ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Fingerprint Recognition Technology Using Deep Learning: A Review

¹Cilpa Chinnappan, ²Dr. R Porkodi

¹PG Student (Department of Computer Science), ²Associate Professor (Department of Computer Science) ¹Bharathiar University,

²Bharathiar University

Abstract: With the development of technology there has been an increase in the need of biometrics due to the existence of technological advancements in bypassing and hacking methodologies. A fingerprint recognition technology helps to overcome these technological barriers. A fingerprint recognition technology refers to the process of identifying or confirming the identity of an individual by comparing two fingerprints. It is the most researched and reliable biometric technique for identification and authentication. It is highly accurate, unique and can never be same to two persons. Fingerprint recognition technology using deep learning such as Minutiae verification which helps to get the point of interest in a fingerprint with various methods and techniques, Core point detection based system which has a orthogonal gradient magnitudes of orientation field and CNN algorithm which is applied to analyze visual imagery which is a deep neural network.

Keywords: Fingerprint, Minutiae, Ridges, neural networks, CNN, bifurcation, etc.

1. INTRODUCTION

The unique features of an individual up to now are the biometric identifier such as fingerprint, iris, DNA structure, facial patterns and voice or typing cadence. A biometric identifier is related to the intrinsic human characteristics. Fingerprint is the most common and wide spread biometrics used due to the arrival of smart phones. Any surface that can be touched such as smart screen, door panel, and a touch pad or computer mouse has become an easy and adaptable fingerprint recognizer.

Fingerprint recognition technology has a long history which was mostly used for the identification of the criminals from a crime scene and judicial investigations. Until 19th century fingerprint were not used as a method for identifying criminals. In 1858, the chief magistrate of Hooghly district in Jungipoor, India Sir William Hershel had residents recorded fingerprints of criminals when signing business documents. After few years, a Scottish doctor Henry Faulds were working in Japan found fingerprints left by artists on

www.ijcrt.org

© 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

ancient pieces of clay inspired him to investigate more on fingerprints. Henry Faulds is said to be the pioneer in fingerprint identification but his role in this field was not appreciated in his lifetime. The raise in the technology made an impact in the people's daily life with fingerprint as an important authentication system. The fingerprints have different patterns which are made by the combination of several dermal ridges. These ridges are developed during the time in the womb, where several factors such as friction, maternal conditions, etc affect the final shape and structure. These patterns develop all over the human body, including the palms, soles, and even toe [1]. These are the reason in which we consider fingerprint patterns as a unique feature of an individual.

The aim of this paper is to study the various algorithms and techniques or methods for the fingerprint feature extraction and matching. This paper is organized as follows: In the first session the attributes of fingerprints are discussed. In the next session, features of fingerprint are described. The next session gives all the technologies used for the fingerprint feature extraction and matching. The next session gives the database available for the fingerprint extraction technology. In the next session, the outcomes of algorithms used in literatures and gives the results from different papers on the theme. In the last session advantages and disadvanges followed by the conclusion and list of references are discussed.

2. ATTRIBUTES OF FINGERPRINT

A fingerprint is an impression of a fingertip made on any plain or flat surface. Also it can be said as an ink impression of the lines upon the fingertip which is further used for identification. A fingerprint consists of ridges and valleys. Ridges are the dark area of the fingerprint and valleys are the white area between the ridges. There are mainly three major types of fingerprints The Arch, The Whorl and The Loop.

Fig. 1: Fingerprint pattern with its various attributes

2.1 The Arch

This is the rarest fingerprint and is about 5% of the world's population having this pattern. Cores and delta lacks in the Arch which makes it unique. There exits two sub- categories with The Arch pattern Plain Arch and Tented Arch.

Plain Arch: Plain Arch has raised ridges which are extended from one side to the other side of the
IJCRT2101569 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 4648

fingertip in a continuous pattern. It rarest and is approximately 5% of the total population.

