ON \(\tau_1 \tau_2#RG\)-CONTINUOUS IN BITOPOLIGICAL SPACES AND \(\tau_1 \tau_2#RG\)-IRRESOLUTE FUNCTIONS

S. Sivanthi and S. Thilaga Leevathi

1. Assistant Professor of Mathematics, Pope’s College (Autonomous), Sawyrerpuram, Tamil Nadu - 627 251, India.
2. Assistant Professor of Mathematics, Pope’s College (Autonomous), Sawyrerpuram, Tamil Nadu - 627 251, India.

Abstract

In this paper we introduce \(\tau_1 \tau_2#rg\)-closed sets and \(\tau_1 \tau_2#rg\)-open sets in bitopological spaces and established their relationships with some generalized sets in bitopological spaces. The aim of this paper is to introduce \(\tau_1 \tau_2#rg\)-continuous functions and \(\tau_1 \tau_2#rg\)-irresolute functions by using \(\tau_1 \tau_2#rg\)-closed sets and characterize their basic properties.

Keywords: \(\tau_1 \tau_2#rg\)-closed; \(\tau_1 \tau_2#rg\)-open; \(\tau_1 \tau_2#rg\)-continuous; \(\tau_1 \tau_2#rg\)-irresolute.

1. Introduction

The concept of continuity is connected with the concept of topology. A weaker form of continuous functions called generalized continuous (briefly, \(g\)-continuous) maps was introduced and studied by Balachandran [1]. Then many researchers studied on generalizations of continuous maps. Recently, Sivanthi and Thilaga Leevathi [2] introduced and studied the properties of \(\tau_1 \tau_2#rg\)-closed sets. The purpose of this paper is to introduce the concept of \(\tau_1 \tau_2#rg\)-continuous and \(\#rg\)-irresoluteness that are characterized and their relationship with weak and generalized continuity are investigated.

2. Preliminaries

Throughout this paper \((X; \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) (or briefly, \(X\) and \(Y\)) represents a bitopological space on which no separation axiom is assumed unless otherwise mentioned. For a subset \(A\) of a bitopological space \(X\), \(\tau_2\text{cl}(A)\) and \(\tau_1\text{int}(A)\) denote the \(\tau_2\) closure of \(A\) and the \(\tau_1\) interior of \(A\), respectively. \(X \setminus A\) or \(A^c\) denotes the complement of \(A\) in \(X\). We recall the following definitions and results.

Definition 2.1 A subset \(A\) of a bitopological space \((X, \tau_1, \tau_2)\) is called:

1. \(\tau_1\tau_2\) preopen set if \(A \subseteq \tau_1\text{int}\tau_2\text{cl}(A)\) and a \(\tau_1\tau_2\) preclosed set if \(\tau_2\text{cl}\tau_1\text{int}(A) \subseteq A\).
2. \(\tau_1\tau_2\) semiopen set if \(A \subseteq \tau_2\text{cl}\tau_1\text{int}(A)\) and a \(\tau_1\tau_2\) semiclosed set if \(\tau_1\text{int}\tau_2\text{cl}(A) \subseteq A\).
3. \(\tau_1\tau_2\) regular open set if \(A = \tau_1\text{int}\tau_2\text{cl}(A)\) and a \(\tau_1\tau_2\) regular closed set if \(A = \tau_2\text{cl}\tau_1\text{int}(A)\).
4. \(\tau_1\tau_2\) \(\tau_2\)-open set if \(A\) is a finite union of regular open sets.
5. \(\tau_1\tau_2\) regular semi open if there is a \(\tau_1\) regular open \(U\) such \(U \subseteq A \subseteq \tau_2\text{cl}(U)\).

