ARTIFICIAL INTELLIGENCE IN EDUCATION
AND HEALTHCARE

Anjali Sudha
Address-HIMT College of Pharmacy
Greater Noida

Dr. Dev Prakash
Address-HIMT College of Pharmacy
Greater Noida

Abstract:
Artificial Intelligence (AI) is a rising phenomenon that early encourages advances in many fields, including medical education. To train medical educators for AI properly, they would need to have at least a basic knowledge of AI concerning learning and teaching, and the extent to which it would affect medical education. In this review have also discussed the effect of AI on medication and the consequences for educators attempting to educate future medical professionals. Pulling on these strands, it then identifies the direct impact of AI on medical education methodology and content in an attempt to prepare medical educators for the changing requirements and advantages. There is a developing artificial intelligence study in education, demonstrating that the use of artificial intelligence will enhance learning in many fields. By looking at the strength of these tutorial
technologies and the findings of previous AIM studies, by using advanced AI technology to advance the quality of healthcare.

Keywords: AI, Education, Health care system, drug discovery.

Introduction:

The emulation of human-computer thought and artificial intelligence (AI) is the engineering research division that deals with developing intelligent machines, in particular intelligent computer programs. This is the capacity of a computer-operated system or robotic device to get knowledge received to generate outcomes such as knowing the desire of the human being to think, to take decisions, and to solve problems. AI is an IT industry aimed at building intelligent machines that form part of the technological field. AI work is extremely abstract and advanced. In the growth market, that is significant. AI is extremely conceptual and advanced. Much of the living world has been split for thousands of years between man and the rest of the animals and thus human dominance. The variations in the ability to perceive, determine and evaluate are shown. Inductive reasoning and intuition make the human brain better than the luxury machine. The creation of artificial intelligence (AI) resulted in people being able to build machines that would cleverly overcome complex, complicated problems, like human brain (1). The term "artificial intelligence" was coined in 1956; the concept of problem solving and symbolic approach was used from 1955 [2].

AI utilizes a diversity of tools from which it can look, work, and understand previous interactions. It is a wide field of computer science that enables obstacles to be overcome and human brains to think likewise [3]. Programmable computing and programming. The AI process includes developing computer solutions for the
outcomes of a programmed mission. Machines can store information or data and will become as alert as humans in the future.

Origin of AI(4-5,6)

A summarised history of AI can be found in the twentieth century as 1923 – in London, the first uses of the term "robot" are opened in Karel Kapek's play "Rossum University Robots (RUR).

1945 – Isaac Asimov, a Columbia University student, invented the term 'robotics.'

1950 – Intelligence Testing founded by Alan Turing. As a thorough chess research application, Claude Shannon received it.

1956-John McCarthy coined the term Artificial Intelligence. 1958 – John McCarthy has invented the LISP programming language for AI.

1964 – Danny Bobrow's MIT thesis showed that computers can fairly well understand the natural language to solve algebraic terms problems properly.

1979 – Stanford Cart was developed as an autonomous vehicle driven by First Computer.

1984 – Dennett addresses the assistance concern and its application to the issues resulting from attempts to provide robots with common sense.

1990 – Big development in all fields of AI: 1997 – defeats the World Chess Champion, Gerry Kasparov 2000 – Virtual Robot Pets have been commercially available. Deep Blue Chess System MIT shows a facially called Kismet-Roboter that transmits emotions.
"Artificial intelligence is a far superior intellect than the best human intelligence in nearly every area, including computers and language logic" according to Father John McCarthy, who coined the word "Artificial intelligence" in 1956. "It is the synthesis of science and engineering that makes human welfare intelligent machinery."

Recent advances (in India)

Recent advances in the field of artificial intelligence (AI) have generated fervent interest from both the private sector and governments around the world. Computer supremacy over human beings was the greatest achievement for artificial intelligence in the old Go board game. In a series of five games, Alpha Go, a London-based AI machine developed by Google Deep Mind,(7) challenged the South Korean Chinese board game World Champion, Lee Sedol, in which the machine beat the lives of people in a manner that is frequently perceived or confused unrealistically.

Until now, a significant part of the private sector has driven this gradual explosion of AI technology and concentrated mainly on consumer products. However, the technology is of such great potential and significance that its production and deployment can not be left to a few Silicon Valley companies and their distributors alone: the increasing size and implications of AI's applications make it imperative for government policymakers to notify.(8)

To optimize India's benefits from the AI revolution, a deliberate policy must be adopted to push for AI innovation, adaptation, and proliferation in industries other than mere consumer goods and IT services. AI's rapid growth provides a unique opportunity and challenge to India: by specifically tailoring policies in the short-
term to incorporate and prioritize the AI, as well as medium and long term, India can make possible the full potential of technology. Though India undoubtedly benefited from the rapid growth of AI, the creativity of policymakers in the region still has to be captured in AI. Forgetting the chance to inaugurate national IA policies, India risks falling behind the US and China.

