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1.1 Introduction and preliminaries
In 2006 the concept of generalized metric space was introduced [4]. For more results in these spaces one
can see [2] and [3].
On the other hand, in 1942, Menger [1] introduced the notion of probabilistic metric space (briefly PM-
space) as a generalization of metric space. Such a probabilistic generalization of metric spaces appears to
be well adapted for the investigation of physical quantities and physiological thresholds. The
development of fixed point theory in PM-spaces was due to Schweizer and Sklar [5, 6]. Fixed point theory
has been always an active area of research since 1922 with the celebrated Banach contraction fixed point
theorem.
Let X be a nonempty set,and let G : X X X x X — R* be a function satisfying the following axioms:

1. G(xy,z) = 0ifx =y = z

2. G(x,x,y) > 0,forallx,y € X, withx # y,

3. G(x,x,y) < G(x,y,2),forallx,y,z € X,withz # y,

4. G(x,y,z) = G(x,z,y) = G(y,2,x) = G(z,y,X) = ..

(symmetry in all three variables),
5. G(x,y,z) < G(x,a,a) +G(a,y,z),forallx,y,z,a € X,
(rectangle inequality ).
Then the function G is called a generalized metric, or, more specifically a G —metric on X, and the pair
(X, Q) is called a G —metric space. A sequence (X,) in a G —metric space (X, G) is said to be G —convergent
to x if
lim G(x,X,,Xy,) = 0; which means that, for any € > 0, there exists N € N such that G(x, x,,Xy,) < €,

n,m—oo

for alln,m > N. Also a sequence (xn) is called G —Cauchy if for a given € > 0, there isN € N such that
G(Xp, Xm, X)) < €, foralln,m,1 > N;thatis if G(x,, Xy, %X;) @ 0asn,m,1 - oo,
We may construct G —metrics using an ordinary metric. Indeed if (X, D) is a metric space, then define
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Gs(x,y,2z) = d(x,y) +d(z,y) +d(x, z).
Gm(%,y,2) = max{d(x,y),d(y,z),d(x,2z)},
forall x,y,z € X.One can verify that G5 and G,,, are G —metric.
A distribution function is a function F : [—o00,00] = R — [0,1] that is nondecreasing and left continuous
on R; moreover, F(—o) = 0and F(e0) = 1.
The set of all the distribution functions is denoted by A and the set of those distribution functions such
that F(0) = 0Ois
denoted by A*.
A natural ordering in A is defined by F < G whenever F(x) < G(x), for every € R. The maximal element

in this order for A* is gy, where for —co < a < oo the distribution function ¢, is defined by
£, (%) ={0 if —o<x<a
lifa<x <oo
A binary operation on A* which is commutative, associative, nondecreasing in each place, and has ¢ as

identity, is said to be triangle function.
Also a probabilistic metric space (abbreviated, PM-space) is an ordered triple (S,F,t) where Sis a
nonempty set, Tis a triangle function and F: Sx S — A* (F(p, q)is denoted by Fp,q) satisfies the
following conditions:

1. Fpp =€,

2. Ifp+# g,thenF,q # &,

3. Fpq = Fop

4. Fpr 2 T(Fpg Fqr),

for every p,q,r € S.
If 1), 3), 4) and are satisfied, then (S, F, T ) is called a probabilistic pseudo-metric space.
In section 3.2, we introduce the notion generalized probabilistic metric space. Then Some examples and
elementary properties of these spaces are discussed. In section 3.3, generalized Menger probabilistic
G —metric space is studied. Finally in section 3.4, some fixed point theorem in generalized Menger
probabilistic metric spaces are investigated.
2.1 Probabilistic G-Metric Space
Definition 2.1. Suppose X is a nonempty set, T is a triangle functionand G : X X X x X — A%, is a mapping
satisfying

G1 G(p,p,P) = o,

G, if p # q,then G(p,p,q) # &,

G; ifq # r,then G(p,p,q) = G(p,q,1),

G4 G(p,g 1) = G(p,1,q) = G(qr,p) =..,

Gs G(p,q,r) = T (G(p, s,s),G(s,q, r)),
for all p,q,1r,s € X. Then (X,G,t) is called a generalized probabilistic metric space (or briefly,
probabilistic G-metric
space). (X, G, 1) is called a probabilistic pseudo G —metric space if G;, G5, G, and Gs are satisfied.
A probabilistic G —metric space (X, G, T) is said to be symmetric if for every x,y € X,

Gxyy) = Gy, xx%).