Definition 2.2 A subset \(A\) of \((X, \tau_1, \tau_2)\) is called

1. \(\tau_1\tau_2\) generalized closed set (briefly, \(\tau_1\tau_2\)-g-closed) if \(\tau_2\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).
2. \(\tau_1\tau_2\) regular generalized closed set (briefly, \(\tau_1\tau_2\)-rg-closed) if \(\tau_2\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-regular open in \(X\).
3. \(\tau_1\tau_2\) generalized preregular closed set (briefly, \(\tau_1\tau_2\)-gpr-closed) if \(\tau_2\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-regular open in \(X\).
4. \(\tau_1\tau_2\) regular weakly generalized closed set (briefly, \(\tau_1\tau_2\)-wg-closed) if \(\tau_2\text{cl}\tau_1\text{int}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-regular open in \(X\).
(5) \(\tau_1 \cap \tau_2 \) is rw-closed if \(\tau_2 \) cl(\(A \)) \(\subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \) regular semi open.
(6) \(\tau_1 \cap \tau_2 \) is \(rg \)-closed if \(\tau_2 \) cl(\(A \)) \(\subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_1 \) rw-open.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3 A map \(f : X \rightarrow Y \) is called \(\tau_1 \cap \tau_2 \) g-continuous [1] (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-continuous) if \(f^{-1}(V) \) is \(g \)-closed (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-closed) in \(X \) for every closed subset \(V \) of \(Y \).

Definition 2.4 For a subset \(A \) of a space \((X, \tau_1, \tau_2)\), \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) cl(A) = \(\cap \{ F : A \subseteq F ; F \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed in \(X \} \) is called the \(\tau_1 \cap \tau_2 \) \(#rg \)-closure of \(A \).

Definition 2.5 Let \((X; \tau_1, \tau_2)\) be a bitopological space and \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) cl(A) \(= \{ V \subseteq X : \tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) cl(X \(\setminus \) V) \(= \) X \(\setminus \) V \).

Lemma 2.6 For any \(x \in X \), \(\tau_1 \cap \tau_2 \) \(#rg \)-closed if and only if \(V \cap A \neq \emptyset \) for every \(\tau_1 \cap \tau_2 \) \(#rg \)-open set \(V \) containing \(x \).

Lemma 2.7 Let \(A \) and \(B \) be subsets of \((X; \tau_1, \tau_2)\). Then:
(1) \(\#rg \cap \tau_2 \) cl(\(\emptyset \)) = \(\emptyset \) and \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) - \(\tau_2 \) cl(X) = X.
(2) If \(A \subseteq B \), then \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) \(\tau_2 \) cl(\(A \)) \(\subseteq \) \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) \(\tau_2 \) cl(\(B \)).
(3) \(A \subseteq \tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) \(\tau_2 \) cl(\(A \)).
(4) If \(A \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed, then \(\tau_1 \cap \tau_2 \) \(#rg \) \(\cap \) cl(A) = A.
(5) \(\tau_1 \cap \tau_2 \) \(#rg \)-closure of a set \(A \) is not always \(\tau_1 \cap \tau_2 \) \(#rg \)-closed.

Remark 2.8 Suppose \(\tau_1 \cap \tau_2 \) \(#rg \) is a bitopology. If \(A \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed in \((X; \tau_1, \tau_2)\), then \(A \) is closed in \((X, \tau_1 \cap \tau_2 \) \(#rg \)).

Lemma 2.9 A set \(A \subseteq X \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-open if and only if \(F \subseteq \tau_1 \) \(int \) \(A \) whenever \(F \subseteq A \), \(F \) is \(\tau_1 \cap \tau_2 \) \(rw \)-closed.

3. \(\tau_1 \cap \tau_2 \) \(#RG \)-Continuous Functions

In this section, we introduce and study \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous functions.

Definition 3.1 A function \(f : X \rightarrow Y \) is called \(#rg \)-continuous if \(f^{-1}(V) \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed in \((X, \tau_1, \tau_2)\) for every closed subset \(V \) of \((Y, \sigma_1, \sigma_2)\).

Theorem 3.2 Every continuous map is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous map.

Proof Let \(f : X \rightarrow Y \) is continuous map then for every closed set \(A \) in \(Y \), \(f^{-1}(A) \) is closed in \(X \). Since every closed set is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed, \(f^{-1}(A) \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed in \(X \). Hence \(f \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous map.