AI technology has tremendous potential to influence the future of India's economy and national security; however, in the absence of a clear policy framework, India would find it difficult to realize AI's full power while potentially falling victim to the detrimental effects of AI proliferation.

Moore’s Law Spurs Recent Advances in AI

It is indispensable, before addressing the challenges and opportunities for India, to understand what has changed in AI in recent days. The solution is what technology professionals call Moore’s rule and its wider impact on the computing industry. This confinement lists the transistors of the computer chip twice in two years, which significantly reduces computing power and overall computer hardware prices, which have a decisive influence on AI – faster, simpler, and less computer hardware. Today's cheaper, simpler, and less inefficient hardware helps the computational algorithms of the 1990s to solve much more complicated intricacies than they have traditionally been able to tackle. Through that context, the benefit of Moore's law is apparent: by saving only time and energy, computers can perform even more complex operations without taking into account significant technological improvements, creating a multitude of advances through AI. This flexibility is exacerbated by the proliferation of cloud technology: with the vast computing resources available on request that cloud-based computing systems, again at a much lower cost, enormous data sets can now be processed and analyzed, potentially processing billions of data points in a matter of seconds. This helps
several layers of tandem computers to view information in these broad data sets, identify patterns, distinguish habits and make wise decisions. It has also helped these computers to learn from their own past experiences to enhance their recognition and deduction capabilities. The combined effects of superior hardware, cloud-based on-demand computing as well as increasingly omnipresent big data analytics have brought major improvements in the performance of machine learning — the ability of computers to learn without being specifically programmed (10). In business organizations, a variety of approaches such as supervised learning, unavoidable learning, and strengthening learning are becoming more and more common, leading to user applications such as Apple's Siri and Microsoft's Cortana. This is also the feasibility of advanced, deep learning or deep neural network architectures, which has paved the way for recent developments such as the AlphaGo Computer. (12)

The Application of AI in Education (13)

Recently, AI educational tools have centered on their potential to increase the quality of schooling and to strengthen new approaches to teaching and learning. Although no general concept of consensus is present, AI generally assists computers traditionally in researching human intelligence. Congress should take into account the benefits and disadvantages of AI at universities, including the impact of AI on issues such as data protection, education, creation and processing of student data, as well as technological advances. Comprises the following AI-based information development requirements:

- **Tutoring.** AI programs commonly referred to as Intelligent Tutoring Systems (ITS) or adaptive tutors engage students in dialogue, answer questions, and provide feedback.
- Personalizing Learning. ITS and adaptive tutors tailor learning material, pace, sequence, and difficulty to each student’s needs. AI can also provide support for special needs students, for instance by teaching autistic children to identify facial expressions.

- Testing. Computer adaptive assessments adjust the difficulty of successive questions based on the accuracy of the student’s answers, enabling more precise identification of a student’s mastery level.

- Automating Tasks. AI can perform routine tasks such as taking attendance, grading assignments, and generating test questions.

Following the AI education program K-12, a university has also partnered on the instruction of AI values and technologies in at least one public school district.

The Challenge of Teachers in the AI era—Technology and Education Reform(14)

The primary academic movement in typography from the 15th century produced the breakthrough. Beneficial books popularize professional schooling and initial instruction. Individuals are described by categories, such as age, area, and level. Normalization requires consensus and it may be impossible to live up to the clear learning goals. Over the 20th century, the invention of the Internet created a second education movement. Finally, 'the educational standard will move into the mediocrity of schooling. The Internet helps people to access educational services everywhere and at all times, and to increase educational quality.

Big-Data development also transforms data through machine learning and good programming abilities so that the learning process is best grasped across all its dimensions. Today, because of Internet popularity, the Internet is used widely by AI and Big Data technologies. Each is a separate public institution and they all have the right to fair support for education. During the 20th century low-cost, technology
preparation was conducted. How, then, will the AI-age teachers go? We must work on improving and continuously growing our level of advancement, building education awareness, sustaining the pace of progress of technology, and using AI technologies to analyze unique teaching cases and challenges. AI is a great tool to improve and to make an uncomfortable one for professors.

AI in health care system (15-22)

In the medical industry, the AI system, the path of management or treatment programs, is useful in arranging and guiding doctors correctly. Pathways or treatment plans for patients should be better structured in the area of medication and health so that physicians are presented with all the information they need to assess appropriately.

Maintaining of medical records: The maintenance of medical record in the healthcare industry is a mandatory as well as horrible task. With the introduction of AI technology it is simple to capture, standardize storage and monitor data. The Google Deep Mind wellbeing project seeks to collect patient information for healthier and safer healthcare in a limited period of time.