A probabilistic G —metric space (X, G, T ) is called proper if t (g,,€,) = €441, foralla,b € [0, ).
In the following two examples, we construct two probabilistic G-metric space using a PM —space and a
G —metric
space, respectively.
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Example 2.2. With ©(F,G) = min{F,G},let (X,F,t) be a probabilistic metric space. If Gy : X3 — At is
defined by
Gn(p, q,1) = min{Fp’q, For Fq,r},
then (X, Gy, T) is a probabilistic G —metric space.
Indeed if p = q = rthen
Gn(p,q,1) = min{Fp’q, Fpr Fq'r} = min{gy, &y, €} = &.
Also for p # q by definition of probabilistic metric, Fj, g # &, so
Gm(p,p,q) = min{F,, o, F,,} = min{F,4,&} = Fpq = &.
Now if q # rthen
Gm(p; b, q) = min{Fp,ql 80} = Fp,q
> min{Fp,q, ForFory = Gm(p,q,1).
Commutativity of Gy, is trivial by commutativity of F.For proving Gs, letp,q,r,s € X. We have
min{Gn,(p,s,s), G (s, q, 1)} = min{Fp,s; Fss, 1::s,q: Fgr, 1::q,r .
Thus
Gy(p,qr) = min{Fp,q, Ep r) Fq,r}
= min{min{Fp,S, stq}, For min{Fp,s, Fs,r}}
= min{min{Fp,S, FS,S} , min{Fs,q, For Fs,r}}
=1 (Gm (p; S, S); Gm (S; (L r))
Example 2.3. Let (X, F) be a G-metric space. For every p,q,r € X, define
Gp,q,r = SFp,q,r .
Also let T is a triangle function for which

T (€2,8p) < €atby
foralla,b € R*.Then itis straightforward to show that (X, G, t) is a probabilistic G —metric space.
Also if a proper probabilistic G —metric is of the form 2.1, then F, ; . is a G —metric. Suppose (X,G, T ) is a

2.1

proper probabilistic G —metric space and there exists a function F: X x X X X = R¥, such that
Gqufr = SFp,q,r
then (X, F) is a G —metric space.
Indeed in this case
80 = G

soFy,p = 0.1f p # qthen

ppp ~ EFppp T &0

€ # Gppq = €Fppq
which implies that F, , ; # 0. Also if @ # r then the fact that G, , 4 = G, implies thatF,,, < F
Commutativity of F follows from commutativity of G. For proving

Fp,q,r S l::IZ),S,S + FS,q,rt

p.qr:

we note that G is proper, so,

EFpqr = Gpgr =T (st_s‘s,aFS_q‘r) > EFpss + Fsqr
which implies that (X, G) is a G —metric space.
In the following proposition, it is proved that we may construct a probabilistic G —metric space using a
pseudo probabilistic G —metric space. To do this, we introduce the following relation:
Let (X, G, T ) be a probabilistic pseudo G —metric space. For p,q € X,wesay p ~ qifand only if

G(p,p,q) =g andG(p,q,q) = &.
This relation is an equivalence relation. Indeed if p ~ qand q ~ r, then
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G(p,p,q) =& ,G(p,q,q) = g and G(q,q,1) = £, G(r,1,q) = &

But G is a probabilistic pseudo G —metric, so
G(p, p, I') = G(I‘, p, p) =21 (G(I‘, 4 q)’ G(q' p, p)) =T (80' SO) = &,

which implies that G(p, p,r) = g,. Now maximality of €, implies that G(p, p,r) = &,. Similarly G(p,r,r) =
€o- This prove that ~ is transitive. The other properties of ~ to be an equivalence relation is trivial.
Proposition 2.4 Let (X, G, T ) be a probabilistic pseudo G —metric space, for every p € S, let p* denote the
equivalence class of p and let X* denotes the set of these equivalence classes. Then the expression