Example 3.3 Let \(X = \{ a, b, c \} \) with topologies \(\tau_1 = \{ \emptyset, \{ a \}, \{ a, b \}, X \} \) and \(\tau_2 = \{ \emptyset, \{ a \}, \{ a, b \}, X \} \). Let \(Y = \{ 1, 2, 3, 4, 5 \} \) with topologies \(\sigma_1 = \{ \emptyset, \{ 1 \}, \{ 2, 3, 4, 5 \}, Y \} \) and \(\sigma_2 = \{ \emptyset, \{ 2 \}, \{ 3 \}, \{ 2, 3 \}, \{ 2, 3, 4, 5 \}, \emptyset \} \). A function \(F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is defined as follows: \(F(a) = \{ 2, 3 \}, F(b) = \{ 1, 2 \}, F(c) = \{ 1, 4, 5 \} \). Then, \(F \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous.

Corollary 3.1 Every \(\tau_1 \cap \tau_2 \) \(#rg \)-regular continuous map is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous.

Proof Follows from Theorem 3.2 and the fact that every \(\tau_1 \cap \tau_2 \) \(#rg \)-regular continuous map is \(\tau_1 \cap \tau_2 \) continuous.

Theorem 3.4 Every \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous map is \(\tau_1 \cap \tau_2 \) \(g \)-continuous map (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-continuous).

Proof Suppose \(f : X \rightarrow Y \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous. Let \(V \) be a closed set in \(Y \). Since \(f \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous, then \(f^{-1}(V) \) is \(\tau_1 \cap \tau_2 \) \(#rg \)-closed set in \(X \). Since every \(\tau_1 \cap \tau_2 \) \(#rg \)-closed set is \(\tau_1 \cap \tau_2 \) \(g \)-closed (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-closed) set, then \(f^{-1}(V) \) is also \(\tau_1 \cap \tau_2 \) \(g \)-closed (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-closed) set in \(X \). Thus \(f \) is \(\tau_1 \cap \tau_2 \) \(g \)-continuous (resp. \(\tau_1 \cap \tau_2 \) \(rg \)-continuous).

The converse of the above theorem is not necessarily true as seen from the following example.

Example 3.5 Let \(X = Y = \{ a, b, c \} \) with topologies \(\tau_1 = \{ \emptyset, \{ a \}, X \}, \tau_2 = \{ \emptyset, \{ a \}, \{ a, b \}, X \}, \sigma_1 = \{ \emptyset, \{ b, c \}, \{ a, c \}, \emptyset \} \) and \(\sigma_2 = \{ \emptyset, \{ b, c \}, \{ a, c \}, \emptyset \} \). Define \(f : X \rightarrow Y \) by \(f(a) = b, f(b) = a \) and \(f(c) = c \) then \(f \) is \(\tau_1 \cap \tau_2 \) \(g \)-continuous but not \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous.

Corollary 3.2 Every \(\tau_1 \cap \tau_2 \) \(#rg \)-continuous is \(\tau_1 \cap \tau_2 \) \(rwg \)-continuous and \(\tau_1 \cap \tau_2 \) \(gpr \)-continuous.
Proof Follows from Theorem 3.4 and the fact that every $\tau_1 \tau_2 \#_{rg}$-continuous map is $\tau_1 \tau_2 \#_{rg}$-continuous and $\tau_1 \tau_2 \#_{gpr}$-continuous.

Corollary 3.3 Every $\tau_1 \tau_2 \#_{rg}$-continuous is $\tau_1 \tau_2 \#_{gs}$-continuous.

Proof Follows from Theorem 3.4 and the fact that every g-continuous map is gs-continuous.

Corollary 3.4 Every $\tau_1 \tau_2 \#_{rg}$-continuous is $\tau_1 \tau_2 \#_{gs}$-continuous.

Proof Follows from Corollary 3.3 and the fact that every $\tau_1 \tau_2 \#_{gs}$-continuous map is $\tau_1 \tau_2 \#_{gs}$-continuous.

Theorem 3.6 Let $f : X \to Y$ be a function. Then the following are equivalent:
(1) f is $\tau_1 \tau_2 \#_{rg}$-continuous,
(2) The inverse image of each open set in Y is $\tau_1 \tau_2 \#_{rg}$-open in X.
(3) The inverse image of each closed set in Y is $\tau_1 \tau_2 \#_{rg}$-closed in X.