Treatment plan designing: For improving recovery services, AI services are important. The program of AI is helpful if the patient is in a dilemma situation which makes it difficult to choose the appropriate treatment. This analyzes case accounts, analysis information, and context facts and recommends the right methodology. IBM Watson also launched an oncology support program.

Helping in repetitive jobs: AI technology is useful when determining the location and identifying problems in normal operating conditions. X-ray scans for Radiology, ECG, and ECHO. IBM has suggested an algorithm, Medical Sieve. This is a "cognitive assistance" that has a reasonable learning and comprehension
capacity. Ideal for processing radiation images, defining the location, and easily recognizing complications.

Attainment of in person and online consultation: Babylon, a Uk company, gives private guidance based on practical knowledge and technical skills and includes medical and online care services. Through reviewing and comparing it with the specifics of the disease recorded in the database, consumers are required to display the indicators of their health problems in the device. The course of action will be enough. The system advises doctors about care process. The technology decreases physicians' processing period.

Health support and medication assistance: AI research is important in promoting safety and medicines. A robotic nurse, Molly, has a beautiful speech and has a welcoming smile. The goal is to help patients track their condition and care. It encourages sick patients during the visit to the hospital. Another mobile camera program, which tracks patients' relapse and assists patients in their treatment of their disease, includes AiCure. AiCure This software is useful especially for patients with extreme medications and for patients participating in clinical trials.

Accuracy of medicine: Genetic genomics and genetic development have good impacts on AI. Deep Genomics, an AI program is valuable for analyzing variations and medical history with genetic material to recognize genes or illness connections. This program reminds physicians of the activities in a cell as genetic variability affects DNA. The founder of the human genome project, Craig Venter, created an algorithm that provides knowledge about the physical characteristics of the individual based on their DNA. AI-based "Real Lifespan" helps determine the precise site of cancer and vascular disorder in its early stage.
Drug creation: It takes more than a decade to grow or construct pharmaceuticals and absorbs billions of rupees. "Atomically" an AI system utilizes supercomputers, releasing pathogens that withstand patients. They used biological evidence and AI technologies from patients to figure out the difference between safe ambient environments that are sensitive to the disease. It helps in the discovery and design of medicinal products, healthcare and problems.

AI help to people in health care system: The clear AI ecosystem is one of the top ten services of exciting technologies for 2016. Social information algorithm details are useful for capture and compare. The healthcare system documented extensive details including patient medical records and diagnosis data from childhood to all ages. The habitats can interpret this big data, and shows the lifestyle and habits of the patient.

Healthcare system analyzing: In the healthcare sector, collection of data is simple because all the data is computerized. The Netherlands retains 97 percent encrypted invoices including details on diagnosis, provider name and location of hospital. Hence these can be quickly recovered. ZorgprismaPubliek, a small organization that utilizes IBM Watson cloud technologies to review the invoices. If some mishap happens, it automatically understands it and takes the appropriate steps. For this function, it enhances and prevents hospitalization of patients.

Diagnostic and imaging sector: It's a really important and active field in the healthcare sector which requires AI technology. Until now, 50 startups that focus on AI for health care have been created. They concentrate mainly on patients' emotional health, obesity, respiratory problems and wearables. Collection of businesses and start-ups in AI's healthcare research space
Prognosis - In the healthcare sector, the presumption of positive solutions is very significant. To order to increase their survival, it is extremely important to accurately classify high-risk patients in a healthcare setting. ANNs profit from the relationship between variables in the measurement of complex cancer outcomes. In patients with breast and colorectal cancer, neural networks predict recovery. The findings of lung and prostate cancer are also investigated.

How is AI used in drug discovery? (22-23)

Current drugs are guided, i.e. a established purpose is used to scan for small molecules that disrupt or affect their cell activity.

- Such methods function well with a specific structure and a detailed understanding of associations within the cell for conveniently therapeutic targets.
- However, these methods are strongly restricted, considering the complexities of cellular dynamics and the limited understanding of intricate cell pathways.
- AI will resolve these problems by recognition of new associations and functional relevance of various cell route components.
- For eg, a dataset of sequences of RNA can be used to identify genes associated with a particular cell state. To extract useful knowledge from a large dataset, AI uses complicated algorithms and machine learning.
- Furthermore, the AI can be used to classify substances which may bind to 'irregular goals,' that is, proteins which are not organized. In a very short time, iterative models will rapidly detect various associations with small protein pieces. Predictive compound collection can be observed.
Atom-wise (23-25)

Applications: Deplete resources and time spent on drug compounds by researchers. Atomic AI study also produces more effective agricultural pesticides in AI Drug Discovery: Atomic Release of Atomic Network, the first deep CNN-based system, called AtomNet, which has established the bioactivity of small molecules for applications for drug-detection. This shows how AI models bioactivity and chemical reactions with local properties and hierarchical systems.