G*(p*,q"r") = G(p,q,r), p € p,q €E q,;r € 1"
define a function G* from X* x X* X X* into A* and the triple (X*,G*,T) is a probabilistic G —metric
space, the
quotient space of (X, G, ).
Proof. First we prove that G* is well defined, i.e.ifr,r' € p*,q,q" € q*and p,p’ € p*, then

G(p,qr) = G(p',q,r).
Sinceq ~ q',p ~ p’andr ~ r’'and tis a triangular function, we have
G(p,q,r) = T(G(p,p’,p"),G(p’q1)) = G(p',q,1)

1(G(9.9,9"),G(q’p" 1)) = G(q',p’,1)
T (G(r,r,x"),G(r',p,q") = G(r',p’.q)
G(p’q’,r).
Similarly we get G(p’,q’,r") < G(p,q,r), so G* is well defined. Also trivially,

G*(p*,p*p") = G(p,p,p) = &.
andif p# g, then p € q*,q &€ p*.
Hencep + q,so G(p,p,q) # €. Thus

vy |

Gzp*,p*,q*) = G(p,p,q) # &
By the fact that,

G(p,p,q) = G(p,q,r)
we lead to

G*(p,p,9) = G*(p,q,1).
It is trivial to verify the other properties of G*.

3.1 Menger Probabilistic G —Metric Space
In this section we introduce Menger probabilistic G —metric spaces. Recall that a mapping T : [0,1] X
[0,1] - [0,1]
is called a triangular norm (abbreviated, t-norm) if the following conditions are satisfied
1.T(a,1) = a, foreverya € [0,1],
2.T(a,b) = T(b,a), foreverya,b € [0,1],
3.T(a,c) = T(b,d), whenevera > bandc > d,(a,b,c,d € [0,1]),
4.T(a, T(b,c)) = T(T(a,b),c),(a,b,c € [0,1]).
The following are the four basic t-norms:
(a) The minimum t —norm, Ty, is defined by Ty (x,y) = min{x,y}.
(b) The product t —norm, Tp, is defined by Tp(x,y) = xy.
(c) The Lukasiewicz t —norm, T;, is defined by
T.(x,y) = max{x+y — 1,0}.
(d) The weakest t —norm, the drastic product, Tp, is defined by
{TD (x,y) = min{x,y}, ifmax{x,y} =1
0, otherwise
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As regards the pointwise ordering, we have the inequalities
T < T, < Tp < Ty

Definition 3.1. Suppose S is a nonempty set and T is at —norm and G : S* — A* is a function. The triple
(S,G, T) is called a Menger probabilistic G-metric space if for every p,q,r,s € Sandx,y > 0,
G(p,p, p) = &0,
Ifp# q,then G(p,p,q) # &,
G(p,p,@) = G(p,q, 1),
G(p,q.r) = G(p,r,q) = G(g,1,p) = ..,

5. G(p,qr) (x+y) = T(G(p,s,s)(X),G(s,q,1)(¥)).
In the Menger probabilistic G —metric space (S, G, T) with

sup T(t,t) = 1

0<t<1
a sequence {u,}in$§,
i) is called convergent to u € S if for every ¢€,A > 0, there exists N € N such that, Vn >
N; Gy uu(e) > 1—A.
ii) is said to be a Cauchy sequence, if for every €,A > 0there exists N € Nsuch that,vm,n,l >
N; Gupupy () > 1—A.
As usual a Menger probabilistic G —metric space is said to be complete if every Cauchy sequence in S
convergestoau € S.
Theorem 3.2. Let (S, G, T;,) be a Menger probabilistic G —metric space and define,

Gpqr = sup{t = 0|Gpq(D) < 1—t}.