• Tented Arch: Tented Arch also have raised ridges with continuous pattern as in the plain arch which is the similar feature of the plain arch and tented arch. Tented arch has pitch of the raised edge which has sharper ege than the plain arch which forms a tent like structure which makes the difference.

Fig 2: Plain Arch and Tented Arch

2.2 The Whorl

The Whorl fingerprint pattern covers 25 to 35 percent of the total population. The Whorl has core and two deltas which is the unique feature of the whorl. The similar feature of whorl with arch is the categorization. The Whorl can be categorized into two Plain Whorl and Central Pocket Whorl.

- Plain Whorl: a swirl or a spiral like structure is represented as a plain whorl which is in circular pattern. This circular pattern is unbroken. At least a single ridge results in the revolution formed at the centre.
- Central Pocket Whorl: The Central Pocket Whorl will have a smaller inner whorl with curves more than once, which is a central ridge.

Fig 3: Plain Whorl and Central Pocket Whorl

2.3 The Loop

The Loop is the most common and popular fingerprint pattern with 60 to 70 percent of the total population. The Loop pattern will have at least one core and delta. The Loop pattern can be classified into three types Ulnar Loop, Radial Loop and Central Pocket Loop.

- Ulnar Loop: Ulnar Loop pattern will have ridges turning in backward direction which has no full turn. Ulnar Loop pattern are found in small finger.
- Radial Loop: Radial Loop is similar to the Ulnar Loop but it is found in the thumb.
 - Central Pocket Loop: the Central Pocket Loop patterns have ridges which re-curve to surround the central IJCRT2101569 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4649

ww	w.ij	crt.	or	g

whorl.

Fig 4: Ulnar Loop, Radial Loop and Central Pocket Loop

2.4 Other Attributes of Fingerprint

• Double Loop Whorl: The Double loop Whorl consist of two separate loops surrounds from each other in different directions.

• Accidental: These are the patterns which douse not match with all the above mentioned patterns. These Patterns contain Tented Arch, Loop or Whorl patterns.

- Ridges: In a finger image a ridge is the curved line. Some rides are continuous curves and some of the ridges terminate a specific point called Ridge endings. Two ridges joins together at a point called Bifurcation.
- Minutiae: Bifurcation and Ridges ending are together called as Minutiae. The number and position of minutiae vary from finger to finger of a person and also vary from person to person of any particular finger.

Minutiae	Example	Minutiae	Example
ridge ending	Ξ	bridge	Z
bifurcation	₩	double bifurcation	Y
dot	≎	trifurcation	€
island (short ridge)	Ξ	opposed bifurcations	≍
lake (enclosure)	0	ridge crossing	⊠
hook (spur)	Σ	opposed bifurcation/ridge ending	≽

Fig 7: Ridges where minutiae points are considered

3. FEATURES OF FINGERPRINT:

Fingerprint Recognition means extracting different features of fingerprint during enrolment phase and matching these features during identification phase [2]. The features of fingerprint are parameters in the epidermis images seen in the fingertip which can be used to extract information for a unique person.

3.1 Local Features

These features are the unique features. These features are used for the unique characterization such as minutia points.

Global Features

These are the features which can be visualized by a human with naked eyes. The global features include core points, type lines delta and so on.

3.2 Very fine level features

These features include intra ridge details such as sweat pores.

Some other features includes the following,

- The high accuracy of fingerprint.
- It can be never same for two persons.
- It is the most economical technique.
- It is easy to use and use small storage space.

4. TECHNOLOGIES:

There are many technologies available for fingerprint recognition technology.

4.1 Fingerprint Minutiae Extraction

The point of interest in a fingerprint is known as Minutiae which includes bifurcations and ridge endings. Minutiae points are in a simplified sense, points where fingerprint ridge-lines either end (ridge-endings) or split (bifurcations) [3]. It's about 40-100 minutiae are found in a good quality fingerprint. A partial or poor quality fingerprint has an approximate of 20- 30 minutiae. The minutiae based fingerprint recognition is the most accurate method. It is the backbone of most currently available fingerprint recognition products.