Proof
Suppose (1) holds. Let G be open in Y. Then $Y \setminus G$ is closed in Y. By (1) $f^{-1}(Y \setminus G)$ is $\tau_1 \tau_2 \#_{rg}$-closed in X. But $f^{-1}(Y \setminus G) = X \setminus f^{-1}(G)$ which is $\tau_1 \tau_2 \#_{rg}$-closed in X. Therefore $f^{-1}(G)$ is $\tau_1 \tau_2 \#_{rg}$-open in X. This proves (1) \Rightarrow (2).

Suppose (2) holds. Let V be any closed set in Y. Then $Y \setminus V$ is open in Y. By (2), $f^{-1}(Y \setminus V)$ is $\tau_1 \tau_2 \#_{rg}$-open. But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is $\tau_1 \tau_2 \#_{rg}$-open. Therefore $f^{-1}(V)$ is $\tau_1 \tau_2 \#_{rg}$-closed. This proves (2) \Rightarrow (3).

The implication (3) \Rightarrow (1) follows from Definition 3.1.

Theorem 3.7 If a function $f : X \to Y$ is $\tau_1 \tau_2 \#_{rg}$-continuous, then $f(\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A)) \subseteq \tau_2 \text{ cl}(f(A))$ for every subset A of X.

Proof
Let $f : X \to Y$ be $\tau_1 \tau_2 \#_{rg}$-continuous. Let $A \subseteq X$. Then $\tau_2 \text{ cl}(f(A))$ is closed in Y. Since f is $\tau_1 \tau_2 \#_{rg}$-continuous, $f^{-1}(\tau_2 \text{ cl}(f(A)))$ is $\tau_1 \tau_2 \#_{rg}$-closed in X and $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\tau_2 \text{ cl}(f(A)))$, implies $\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A) \subseteq f^{-1}(\tau_2 \text{ cl}(f(A)))$. Hence $f(\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A)) \subseteq \tau_2 \text{ cl}(f(A))$.

Theorem 3.8 Let X be a space in which every singleton set is $\tau_1 \tau_2 \text{rw}$-closed. Then $f : X \to Y$ is $\tau_1 \tau_2 \#_{rg}$-continuous, if $x \in \tau_1 \text{ int}(f^{-1}(V))$ for every open subset V of Y contains $f(x)$.

Proof
Suppose $f : X \to Y$ is $\tau_1 \tau_2 \#_{rg}$-continuous. Fix $x \in X$ and an open set V in X such that $f(x) \in V$. Then $f^{-1}(V)$ is $\tau_1 \tau_2 \#_{rg}$-open. Since $x \in (f^{-1}(V))$ and $\{x\}$ is $\tau_1 \tau_2 \text{rw}$-closed, $x \in \tau_1 \text{ int}(f^{-1}(V))$ by Lemma 2.9.

Conversely, assume that $x \in \tau_1 \text{ int}(f^{-1}(V))$ for every open subset V of Y containing $f(x)$. Let V be an open set in Y. Suppose $F \subseteq f^{-1}(V)$ and F is $\tau_1 \tau_2 \text{rw}$-closed. Let $x \in F$, then $\forall x \in V$ so that $x \in \tau_1 \text{ int}(f^{-1}(V))$. That implies $F \subseteq x \in \tau_1 \text{ int}(f^{-1}(V))$. Therefore by Lemma 2.9, $f^{-1}(V)$ is $\tau_1 \tau_2 \#_{rg}$-open. This proves that f is $\#_{rg}$-continuous.

Theorem 3.9 Let $f : X \to Y$ be a function. Let X and Y be any two spaces such that $\tau_1 \tau_2 \#_{rg}$ is a bitopology on X. Then the following statements are equivalent:
(1) For every subset A of X, $f(\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A)) \subseteq \tau_2 \text{ cl}(f(A))$ holds,
(2) $f : (X; \tau_1 \tau_2 \#_{rg}) \to (Y, \sigma_1, \sigma_2)$ is continuous.