B W N e

Then,
i) G*is a G —metric.
ii) S is G —complete if and only if it is G* —complete.
Proof. Forany t > 0,Gp,, = &(t) = 1,s0
Gppp =sup{t = 0|Gpp, (D) =1 < 1-t} =0,
Alsoifp # g, then G, , 4 # €. Hence

There exists t € (0,1) s.t.Gppq(0) < 1,

SO
Gppq = sup{t = 0[|Gp,q() < 1—1t} > 0.
Now for any p,q,r € S we know, Gppgq = Gpgr SO
{tlGppgp® < 1—t} € {t|Gyqr (D) < 1—1t}.
Hence Gy pq < Gpgr

These prove first, second and the third part of definition of G —metric for G*. Commutativity of G* is
trivial.
We are going to prove that,

G*

* *
par = Gpss+ Gsqr 3.1

forallp,q,1,s € S.
To do this, put
A = {t|Gpgr < 1—1t}
B = {A|Gpssa) < 1-1}
C = {plGsqr<1—n}
Suppose t; > G*(p,s,s) andt, > Ggq, are upper bounds for B and C, respectively. Then
G(p,s,s)(ty) > 1—t;and Gg g, (ty) > 1—t,.
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Therefore
Gp,q,r(tl + tz) = TL(Gp,s,s (tl): G(s,q,r)(tz))

= Gp,s,s (tl) + Gs,q,r(tz) -1

> 1—(t; +ty).
Thus t; + t; is an upper bound for A. Hence G*satisfies 3.1. Consequently G* is a G —metric.
For proving ii), let (S, G, T) be G —complete and (u,) be a Cauchy sequence in the G* —metric. We prove
that (u,) is Cauchy with the probabilistic G —metric G. Lete,A > 0be given. Ife <Athen fore,N €
Ns.t.Vm,n,1 > N; Gﬁm,un,ul <eg,
since (u,) is G* —Cauchy. By definition of G*, for every m,n,1 > N

Gupupu (€) > 1—8 > 1-A.
Nowif A < ethenfor ,AN € N,Vm,n,1 > N;Gf‘lm,un‘u1 <A,
since (u,) isG* —Cauchy. By definition of G*, the fact that Gy, v, is nondecreasing implies that
Gum,un,ul (S) = Gum,un,ul O\) > 1-A.

Thus (u,) is G —Cauchy. Now by G —completeness of S with G, there existsu € S such that (u,) is
G —convergent to u.
So for € > 0 there exists N € N such that, for every m,n > N,

€ €
Gumunu (5) > 1-
This means that% is an upper bound for the segment {t|Gy_, u < 1 —t}. ThusG}_, u < gs <, ie.

(uy,) converges to u with G* and so S is G* —complete.

Conversely suppose that S is G* —complete and (u,) is a G —Cauchy sequence in S. Thus for given € > 0,

there exists

N € Nsuch that, forall m,n,1 > N;
>

€
Gumnn (5)
Hence Vm,n,1 > N;

.- €
G U, Up, Uy < 2 <Eg.

€
1—5.

This implies that (u,) is a G* —Cauchy sequence sequence and so is G* —convergent to some u in S. Hence
for given €,A, with < A, there exists N € N such thatVm,n > N;
Gl upu <€ <A,
By definition of G*, Vm,n > N;
Gy uu(E) > 1—g>1-A.
Nowif A < ethen AN > 0s.t.Vm,n,1 > N;
Gupugu (8) > Gupupuy@?) > 1-2 = 1-—¢,
since (u,) is G —Cauchy. By definition of G* ¥Ym,n,]1 > N;
Glupy <€
But S is G* —omplete, so there exists u € S such that (u,) is G* —convergent to u. This implies that there
exists N € N suchthat Vm,n > N;
Gougu <A <e.
Finally by definition of G* Vm,n > N;
Gum,un,u(e) 2 Gum,un,u()\) > 1-A.
Hence (u,) is G —convergent and so S is G —complete.
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4.1 Fixed Points Of Contractive Maps In Menger Probabilistic G —Metric Space
In this section, first we introduce the concept of G —contractive mapping in Menger probabilistic
G —metric space and then its relation with G —contractive map in its dependent G —metric space is
studied. This result shows that the existence of a convergent subsequence of an iterate sequence (of a
contractive map) implies the existence of a fixed point.
In order to do this, we introduce the following definition;
Definition 4.1. Let (S, G, T) be a Menger probabilistic G —metric space. a mapping f: S — Sis said to be a
G —contraction
if forany t € (0, ),
Gpgr () > 1—t
implies that
Gt ()£ @ (k) > 1 —kt
for some fixed k € (0,1).
One can easily see thatiff: S — Sis a G —contraction and (u,) is a convergent sequence to some u in the
Menger probabilistic G —metric space S, then ( f (un)) converges to f (u).
We recall that a function f on a G —metric space with a G —metric G* is called G —contraction if for any t €
(0, Oo)r
the relation G, 4 < timplies that G¢ )¢ (q)ry < kt for somek € (0,1).
Lemma 4.2. Let (S, G, T;,) be a Menger probabilistic G —metric space and
Gpar = sup {t[Gpqr(® < 1 -1t}
then a function f : S — Sisa G —contraction mapping if and only if it is G* —contraction.
Proof. We know that G* is a G —metric on S.
Let fbe a G —contraction in the Menger probabilistic G —metric space and fort € (0, )
Gpar < t.
By definition of G*, we get
Gpgr(H > 1—t
But fis G —contraction, so
Gr @ (kt) > 1—Kkt,
for some fixed k € (0,1). Now definition of G* implies that
G f@im < kb
which means that fis G* —contraction. The converse of this lemma can be proved similarly.
Theorem 4.3. Let (S, G, T;,) be a Menger probabilistic G —metric space. Suppose A is G —contraction on S

