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1.1 Introduction and preliminaries 

In 2006 the concept of generalized metric space was introduced [4]. For more results in these spaces one 

can see [2] and [3]. 

On the other hand, in 1942, Menger [1] introduced the notion of probabilistic metric space (briefly PM-

space) as a generalization of metric space. Such a probabilistic generalization of metric spaces appears to 

be well adapted for the investigation of physical quantities and physiological thresholds. The 

development of fixed point theory in PM-spaces was due to Schweizer and Sklar [5, 6]. Fixed point theory 

has been always an active area of research since 1922 with the celebrated Banach contraction fixed point 

theorem.  

Let X be a nonempty set, and let G ∶  X × X × X → R+ be a function satisfying the following axioms: 

1. G(x, y, z)  =  0 if x =  y =  z,   

2. G(x, x, y) >  0, for all x, y ∈  X, with x ≠  y, 

3. G(x, x, y) ≤  G(x, y, z), for all x, y, z ∈  X, with z ≠  y,  

4. G(x, y, z) =  G(x, z, y) =  G(y, z, x) =  G(z, y, x) =  … 

(symmetry in all three variables), 

5. G(x, y, z)  ≤  G(x, a, a) + G(a, y, z), for all x, y, z, a ∈  X, 

 (rectangle inequality ). 

Then the function G is called a generalized metric, or, more specifically a G −metric on X, and the pair 

(X, G) is called a G −metric space. A sequence (xn) in a G −metric space (X, G) is said to be G −convergent 

to x if 

lim
n,m→∞

G(x, xn, xm) =  0;  which means that, for any ε >  0, there exists N ∈  N such that G(x, xn, xm)  <  ε , 

for all n, m ≥  N. Also a sequence (xn) is called G −Cauchy if for a given ε >  0, there is N ∈  N such that 

G(xn, xm, xl)  < ε , for all n, m, l ≥  N; that is if G(xn, xm, xl) → 0 as n, m, l → ∞. 

We may construct  G −metrics using an ordinary metric. Indeed if (X, D) is a metric space, then define 
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 Gs(x, y, z)  =  d(x, y) + d(z, y) + d(x, z).  

 Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)},  

for all x, y, z ∈  X. One can verify that Gs and Gm are G −metric. 

A distribution function is a function F ∶  [−∞, ∞]  =  R →  [0,1] that is nondecreasing and left continuous 

on R; moreover, F(−∞)  =  0 and F(∞)  =  1. 

The set of all the distribution functions is denoted by Δ and the set of those distribution functions such 

that F(0)  =  0 is 

denoted by Δ+. 

A natural ordering in Δ is defined by F ≤  G whenever F(x)  ≤  G(x), for every  ∈  R. The maximal element 

in this order for Δ+ is ε0, where for −∞ ≤  a ≤  ∞ the distribution function εa is defined by 

 εa(x)  = {
0  if  − ∞ ≤ x ≤ a

1  if a < x ≤ ∞
  

A binary operation on Δ+ which is commutative, associative, nondecreasing in each place, and has ε0 as 

identity, is said to be triangle function. 

Also a probabilistic metric space (abbreviated, PM-space) is an ordered triple (S, F, τ ) where S is a 

nonempty set, τ  is a triangle function and F ∶  S × S → Δ+  (F(p, q)is denoted by Fp,q)  satisfies the 

following conditions: 

1. Fp,p  = ε0, 

2. If p ≠  q, then Fp,q ≠  ε0, 

3. Fp,q =  Fq,p, 

4. Fp,r  ≥  τ (Fp,q, Fq,r), 

for every p, q, r ∈  S.  

If 1), 3), 4) and are satisfied, then (S, F, τ ) is called a probabilistic pseudo-metric space. 

In section 3.2, we introduce the notion generalized probabilistic metric space. Then Some examples and 

elementary properties of these spaces are discussed. In section 3.3, generalized Menger probabilistic 

G −metric space is studied. Finally in section 3.4, some fixed point theorem in generalized Menger 

probabilistic metric spaces are investigated. 