Since the original image of fingerprints cannot be reconstructed using only minutiae, the minutiae based technology assists privacy issues and the minutiae are only needed to prove fingerprint individually. The fingerprints are more stable in contrast, image resolution and global distortion. The first challenge lies in extracting minutiae from a latent image. It's important to enhance the fingerprint images before minutiae matching. These extractions are of two categories,

- Methods that work directly on gray scale fingerprint images.
 - The following diagram shows different categories of extraction,

4.1.1 Unthinned Binarized Images:

Fig 8: Classification of Minutiae extraction techniques

It has three methods of extraction,

- Chain Processing: Transitions from white background to white foreground are identified by scanning the image from top to bottom and right to left. It is further expressed as an array of contour elements by tracing the contour counter clockwise and represents a pixel on contour. By tracing a ridge line along the boundary counter clockwise, a minutiae ending is located when the ridge line makes a significant left turn. Similarly if the trace makes a left turn bifurcation minutiae is found.
- Run Representations based methods: The image is pre-processed for enhancement. The image is extracted

www.ijcrt.org

© 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

from the background by segmenting and normalized to have predefined mean and variance. Local orientation and ridge frequency around each pixel is calculated which is applied into Gabor Filter (texture analysis) to enhance ridges orientation in the local orientation direction. Hence the contrast between the foreground and background increases and the noise effectively reduces. The next process is the image binarization in which the threshold value is selected as pixels having values above the threshold as white and others as black. For each image region an optimal threshold value is selected in adaptive image binarization and hence the minutiae are extracted.

Fig 9: Block Diagram of Minutiae extraction algorithm using run length method

- Ridge flow and local pixel analysis: It is a square based method to extract minutiae from Unthinned Binarized images which has 3x3 squares mask created around each pixel in a fingerprint image and the average of pixel are computed. If the average is less than 0.25 it is ridge termination minutiae and if the average is greater than 0.75 it is bifurcation minutiae.
- **4.1.2 Thinned Binarized images with image post processing:** It is also known as Skeletonization-based minutiae extraction. Pre-processing techniques are applied. Thinning is the process of continuously eliminating the edge pixels of the image without changing the topological connection of the image pixels, and transforming the uneven fingerprints image into a striped centre line image whose line width is fixed to one pixel [4]. This includes two categories,
 - Crossing Number Based: It is the most widely used minutiae extraction in this category. A skeleton image is used were the ridge flow pattern is eight-connected. The Fig 10 shows the local neighbourhood of each ridge pixel in the image is scanned using 3x3 window from which the minutiae are extracted. Then crossing value is calculated. The crossing properties can be used to classify a ridge pixel as a ending, bifurcation or non-minutiae point.

P4	РЗ	P2
P5	Р	P1
P6	P7	P8

Fig 10

The Crossing number properties are show n in fig 11

Crossing	Property
Number	
0	Isolated point
1	Ridge ending point
2	Continuing ridge
	point
3	Bifurcation point
4	Crossing point

Fig 11

- Morphology Based: This technique is based on the mathematical morphology in which the image is preprocessed to reduce the difficulty in the post-processing. Morphological operators are used to remove spurs and bridges and then true minutiae are extracted with the help of morphological hit or miss transform.
- **4.1.3 Minutiae extraction from a gray scale fingerprint images:** It is the current researched technique. This has lots of techniques to directly extract minutiae from gray scale to fingerprint without binarization and thinning. This extraction is due to the following reasons,
- Information might be lost during binarization process.
- Both Binarization and Thinning are time consuming process.
- A large number of spurious minutiae are introduced during Binarization and Thinning.
- Binarization does not clearly give clear information of latent images.
- a) Ridge Line Following based minutiae extraction technique:

This method directly extracts the minutiae from gray scale by following the ridge flow lines with help of local orientation field.

b) Fuzzy based technique for minutiae extraction: The gray scale image has two distinct levels of gray pixels. One level is darker pixels which has rides. The other level is lighter pixels which has valleys and furrows. These two levels are monitored by fuzzy logic and fuzzy rules which are applied to extract minutia.