AtomNet

AI Research Guidelines: Invest molecular discovery programs and concentrate on crop protection compounds which, in partnership with Monsanto, are key agrochemical research and development focus areas.

Two XAR (26-28)

Applications: Identify drug candidates by uncovering new theories of the physiology of diseases backed by evidence from the real world.

AI Drug Discovery: TwoXAR uses AI to test disease-efficacy compound libraries to discover new drug candidates from a general library and to classify biological targets

• The development of a computational model of rheumatoid arthritis (RA) that greatly enriched FDA-approved RA therapies among top candidates.

• Team with Stanford Asian Liver Center to investigate TXR-311, an experimental treatment for liver cancer. This drug has shown good effectiveness in cell-based assays.
• Assess factors and combine pairs of medications related to reduced 5-year mortality with online health reports of breast cancer patients.

• Differential expression of genes from 14 data sets for the expression of the breast cancer gene. AI Study Guidance: Emphasis on alternative therapies, such as diabetes, in a certain field of disease. Technology Level: TRL 4. Currently developed in a laboratory environment, with animal models being tested for tests.

Structural Biotechnology(29-31)

Applications: Increase the progress of work into cellular biology and drug discovery programs by identifying protein structures, complexes and medication goals.

AI Drug Discovery: Structural Biotechnologies' AI technology is based on computer vision and machine learning models on cryo-EM (2D structure) data to understand proteins and molecular complexes' detailed 3D spatial structure. Structure has developed a program, called the cryoSPARCSystem™, which enables heterogeneous reconstruction ab initio 3D and fast, high-resolution refinement of cryo-EM density maps on a single GPU in minutes.

Future Prospects (32)

One of the new advances in AI adoption to speed up drug discovery is the recent approval by the European Medicines Agency for the Care of Charcot-Marie-Tooth's Pediatric Investigation Strategy Pharnext for its PXT3003 medication. Pharnext is a pioneering French biopharmaceutical firm that uses AI in pharmaceuticals based on broad genomic evidence. Growing volumes of reports of
product development helped by IA can also be anticipated in the coming years from existing pharmaceutical firms and smaller newcomers.

Also, the ability of AI algorithms to identify uses may be one of the next steps to increase the use of AI in the pharmaceutical industry. Judea Pearl, a winner of the 2011 Turing Award and AI father presenting the AI probabilistic approach, emphasized the causal basis of their architecture for the next generation of AI algorithms. A causal inference paradigm can replace reasoning based on cause-based reasoning by identifying connections between a cause and its outcome.

India will take artificial intelligence as a central consideration in its national security program. At the time when AI is regarded by the Indian government as a key component of US Japanese international politics and parallel treatment, proposals are being discussed throughout India; the Indian government will establish an ambitious new technology growth strategy that will have long-term strategic repercussions. 49 The cyber-great challenge idea of DARPA needs to be analyzed in-depth in order to effectively stimulate universities and industry. If the AI system defeats World Champion Lee Sedol, AlphaGo, in the old board game go by four-on-one, man's worst fear the technological dominance of humans. Meanwhile, a group of extremely motivated technologists has astonished the world with their innovative, AI-enhanced cultivation methods, which revolutionizes agriculture. Whether AI's development continues on and one day briskly stops or is massive enough to enslave society or it symbiotically lives with a man and supports the goal of the common good. Despite the result, we will be updated on the path to a modern age. Nurture believes in the mission of good parenting and a vision for improving higher education through creative models. They partner with different universities to teach Artificial Intelligence to threaten young India with advanced technologies.
Conclusion;

Artificial Intelligence can influence all professions, including pharmacy and training of Medical professionals. Recent AI experiments, show that an educator plays a vital role in effective AI development. The effect of AI in medicine will not be to replace the practitioner, but to alter and improve many of the physician's functions, and to create new positions. Awareness of innovations is important in advance so that medical education will begin to prepare students for these new roles. AI progresses further into clinical practice, we will be worried machines will do the "correct" work, and doctors will have nothing to do and will know little. It can be if we want it to be. However, just as likely new roles will emerge for health professionals, several roles which are not yet predicted, roles which require new health education.

REFERENCE

5. “A Literature of Artificial Intelligence”, Sam Olds, WRTG 3014, April 24, 2014

20. CB Insights, AI in Healthcare Heatmap: From Diagnostics to Drug Discovery Start-ups, the Category Heats Up (September 16, 2016)

21. Stamey TA, Barnhill SD, Zang Z. Effectiveness of ProstAsureTM in detecting prostate cancer (PCa) and benign prostatic hyperplasia (BPH) in men age 50 and older. J Urol 1996; 155: 436A

22. info@prescouter.com

28. https://www.biorxiv.org/content/early/2018/01/07/243998
29. https://www.nature.com/articles/nmeth.4169
32. info@prescouter.com