2.1 Probabilistic G-Metric Space 

Definition 2.1. Suppose X is a nonempty set, τ is a triangle function and G ∶  X × X × X → Δ+, is a mapping 

satisfying 

 G1 G(p, p, p)  = ε0,  

 G2 if p ≠  q, then G(p, p, q) ≠  ε0,  

 G3 if q ≠  r, then G(p, p, q)  ≥  G(p, q, r),  

 G4 G(p, q, r)  =  G(p, r, q)  =  G(q, r, p)  = . . .,  

 G5 G(p, q, r)  ≥  τ (G(p, s, s), G(s, q, r)),  

for all p, q, r, s ∈  X.  Then (X, G, τ )  is called a generalized probabilistic metric space (or briefly, 

probabilistic G-metric 

space). (X, G, τ) is called a probabilistic pseudo G −metric space if  G1, G3, G4 and G5 are satisfied. 

A probabilistic G −metric space (X, G, τ) is said to be symmetric if for every x, y ∈  X, 

    G(x, y, y)  =  G(y, x, x).  

A probabilistic G −metric space (X, G, τ ) is called proper if τ (εa, εb)  ≥ εa+b, for all a, b ∈  [0, ∞). 

In the following two examples, we construct two probabilistic G-metric space using a PM −space and a 

G −metric 

space, respectively. 
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Example 2.2. With  τ(F, G)  = min{F, G}, let  (X, F, τ ) be a probabilistic metric space. If GM ∶  X3  → Δ+ is 

defined by 

 Gm(p, q, r) = min{Fp,q, Fp,r, Fq,r},  

then (X, GM, τ ) is a probabilistic  G −metric space. 

Indeed if  p =  q =  r then 

 Gm(p, q, r) = min{Fp,q, Fp,r, Fq,r}  = min{ε0, ε0, ε0}  = ε0.  

Also for  p ≠  q by definition of probabilistic metric, Fp,q ≠ ε0, so 

    Gm(p, p, q) = min{Fp,q, Fp,p}  = min{Fp,q, ε0}  =  Fp,q  ≥ ε0. 

Now if  q ≠  r then 

    Gm(p, p, q) = min{Fp,q, ε0}  =  Fp,q  

    ≥ min{Fp,q, Fp,r, Fq,r} =  Gm(p, q, r).  

Commutativity of  Gm is trivial by commutativity of  F. For proving G5, let p, q, r, s ∈  X. We have 

 min{Gm(p, s, s), Gm(s, q, r)} = min{Fp,s, Fs,s, Fs,q, Fs,r, Fq,r}.  

Thus 

 Gm(p, q, r) =  min{Fp,q, Fp,r, Fq,r}   

    ≥ min{min{Fp,s, Fs,q} , Fq,r, min{Fp,s, Fs,r}}  

    = min{min{Fp,s, Fs,s} , min{Fs,q, Fq,r, Fs,r}}  

    =  τ (Gm(p, s, s), Gm(s, q, r)).  

Example 2.3. Let (X, F) be a G-metric space. For every  p, q, r ∈  X, define 

 Gp,q,r  = εFp,q,r
 .       2.1 

Also let τ is a triangle function for which 

    τ (εa, εb)  ≤ εa+b, 

for all a, b ∈  R+. Then it is straightforward to show that (X, G, τ ) is a probabilistic G −metric space. 

Also if a proper probabilistic G −metric is of the form 2.1, then Fp,q,r is a G −metric. Suppose (X, G, τ ) is a 

proper probabilistic G −metric space and there exists a function F: X × X × X → R+, such that 

 Gp,q,r  = εFp,q,r
   

then (X, F) is a G −metric space. 

Indeed in this case 

 ε0  =  Gp,p,p  = εFp,p,p
 = ε0, 

so Fp,p,p  =  0. If p ≠  q then 

ε0 ≠  Gp,p,q   = εFp,p,q
 ,  

which implies that Fp,p,q ≠  0. Also if q ≠  r then the fact that Gp,p,q  ≥  Gp,q,r implies that Fp,p,q  ≤  Fp,q,r. 

Commutativity of F follows from commutativity of G. For proving 

      Fp,q,r  ≤  Fp,s,s + Fs,q,r, 

we note that G is proper, so, 

 εFp,q,r
 =  Gp,q,r  ≥ τ (εFp,s,s

, εFs,q,r
)  ≥ εFp,s,s

+ Fs,q,r  

which implies that (X, G) is a G −metric space. 

In the following proposition, it is proved that we may construct a probabilistic G −metric space using a 

pseudo probabilistic G −metric space. To do this, we introduce the following relation: 

Let (X, G, τ ) be a probabilistic pseudo G −metric space. For  p, q ∈  X, we say  p ∼  q if and only if 

    G(p, p, q)  = ε0 and G(p, q, q)  = ε0. 