4.2 Other technologies

- **421 Core Point Detection based Fingerprint system:** It is an algorithm based on orthogonal gradient magnitudes of orientation field of the fingerprint image for the core point deduction. An orientation field is estimated for input fingerprint image. Orientation field $\Theta(x,y)$ is represented as the ridge flow of the fingerprint of every location and is represented as $[0; \pi]$. For the fingerprint the Region of Interest (ROI) is computed. Segmentation of ROI from the fingerprint image is a common fingerprint pre-processing step within the verification process [5]. A binary mask with logical values is created by this segment.
- **422 CNN Algorithm:** A Convolutional Neural Network (CNN) is a common technique applied to analyze visual imagery which is a deep neural network. It consists of an input and an output layers and also many hidden layers. Convolutional Neural Network algorithm is an algorithm which automatically finds feature information through the machine learning training and simplifies the tedious extraction process of manual or variety of other algorithms [6].

5. DATABASE

A structured collection of fingerprints mainly used for operational or evaluation recognition purposes are the fingerprint datasets. There are many datasets available for the Friction Ridge fingerprint recognition which is as follows

- Special Database 302: Nail to Nail (N2N) challenges for Fingerprint.
- Special Database 301: Nail to Nail (N2N) Fingerprint challenges Dry Run.
- Special Database 300: Rolled Images and Uncompressed Plain from fingerprint Cards.

The commonly used software's includes Biometric Evaluation Framework, C++ code for running biometric technology evaluations and NBIS a NIST Biometric Image Software which was formerly known as NFIS.

LITERATURE SURVEY

SN O	TITLE	AUTHOR	JOURNAL	OVERVIEW OF PAPER	METHODS USED	ABSTRACT THEAM	ACCURACY RESULT OBTAINED	FUTURE V
1	Secure	V. M.	Journal of	The identification	Google	A deep	Using	Qualcom
	Finger	Praseetha	Intelligent	and validation of	pre-trained	convolution	Tensorflow	is a
	print	, Saad	System	individual were	Inception	al neural	an accuracy	technolog
	Authe	Bayezee	(IJSYS)	based on	model	network as	of 94% is	is going t
	nticati	d, S.		information	with	a pre-	achieved.	get
	on	Vadivel		system, which has	Convoluti	verification	Tested the	introduce
	Using			passwords or	onal	filter to	model with	with the
	Deep			cards for	Neural	filter out	batch sizes	feature of
	learnin			authentication. As	Networks	latent or	4,8,16 and	having
	g and			these methods are	architectur	poor	32, the best	sensors fo
	Minuti			less secure unique	e,Google	fingerprints.	result is	ultrasoun
	ae			identifies are used	Inception	Deep	obtained in	which can
	Verific			for authentication.	-v3,	learning	batch size	pass
	ation			Fingerprint	Minutiae	helps the	32	through
			· · · ·	authentication has	Verificatio	system to be		solid
				become a norm	n	accurate at		objects to
				which has no	Algorithm	detecting		capture
				vulnerability	[normaliza	and false		informati
				challenges. A	tion,	identificatio		from the
				novel experiment	Gabor	n can be		fingertips
				on fingerprint	Filter with	reduced		
				with two phases is	Gaussian	with		
	26			performed in	Function],	training		
		1.54		which the initial	KNN	with test		
1		10		phase is pre-	algorithm.	samples.		
		1.00		filtering of bad		3		
				fingerprints and		P		
				the next phase is				
				fingerprint				
				verification.				
2	Autom	Prof.	Internation	The study of	Minutia	Ву	Minutiae	There is a
	atic	Shilpa P.	al Journal	various types of	Score	considering	score	need of
	Finger	Kodgire,	of	fingerprint	matching	all	matching	research i
	print	Anju	Electronic	technologies such	technique,	biometrics	methods	the existing
	Recog	Mohan	s,	as Minutiae Score	Core point	fingerprint	were 65 -70	pattern
	nition		Communi	matching,	Detection,	recognition	%	recognition
1	Syste		cation and	fingerprint	fingerprint	is	matching,	system ar
1	ms: A		Soft	verification	verificatio	considered	core point	minutiae
1	Revie		Computin	system using	n based on	to be the	detection	extraction
1	W		g Science	artificial neural	gabor ,	most	method	to improv
			and	network, core	discrete	prominent	about 90%,	performa