Proof
Suppose (1) holds. Let A be closed in Y. By hypothesis $f(\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(f^{-1}(A))) \subseteq \tau_2 \text{ cl}(f((f^{-1}(A))) \subseteq \tau_2 \text{ cl}(A) = A$. i.e., $\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(f^{-1}(A))$. Hence, $\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(f^{-1}(A)) = f^{-1}(A)$. This implies $(f^{-1}(A)) \in \tau_1 \tau_2 \#_{rg}$. Thus $f^{-1}(A)$ is closed in $(X; \tau_1 \tau_2 \#_{rg})$ and so f is continuous. This proves (2).

Suppose (2) holds. For every subset A of X, $\tau_2 \text{ cl}(f(A))$ is closed in Y. Since $f : (X, \tau_1 \tau_2 \#_{rg}) \to (Y, \sigma_1, \sigma_2)$ is continuous, $(f^{-1}(\tau_2 \text{ cl}(f(A))))$ is closed in $(X, \tau_1 \tau_2 \#_{rg})$ that implies by Definition 2.5 $\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(f^{-1}(\tau_2 \text{ cl}(f(A)))) = (f^{-1}(\tau_2 \text{ cl}(f(A))))$. Now we have, $A \subseteq (f^{-1}(\tau_2 \text{ cl}(f(A))) \subseteq f^{-1}(\tau_2 \text{ cl}(f(A)))$ and by Lemma 2.7 (2), $\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A) \subseteq \tau_1 \tau_2 \#_{rg} \subseteq \tau_2 \text{ cl}(f(A)) = (f^{-1}(\tau_2 \text{ cl}(f(A))))$. Therefore $f(\tau_1 \tau_2 \#_{rg} - \tau_2 \text{ cl}(A)) \subseteq \tau_2 \text{ cl}(f(A))$.

Theorem 3.10 Let X, Y and Z be bitopological spaces such that $\sigma_{\tau_1 \tau_2 \#_{rg}} = \sigma$. Let $f : X \to Y$ and $g : Y \to Z$ be $\tau_1 \tau_2 \#_{rg}$-continuous functions. Then the composition $g \circ f : X \to Z$ is $\tau_1 \tau_2 \#_{rg}$-continuous.
Proof Let V be closed in (Z, μ_1, μ_2). Since g is $\tau_1 \tau_2$ #rg-continuous, $g^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in Y. Since $\sigma_{\tau_1 \tau_2}$ #rg $= \sigma$, by Remark 2.8, $g^{-1}(V)$ is closed in Y. Since f is $\tau_1 \tau_2$ #rg-continuous, $(f^{-1}(g^{-1}(V)))$ is $\tau_1 \tau_2$ #rg-closed.
i.e. $(g \circ f)^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in X. Therefore $g \circ f$ is $\tau_1 \tau_2$ #rg-continuous.

4. $\tau_1 \tau_2$ #RG-Irresolute Functions

In this section $\tau_1 \tau_2$ #rg-irresolute function is introduced and their basic properties are discussed.

Definition 4.1 A function $f : X \rightarrow Y$ is called $\tau_1 \tau_2$ #rg-irresolute if $f^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in X for every $\tau_1 \tau_2$ #rg-closed subset V of Y.

Theorem 4.2 Every $\tau_1 \tau_2$ #rg-irresolute function is $\tau_1 \tau_2$ #rg-continuous but converse is not necessarily true.

Proof Suppose $f : X \rightarrow Y$ is $\tau_1 \tau_2$ #rg-irresolute. Let V be any closed subset of Y, then V is $\tau_1 \tau_2$ #rg-closed set in Y. Since f is $\tau_1 \tau_2$ #rg-irresolute, $f^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in X. Hence f is $\tau_1 \tau_2$ #rg-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3 Let $X = Y = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, X\}$. Define $f : X \rightarrow Y$ by identity mapping then f is $\tau_1 \tau_2$ #rg-continuous but not $\tau_1 \tau_2$ #rg-irresolute.

Theorem 4.4 If map $f : X \rightarrow Y$ is $\tau_1 \tau_2$ #rg-continuous map and Y is $T_{\tau_1 \tau_2}$ #rg-space, then f is $\tau_1 \tau_2$ #rg-irresolute.