This relation is an equivalence relation. Indeed if  p ∼  q and q ∼ r, then 
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G(p, p, q) = ε0 , G(p, q, q) = ε0 and G(q, q, r) = ε0, G(r, r, q) = ε0 

But G is a probabilistic pseudo G −metric, so 

G(p, p, r)  =  G(r, p, p)  ≥  τ (G(r, q, q), G(q, p, p))  = τ (ε0, ε0)  = ε0, 

which implies that G(p, p, r)  ≥ ε0. Now maximality of ε0 implies that G(p, p, r) = ε0. Similarly G(p, r, r)  =

ε0. This prove that ∼ is transitive. The other properties of ∼ to be an equivalence relation is trivial. 

Proposition 2.4 Let (X, G, τ ) be a probabilistic pseudo G −metric space, for every  p ∈  S, let  p⋆ denote the 

equivalence class of  p and let X⋆ denotes the set of these equivalence classes. Then the expression 

 G⋆(p⋆, q⋆, r⋆)  =  G(p, q, r), p ∈  p⋆, q ∈  q⋆, r ∈  r⋆  

define a function G⋆ from X⋆  × X⋆  × X⋆ into Δ+ and the triple (X⋆, G⋆, τ ) is a probabilistic G −metric 

space, the 

quotient space of (X, G, τ ). 

Proof. First we prove that G⋆ is well defined, i.e. if r, r′ ∈  p⋆, q, q′ ∈  q⋆ and p, p′ ∈  p⋆, then 

    G(p, q, r)  =  G(p′, q′, r′).  

Since q ∼  q′, p ∼  p′ and r ∼  r′ and τ is a triangular function, we have 

    G(p, q, r)  ≥  τ (G(p, p′, p′), G(p′, q, r))  =  G(p′, q, r)  

            ≥  τ (G(q, q′, q′), G(q′, p′, r))  =  G(q′, p′, r)  

           ≥  τ (G(r, r′, r′), G(r′, p′, q′)  =  G(r′, p′, q′)  

          =  G(p′, q′, r′).  

Similarly we get G(p′, q′, r′)  ≤  G(p, q, r), so G⋆ is well defined. Also trivially, 

 G⋆(p⋆, p⋆, p⋆) =  G(p, p, p)  = ε0.  

and if  p ≠  q, then  p ∉  q⋆ , q ∉  p⋆.  

Hence p ≁  q, so G(p, p, q) ≠ ε0. Thus 

 G(p⋆,p⋆,q⋆)
⋆ =  G(p, p, q) ≠ ε0. 

By the fact that, 

     G(p, p, q)  ≥  G(p, q, r) 

we lead to 

 G⋆(p, p, q)  ≥  G⋆(p, q, r).  

It is trivial to verify the other properties of G⋆.  

 

3.1 Menger Probabilistic 𝐆 −Metric Space 

In this section we introduce Menger probabilistic G −metric spaces. Recall that a mapping T ∶  [0,1] ×

[0,1] → [0,1] 

is called a triangular norm (abbreviated, t-norm) if the following conditions are satisfied 

1. T(a, 1)  =  a, for every a ∈  [0,1], 

2. T(a, b)  =  T(b, a), for every a, b ∈  [0,1], 

3. T(a, c)  ≥  T(b, d), whenever a ≥  b and c ≥  d, (a, b, c, d ∈  [0,1]), 

4. T(a, T(b, c))  =  T(T(a, b), c), (a, b, c ∈  [0,1]). 

The following are the four basic t-norms: 

(a) The minimum t −norm, TM, is defined by TM(x, y) = min{x, y} . 

(b) The product t −norm, TP, is defined by TP(x, y)  =  xy. 

(c) The Lukasiewicz t −norm, TL, is defined by 

 TL(x, y) = max{x + y − 1,0}. 

(d) The weakest t −norm, the drastic product, TD, is defined by 

 {
TD(x, y) = min{x, y},  if max{x, y} = 1

0,    otherwise
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As regards the pointwise ordering, we have the inequalities 

 TD  <  TL  <  TP  <  TM. 