			Engineerin g	point Detection	wavelet	and reliable	gabor filter	·e.
			(IJECSCS	based fingerprint	transform	mechanism.	method has	
			E)	recognition systems	and artificial	Fingerprint	95%,	
				, fingerprint	neural	recognition	artificial	
				verification based	network,	means	neural	
				on Gabor filter,	multi	matching the	network has	
				multi resolution	resolution	incoming	92.5%,	
				feature subspace	feature	fingerprint	Principal	
				analysis for	based	with stored	component	
				fingerprint	subspace	fingerprints in	analysis has	
				recognition using	analysis	the database	96.3%,	
				PCA and		which is said	Discrete	
				fingerprint		to be	wavelet	
				recognition using		templates of	transform	
				discrete wavelet		every other	method as	
				transform .		users.	95% and	
							support	
							vector	
							machine	
							method has	
							94.7%.	
							Principal	
							component	
							analysis gave	
							the most	
	1						accurate	
						~~	result.	
		231						
3	Finger	Luke	Internation	A convolutional	MENet	By using	The minutiae	In future
	print	Nicholas	al Joint	neural network	Architectu	various	extraction	explorati
	Minuti	Darlow,	Conferenc e	model called	re, Softmax	existing	model	on other
	ae	Benjami	on	MENet which is	normalize d	minutiae	exhibits	aspects o
	extract	Rosman	Biometrics	Minutiae Extraction	probabiliti	extraction	detection	fingerprin
	ion		(IJCB)	Network which has	es with	algorithms a	accuracy	identifica
	using			an automated	softmax	voting	which serve	and
	deep			supervised training	normalizat	scheme is	to argument	comparis
	learnin g			procedure and post-	ion function	implemente d	and to	comparis
				preprocessing.		to construct	improve the	which are
				Pattern		the training	existing	equally p
				recognition model		data which is	fingerprint	as machi
				is used for the		used to	identificatio	learning
						solve	n pipeline.	problems
		-	-					

				minutiae extraction.		robustness		
						and		
						portability.		
4	Recog	Xinfeng	Internation	A deep learning	Improved	In this paper	The	In future
	nition	Yang,	al Journal	fuzzy theory is	OPTA	a method of	methods	improved
	and	Qiping	of	used to classify	fingerprint	classificatio	used	method f
	classifi	Hu,	Intelligent	damaged	thinning	n of broken	perform	the
	cation	Shuaihao	and Fuzzy	fingerprint. In this	algorithm,	fingerprints	better than	classifica
	of	Li	systems	process a deep	improved	based on	other	n and
	damag			initially a	fuzzy	deep	algorithms	identifica
	ed			improved	discernibil	learning	in which the	n of
	fingerp			fingerprint	ity matrix	fuzzy	recognition	fingerprin
	rint			algorithm is used	algorithm,	theory is	rate is	can be do
	based			to refine the	fingerprint	used. Pre-	97.1%.	for better
	on			damaged	classificati	processing		recognition
	deep			fingerprint image	on	is done with		rate.
	learnin			which results in	algorithm	the help of		
	g and		1 N	the data		bifurcation		
	fuzzy			compression in of		point and		
	theory			the fin <mark>gerprin</mark> t		the end		
				image, which is	1	point is		
				needed for the		broken to		
				extraction of		get the		
				fingerprint image		m <mark>inutia. A</mark>		
				feature. Then a		fuzzy rough		
	12/ 6			deep		set is used		
		1.50		convolutional		to reduce		
1	No.			neural network is		the features		
				used to extract the		which use		
				features and fuzzy		softmax		
				rough sets are		classifier to		
				used to reduce the		classify the		
				extracted features.		damaged		
				The reduced		fingerprint		
				features are the		image.		
				inputs to the		After pre-		
				softmax classifier		processing		
				to get the		ОРТА		
				damaged		algorithm is		
				fingerprints.		used to		
				OPTA algorithm		refine the		
				is used to refine		damaged		
				the fingerprint		fingerprint		

