.
- 5. Schweizer, B, Sklar, A., Probabilistic Metric Spaces, North-Holland, New York (1983)
- 6. Schweizer B. and Sklar A., Statistical metric spaces, Pacific J. Math, 10 (1960) 313-334.