Definition 3.1. Suppose S is a nonempty set and T is a t −norm and G ∶  S3  → Δ+ is a function. The triple 

(S, G, T) is called a Menger probabilistic G-metric space if for every p, q, r, s ∈  S and x, y >  0, 

1.  G(p, p, p) = ε0, 

2.  If p ≠  q, then G(p, p, q) ≠  ε0, 

3.  G(p, p, q) ≥  G(p, q, r), 

4.  G(p, q, r) =  G(p, r, q) =  G(q, r, p) =  …, 

5.  G(p, q, r) (x + y)  ≥  T(G(p, s, s)(x), G(s, q, r)(y)). 

In the Menger probabilistic G −metric space (S, G, T) with 

     sup
0<t<1

T(t, t)  =  1 

a sequence {un} in S, 

i) is called convergent to u ∈  S  if for every  ε , λ >  0 , there exists N ∈  N  such that, ∀n ≥

 N ;  Gun,u,u(ε )  >  1 − λ . 

ii) is said to be a Cauchy sequence, if for every ε , λ >  0 there exists N ∈  N such that, ∀m, n, l ≥

 N ;  Gum,un,ul
 (ε )  >  1 − λ . 

As usual a Menger probabilistic G −metric space is said to be complete if every Cauchy sequence in S 

converges to a u ∈  S. 

Theorem 3.2. Let (S, G, TL) be a Menger probabilistic G −metric space and define, 

 Gp,q,r
⋆ = sup{t ≥  0|Gp,q,r(t)  ≤  1 − t}.  

Then, 

i) G⋆ is a G −metric. 

ii) S is G −complete if and only if it is G⋆ −complete. 

Proof. For any t >  0, Gp,p,p  = ε0(t)  =  1, so 

 Gp,p,p
⋆  = sup{t ≥  0|Gp,p,p(t)  =  1 ≤  1 − t}  =  0.  

Also if p ≠  q, then Gp,p,q ≠  ε0. Hence 

 There exists t ∈  (0,1) s. t. Gp,p,q(t)  <  1, 

so 

 Gp,p,q
⋆  = sup{t ≥  0|Gp,p,q(t)  ≤  1 − t}  >  0. 

Now for any p, q, r ∈  S we know, Gp,p,q  ≥  Gp,q,r, so 

  {t|G(p,p,q)(t)  ≤  1 − t}  ⊆  {t|Gp,q,r(t) ≤  1 − t}.  

Hence Gp,p,q
⋆ ≤  Gp,q,r

⋆ . 

 These prove first, second and the third part of definition of G −metric for G⋆. Commutativity of G⋆  is 

trivial. 

We are going to prove that, 

 Gp,q,r
⋆  ≤  Gp,s,s

⋆ + G s,q,r
⋆ ,      3.1 

for all p, q, r, s ∈  S. 

To do this, put 

  A =  {t|Gp,q,r ≤  1 − t}  

  B =  {λ |G(p,s,s)(λ ) ≤  1 − λ }  

  C =  {μ|Gs,q,r ≤ 1 − μ }.  

Suppose t1  >  G⋆(p, s, s) and t2  >  Gs,q,r
⋆  are upper bounds for B and C, respectively. Then 

  G(p, s, s)(t1)  >  1 − t1 and Gs,q,r(t2)  >  1 − t2.  
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Therefore 

 Gp,q,r(t1 + t2)  ≥  TL(Gp,s,s(t1), G(s,q,r)(t2))  

           ≥  Gp,s,s(t1) + Gs,q,r(t2) − 1  

           >  1 − (t1 + t2).  

Thus  t1 + t2 is an upper bound for A. Hence G∗satisfies 3.1. Consequently G∗ is a G −metric. 

For proving ii), let (S, G, TL) be G −complete and (un) be a Cauchy sequence in the G∗ −metric. We prove 

that (un) is Cauchy with the probabilistic G −metric G. Let ε , λ >  0 be given. If ε < λ then for ε , N ∈

 N s. t. ∀m, n, l ≥  N ;  Gum,un,ul

∗  < ε ,  

since (un) is G∗ −Cauchy. By definition of G∗, for every m, n, l ≥  N 

Gum,un,ul
 (ε )  >  1 − ε >  1 − λ . 

Now if λ < ε then for  , ∃N ∈  N , ∀m, n, l ≥  N ; Gum,un,ul

∗  < λ ,  

since (un) isG∗ −Cauchy. By definition of G∗, the fact that Gum,un,ul
 is nondecreasing implies that 

     Gum,un,ul
(ε )  ≥  Gum,un,ul

(λ )  >  1 − λ .  