				data and connect		image,		
				the disconnection		which helps		
				and remove the		to		
				noise.		effectively		
				Classification		extract		
				accuracy can be		fingerprint		
				improved with the		image by		
				help of softmax		deep		
				classifier to		convolution		
				reduce the		al network.		
				features.				
5	Finger	Branka	Internation	There are mainly	Convoluti	A novel	The method	The meth
	print	Stojanovi	al	four main steps	oalNerual	method for	is	unlike
	ROI	c, Oge	Telecomm	namely pre-	Network	Fingerprint	significantly	Fourier
	Segme	Marques,	unication	processing,	Algorithm	ROI	better	coefficier
	ntation	Aleksand	Uni <mark>on</mark>	samples creation	with	segmentatio	across all	based wh
	Based	ar	Jou <mark>rnal</mark>	and processing.	AlexNet	n using	methods	can be
	on	Neskovic		The CNN has tow	architectur	Deep	regarding	applied to
	Deep	, Snezana		architecture	e and	Learning	the	real laten
	Learni	Puzovic		AlexNet	LetNet	technique	fingerprint	images.
	ng			Architecture use	architectur	with the	images with	U
				for object	e	help of	the noise.	
				recognition and		Convolution		
				LeNet		al Neural		
				architecture for		Networks.		
				handwritten digits				
	15 ()			recognition.				
6	А	Wang	IEEE	The fingerprint	Convoluti	Robust	Fingerprint	Improved
	Robust	Yani,	Advanced	recognition model	onal	damaged	recognition	structure
	Damag	Wu	Informatio	based on deep	Neural	fingerprint	based on	parameter
	ed	Zhendon	n	learning put	Network,	recognition	deep	of CNN
	FInger	g, Zhang	Managem	forward a robust	Poincare	algorithm	learning has	network
	print	Jianwu,	ent	damaged	formula,	based on	higher	which
	Identif	Chen	Communi	fingerprint	activation	Convolution	robustness	obtain hig
	ication	Hongli	cates,	identification	function	al Neural	with	recognition
	Algorit		Electronic	algorithm which	with	Network of	94.73%	rate and
	hm		and	initially has a	sigmoid	deep	recognition	shorter
	Based		Automatio	central block	function,	learning is	rate.	training
	on		n Control	fingerprint which	Kernel	used which		time
	Deep		Conferenc	has a Poincare	Principal	has high		especially
	Learni		e	formula and	Componen	resistance to		for blurre
	ng		(IMCEC)	Convolutional	t Analysis	abnormal		fingerprin
				Neural Network	(KPCA),	degeneratio		
L					1	1		