and for some uin S, A" (u) is a convergent subsequence of A" (u), then¢ = A (}Lr?o AM (u)) is the unique
fixed point of A.
Proof. Let A(§) # &, then there exists t, € (0, o) such that,

Ga)e g (to) # 1.
So there exists A € (0,1), such that

1-2 < Gagyeelto) < 1.
By letting t = max({t,, A } we get

Gag)ee (0 = Gayee(te) > 1-2>1-t

But A is a G —contraction so for some k € (0,1),

Gazge)ac)ae) (kt) > 1 —kt.
Using induction argument one can see that

IJCRT2102627 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 5190


http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

GAn+1(E),An(z),An(E)(knt) > 1 - knt 4‘1
Taking n and n; large enough such that
k"t < landk™t < 1
and putting p = A"(§), we obtain
p = A"(&)= A" (_lim AMi (u)) = lim lim A™ (u) + n(u)
1—00 1—00 1—>00
Lets = max{k™t k" t}. By 4.1
GA(p),p,p(S) > GA(p),p,p (knt) > 1—-k"t > 1-s.
If G* is the G —metric introduced in Lemma 4.1, then
Gapypp = SUP{t|Gagypp® < 1 -t}
So
GZ(p)‘p,p < s < 1
By the fact that A% (u) - £and A"*1(u) - A(§), for everyt,A > 0,there exists N € N, such that for
every n; > N,
GAni(u),E ,E (t) > 1 - }\, GAni+1(u),A(E ).A(E)(t) > 1 - }\ .
Letl > j > n + n;. We are going to prove that,
* 1—i~x
GAnl (u),An1+1(u),A“1+1(u) S k ]GAn]- (u),Anj+1(u),Anj+1(u) . 42
If we prove this inequality, then the this together with the facts thatk € (0,1) and
GAn]- WA AN () <1
imply that llim AM () = 1lim AM*1 (u) in the generalized metric G*and so is valid in the Menger
probabilistic G. This leads to the equality § = A() which is a contradiction.

First we prove that,
G

To do this, let
S € {t|GAn1 (u)’An1+1(u)‘An1+1(u) (t) < 1-— t}

ANl (u),An1+1(u),Anl+1 (u) S kG Anl—l (u),Anl(u),Anl (u) . 43

then

GAnl (u),An1+1(u),An1+1(u) (S) S 1 — S.
Putt = i We find that

GAnl—l (u),Anl(u),Anl (u) S 1 - t,
since otherwise by contractivity of A it should be

GAnl (u),An1+1(u),An1+1(u) (kt) = GAnl (u),An1+1(u),Anl+1(u) (S)

>1—-kt =1-s5,
which is not the case. Therefore
S

t =1 € {t{Gam-1 (y amwam @®O® < 1 -1t}

or equivalently
s € k{t|Gani-1 @y ameuam @ ® < 1 -t}

So
sup{thAnl (w), AP (1), AN () (t) <1- t} < Sup{tIGAnl—l (W), A" (u),AM (u) (t) <1- t}
and consequently 4.3 is valid. Now by induction argument, one leads to 4.3 which completes the proof.
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