Thus (un) is G −Cauchy. Now by G −completeness of S with G, there exists u ∈  S such that (un) is 

G −convergent to u. 

So for ε >  0 there exists N ∈  N such that, for every m, n ≥  N, 

 Gum,un,u (
ε

2
)  >  1 −  

ε

2
. 

This means that 
ε

 2
  is an upper bound for the segment {t|Gum,un,u  ≤  1 − t}. Thus Gum,un,u

∗  ≤  
ε

2
 ε <, i.e. 

(un) converges to u with G⋆ and so S is G⋆ −complete. 

Conversely suppose that S  is G⋆ −complete and (un) is a G −Cauchy sequence in S. Thus for given ε >  0, 

there exists 

N ∈  N such that,  for all  m, n, l ≥  N;  

 Gum,un,ul
 (

ε

2
)  >  1 −

ε

2
.  

Hence  ∀m, n, l ≥  N;  

 G⋆
um,un,ul

<
ε

2
< ε .  

This implies that (un) is a G⋆ −Cauchy sequence sequence and so is G⋆ −convergent to some u in S. Hence 

for given ε , λ , with  < λ , there exists N ∈  N such that ∀m, n ≥  N;  

 Gum,un,u
⋆  < ε < λ .  

By definition of G⋆, ∀m, n ≥  N;  

 Gum,un,u(ε )  >  1 − ε >  1 − λ .  

Now if λ ≤ ε then  ∃N >  0 s. t. ∀m, n, l ≥  N ; 

 Gum,un,ul
 (ε )  >  Gum,un,ul

(λ )  >  1 − λ ≥  1 − ε ,  

since (un) is G −Cauchy. By definition of G⋆  ∀m, n, l ≥  N;  

 Gum,un,ul

⋆  < ε  

But S is G⋆ −omplete, so there exists u ∈ S such that (un) is G⋆ −convergent to u. This implies that there 

exists N ∈  N such that  ∀m, n ≥  N; 

 Gum,un,u
⋆ < λ < ε .  

Finally by definition of G⋆ ∀m, n ≥  N ;  

 Gum,un,u(ε )  ≥  Gum,un,u(λ )  >  1 − λ .  

Hence (un) is G −convergent and so S is G −complete. 
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4.1 Fixed Points Of Contractive Maps In Menger Probabilistic 𝐆 −Metric Space 

In this section, first we introduce the concept of G −contractive mapping in Menger probabilistic 

G −metric space and then its relation with G −contractive map in its dependent G −metric space is 

studied. This result shows that the existence of a convergent subsequence of an iterate sequence (of a 

contractive map) implies the existence of a fixed point. 

In order to do this, we introduce the following definition; 

Definition 4.1. Let (S, G, T) be a Menger probabilistic G −metric space. a mapping f ∶  S →  S is said to be a 

G −contraction 

if for any  t ∈  (0, ∞), 

 Gp,q,r (t)  >  1 − t  

 implies that 

  Gf (p),f (q),f (r)(kt)  >  1 − kt 

for some fixed k ∈  (0,1). 

One can easily see that if f ∶  S → S is a G −contraction and (un) is a convergent sequence to some u in the 

Menger probabilistic G −metric space S, then ( f (un)) converges to f (u). 

We recall that a function f on a G −metric space with a G −metric G⋆ is called G −contraction if for any t ∈

 (0, ∞), 

the relation Gp,q,r  <  t implies that Gf (p),f (q),f (r)  <  kt, for some k ∈  (0,1). 

Lemma 4.2. Let (S, G, TL) be a Menger probabilistic G −metric space and 

 Gp,q,r
⋆  =  sup {t|Gp,q,r(t) ≤  1 − t}  

then a function f ∶  S → S is a G −contraction mapping if and only if it is G⋆ −contraction. 

Proof.   We know that G⋆ is a G −metric on S. 

Let f be a G −contraction in the Menger probabilistic G −metric space and for t ∈  (0, ∞) 

 Gp,q,r
⋆  <  t.  

By definition of G⋆, we get 

       Gp,q,r(t)  >  1 − t.  

But f is G −contraction, so 

 Gf (p),f (q),f (r)(kt)  >  1 − kt,  

for some fixed k ∈  (0,1). Now definition of G⋆ implies that 

       Gf (p),f (q),f (r)
⋆  <  kt, 

which means that f is G⋆ −contraction. The converse of this lemma can be proved similarly. 