				for the image	feature	n and		
				recognition, it has	Points	recognition is		
				multiple features	Matching	simpler in		
				maps with different		comparing		
				weight vectors,		with feature		
				obtaining a variety		points		
				of different features		matching		
				at the same		algorithm.		
				location.		C		
7	Patch	Jude	Internation	A new system of	Represent	An	Experiment	A deep
	Based	Ezeobiej	al	patch based latent	ation	approach	al results	learning
	Latent	esi, Bir	Conferenc	fingerprint	learning	for	show a rank	approach
	Finger	Bhanu	e on	matching using	network(R	matching	1	for minut
	print		Image	deen neural	LN).	latent to	identificatio	extraction
	matchi		Processing	networks with an	Similarity	rolled	n rate of	and
	ng		(ICIP)	improvement on	learnig	fingerprints	81.35%	exploring
	using			the previous	Network(S	using	01.00 /01	the
	deen			fingerprint	IN)	similarity of		nerforma
	learnin			matching results	Minutiae	learned		e on a lar
	σ			An optimal patch	matching	representati		fingernrin
	Б			representation and	matering	ons of		databasa
				notch similarity		patches and	1	with mix
				paten sinnanty		the minuties		imagaa
				without ferying		on the		mages
		5.		footunes		on the	K .	resolution
				reatures.		correlated		
0		D ·	T		C 1	patches.		
8	A	Ruxin	Internation	A Neural	Stacked	Samples	The highest	Multiple
	Novel	wang,		Network structure	sparse	classificatio	accuracy	teatures a
	Finger	congying	Conferenc	Stacked sparse	autoencod	n is difficult	result is	classifier
	print	Han,	e on	autoencoder	er (SAE)	because	obtained	can be
	Classif	Tiande	Pattern	(SAE) which has	neural	single	with the	considere
	ication	Guo	Recognitio	three hidden	network,	feature has	experimenta	for
	Metho		n (ICPR)	layers used to	softmax	weak	l result of	classifica
	d			learn a low-	regression,	robustness	99% with	n task, an
	Based			dimensional	fuzzy	for	the method	classifica
	on			representation	classificati	fingerprints	used.	n based
	Deep			which are features	on	with poor		original
	Learni			of the input data.		quality and		images ca
	ng					the ridge		be done.
						structure of		
						some		
L						samples		

						with a strong similarity to another type.		
9	Contac	D.Sindhu	Internation	A CNN based	CNN	A CNN	Good	Improved
	tless	ja	al Journal	model is used for	algorithm,	framework	results with	identifica
	Finger	R.	of Recent	the identification	CANNY	for	greater	n accurac
	print	Jemina	Technolog	of contact less	algorithm,	recognizing	accuracy	by
	Recog	Priyadars	y and	fingerprint	Spoofing	contactless	proving	incorpora
	nition	ini	Engineerin	recognition. A		fingerprint	huge	g greater
	and		g (IJRTE)	model is tested		images.	security.	training s
	fingerp			which is achieved		Fingerprint	Threshold	as well a
	rint			more accurate		minutiae	value	strategies
	spoof			identification.		and	becomes	
	mitigat					particular	one with	
	ion					ridge map	maximum	
	using					region to	accuracy.	
	CNN					train a CNN		
						is done.		
10	Touch	RUggero	Internation	Recognition	Parametric	To increase	These	Rather th
	less	Donida	al j <mark>ournal</mark>	methods can be	algorithm,	the	results	two-
	fingerp	Labati,	on Internet	divided into some	non-	usability,	predict a	dimensio
	rint	Angelo	Technolog	common steps,	parametric	ac <mark>ceptabilit</mark>	touch less	and three
	Biome	Geoverse	У	Acquisition,	algorithm	y and	based	dimensio
	trics:	,		computation, of a	· · · ·	accuracy of	fingerprint	classifica
	А	Vincenzo		touch -equivalent		the	recognition	n some
	survey	Piuri,		image, feature		fingerprint	technique	other
	on 2D	Fabio		extraction and		recognition	with the	classifica
	and 3D	Scotti		matching.		technology	two-	n
	Techn					touch less	dimensional	technique
	ologies					system can	and three-	can be us
						be used.	dimensional	for
							classificatio	improved
							n with more	accuracy.
							accuracy.	

6. ADVANTAGES AND DISADVANTAGES

6.1 ADVANTAGES

The advantages of Fingerprint recognition technology are as follows,

- Security: There is a big improvement on passwords and identity cards but still they can be hacked. Fingerprints are harder to make fake .
- Ease of use: it is very easy for the users which don't require struggling to remember passwords or being forgotten to take the ID.
- Non-transferable: fingerprints are non-transferable which cannot be shared to others.
- Accountability: fingerprint provides vast level of accountability at work. Certain condition in which incidents occur this can be used as evidence.
- Cost Effective: As a vast improvement in the technology fingerprint recognition is cost effective.

6.2 DISADVANTAGES

The following are the disadvantages of fingerprint recognition system. They are as follows,

- System Failures: There is a chance for some technical failures and limitations as other electronic identification system.
- Cost: Fingerprint recognition systems are cost effective that ever, but for smaller organizations the cost for the implementation and maintenance can become a barrier.
- Exclusions: fingerprints remain relatively stable over a life time of a person. There are sections of population which are excluded with the use of this system. For example, traditional people with the manual work will find difficult to register worn prints to the system or those who don't have fingers they are excluded.

7. CONCLUSION

High uniqueness and ease of capturing makes fingerprint technology as more frequently used biometric technology. Fingerprints have been one of the most reliable methods used in forensics for human recognition [7]. The main focus of this paper is the various fingerprint recognition technologies and their techniques which includes neural networks, Minutiae extraction and so on. The various attributes of fingerprint with its variety features has also been focused. In the literature there are also methods and algorithms for the feature extraction and matching strategies. In future there is a need for research in existing pattern recognition systems which has matching strategies for the improved performance of extraction techniques.

8. REFERENCES

[1] V.M Praseetha, Saad Bayezeed, S. Vadivel, "Secure Fingerprint Authentication Using Deep Learning and minutiae Verification", Journal of Intelligent System (IJSYS), 2019

[2] Prof. Shilpa P. Kodgire, Anju Mohan, "Automatic Fingerprint Recognition Systems: A Review", International Journal of Electronics. Communication and Soft Computing Science and Engineering (IJECSCSE) volume 3, 2014

[3] Luke Nicholas Darlow, Benjamin Rosman, "Fingerprint Minutiae Extraction using Deep learning", International Conference on Biometrics (IJCB), IEEE, 2017

[4] Xinfeng Yang, Qiping Hu, Shuaihao Li, "Recognition and Classification of damaged fingerprint based on deep learning fuzzy theory", Journal of Intelligent and Fuzzy Systems, 2019

[5] Branka Stojanovic, Oge Marques, Aleksandar Neskovic, Snezana Puzovic, "Fingerprint ROI segmentation based on deep learning", International Telecommunication Union Journal, IEEE, 2016

[6] Wang Yani, Wu Zhendong, Zhang Jianwu, Chen Hongli, "A Robust damaged fingerprint identification algorithm based on deep learning", IEEE Advanced Information Management Comunicates, Electronic and Automation Control Conference (IMCEC), 2016

[7] Jude Ezeobiejesi, Bir Bhanu, "Patch based latent fingerprint matching using deep learning", International Conference on Image processing (ICIP), IEEE,2018

[8] Ruxin Wang, Congying Han, Toande Guo, "A novel fingerprint classification method based on deep learning", International Conference on Pattern Recognition (ICPR), IEEE, 2016 Sunil B. Nirmal, Kishor S. Kinage, "Contactless fingerprint recognition and fingerprint spoof mitigation using CNN", International Journal of Recent Technology and Engineering (IJRTE), volume 8,2019

[9] Ruggero Donida Labati, Angelo Genovese, Vincenzo Piuri, Fabio Scotti, "Touchless Fingerprint Biometrics: A Survey on 2D and 3D Technologies", International Journal on Internet Technology, 2014

[10] K. Thaiyanayaki, S. Syed Abdul Karim, P. VarshaParmar "Fingerprint Recognition using Discrete Wavelet Trans-form", International Journal of Computer Application volume 1 – No. 24, 2010

[11] WoonHoJung, "Fast Fingerprint Recognition Using Spi-ral", Department of Electrical and Computer Engineering, Carnegic Mellon University, spring 2005