Theorem 4.3. Let (S, G, TL) be a Menger probabilistic G −metric space. Suppose A is G −contraction on S 

and for some  u in S, Ani  (u) is a convergent subsequence of An(u), then ξ =  A (lim
i→∞

Ani (u)) is the unique 

fixed point of A. 

Proof. Let A(ξ ) ≠ ξ , then there exists t0 ∈  (0, ∞) such that, 

 GA(ξ ),ξ ,ξ (t0) ≠  1.  

So there exists λ ∈  (0,1), such that 

    1 − λ <  GA(ξ ),ξ ,ξ (t0)  <  1.  

By letting t =  max{t0, λ } we get 

 GA(ξ ),ξ ,ξ (t)  ≥  GA(ξ ),ξ ,ξ (t0)  >  1 − λ >  1 − t.  

But A is a G −contraction so for some k ∈  (0,1), 

 GA2(ξ ),A(ξ ),A(ξ )(kt)  >  1 − kt.  

Using induction argument one can see that 
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 GAn+1(ξ ),An(ξ ),An(ξ )(knt)  >  1 − knt.   4.1 

Taking n and ni large enough such that 

    knt <  1 and kni  t <  1 

and putting p =  An(ξ ), we obtain 

 p =  An(ξ ) =  An (lim
i→∞

Ani (u))  = lim
i→∞

lim
i→∞

Ani (u) +  n(u)  

Let s =  max{knt, kni  t}. By  4.1 

 GA(p),p,p(s)  >  GA(p),p,p(knt)  >  1 − knt >  1 − s.  

If G⋆ is the G −metric introduced in Lemma 4.1, then 

  GA(p),p,p
⋆  =  sup{t|GA(p),p,p(t) ≤  1 − t}. 

So 

 GA(p),p,p
⋆  <  s <  1.  

By the fact that Ani  (u) → ξ and Ani+1(u) → A(ξ ), for every t, λ >  0, there exists N ∈  N, such that for 

every  ni  >  N, 

 GAni(u),ξ ,ξ (t)  >  1 − λ , GAni+1(u),A(ξ ),A(ξ )(t)  >  1 − λ .  

Let l >  j >  n + ni. We are going to prove that, 

 GAnl  (u),Anl+1(u),Anl+1(u)
⋆ ≤  kl−jG

A
nj  (u),A

nj+1
(u),A

nj+1
(u)

⋆   .   4.2 

If we prove this inequality, then the this together with the facts that k ∈  (0,1) and  

 G
 A

nj  (u),A
nj+1

 (u),A
nj+1

 (u)
⋆  <  1  

imply that lim
l→∞

Anl  (u)   =  lim
l→∞

Anl+1 (u) in the generalized metric G⋆ and so is valid in the Menger 

probabilistic G. This leads to the equality ξ =  A(ξ ) which is a contradiction. 

First we prove that, 

 G Anl  (u),Anl+1(u),Anl+1 (u)
⋆  ≤  kG Anl−1 (u),Anl(u),Anl  (u)

⋆   .  4.3 

To do this, let 

  s ∈  {t|GAnl  (u),Anl+1(u),Anl+1(u)(t) ≤  1 − t}  

then 

 GAnl  (u),Anl+1(u),Anl+1(u)(s)  ≤  1 − s.  

Put t =
s

k
. We find that 

 GAnl−1 (u),Anl(u),Anl (u) ≤  1 − t,  

since otherwise by contractivity of A it should be 

 GAnl  (u),Anl+1(u),Anl+1(u)(kt) =  GAnl (u),Anl+1(u),Anl+1(u)(s)  

            >  1 − kt =  1 − s, 

which is not the case. Therefore 

  t =
s

k
 ∈  {t|GAnl−1 (u),Anl(u),Anl  (u)(t)(t) ≤  1 − t}  

or equivalently 

   s ∈  k{t|GAnl−1 (u),Anl(u),Anl  (u)(t) ≤  1 − t}.  

So 

 sup{t|GAnl  (u),Anl+1(u),Anl+1(u)(t) ≤  1 − t} ≤  sup{t|GAnl−1 (u),Anl(u),Anl  (u)(t)  ≤  1 − t}  

and consequently 4.3 is valid. Now by induction argument, one leads to 4.3 which completes the proof. 
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