Proof Let $f : X \rightarrow Y$ is $\tau_1 \tau_2$ #rg-continuous map then inverse image of every closed set in Y is $\tau_1 \tau_2$ #rg-closed set in X. Since Y is $T_{\#rg}$-space, inverse image of every $\tau_1 \tau_2$ #rg-closed set in Y is $\tau_1 \tau_2$ #rg-closed set in X. i.e., f is $\tau_1 \tau_2$ #rg-irresolute.

Theorem 4.5 Let $f : X \rightarrow Y$ be $\tau_1 \tau_2$ #rg-open and closed. Then f maps a $\tau_1 \tau_2$ #rg-closed set in X into a $\tau_1 \tau_2$ #rg-closed set in Y.

Proof Let A be $\tau_1 \tau_2$ #rg-closed in X. Let $f(A) \subseteq U$, where U is $\tau_1 \tau_2$ #rg-open. Then $A \subseteq f^{-1}(U)$. Since f is $\tau_1 \tau_2$ #rg-irresolute, $f^{-1}(U)$ is $\tau_1 \tau_2$ #rg-open in X. Since A is $\tau_1 \tau_2$ #rg-closed, $\tau_2 cl(A) \subseteq f^{-1}(U)$ that implies $f(\tau_2 cl(A)) \subseteq \emptyset$.

Since f is closed $f(\tau_2 cl(A))$ is closed that implies $\tau_2 cl(f(A)) \subseteq \tau_2 cl(f(\tau_2 cl(A))) = f(\tau_2 cl(A)) \subseteq U$. Hence $f(A)$ is $\tau_1 \tau_2$ #rg-closed in Y.

Theorem 4.6 Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be any two functions. Let $h = g \circ f$. Then:

1. h is $\tau_1 \tau_2$ #rg-continuous if f is $\tau_1 \tau_2$ #rg-irresolute and g is $\tau_1 \tau_2$ #rg-continuous.
2. h is $\tau_1 \tau_2$ #rg-irresolute if both f and g are both $\tau_1 \tau_2$ #rg-irresolute and,
3. h is $\tau_1 \tau_2$ #rg-continuous if g is continuous and f is $\tau_1 \tau_2$ #rg-continuous.

Proof Let V be closed in Z. (1) Suppose f is $\tau_1 \tau_2$ #rg-irresolute and g is $\tau_1 \tau_2$ #rg-continuous. Since g is $\tau_1 \tau_2$ #rg-continuous, $g^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in Y. Since f is $\tau_1 \tau_2$ #rg-irresolute, using Definition 4.1, $f^{-1}(g^{-1}(V))$ is $\tau_1 \tau_2$ #rg-closed in X. This proves (1).

(2) Let f and g be both $\tau_1 \tau_2$ #rg-irresolute. Then $g^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in Y. Since f is $\tau_1 \tau_2$ #rg-irresolute, using Definition 4.1 $f^{-1}(g^{-1}(V))$ is #rg-closed in X. This proves (2).

(3) Let g be continuous and f be $\tau_1 \tau_2$ #rg-continuous. Then $g^{-1}(V)$ is closed in Y. Since f is $\tau_1 \tau_2$ #rg-continuous, using Definition 3.1, $f^{-1}(g^{-1}(V))$ is $\tau_1 \tau_2$ #rg-closed in X. This proves (3).

The next theorem follows easily as a direct consequence of definitions.

Theorem 4.7 A function $f : X \rightarrow Y$ is $\tau_1 \tau_2$ #rg-irresolute if and only if the inverse image of every $\tau_1 \tau_2$ #rg-open set in Y is $\tau_1 \tau_2$ #rg-open in X.

Definition 4.8 A function $f : X \rightarrow Y$ is said to be $\tau_1 \tau_2$ #rg-closed (resp. $\tau_1 \tau_2$ #rg-open) if for every #rg-closed (resp. $\tau_1 \tau_2$ #rg-open) set U of X the set $f(U)$ is $\tau_1 \tau_2$ #rg-closed (resp. $\tau_1 \tau_2$ #rg-open) in Y.

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882
Theorem 4.9 Let \(f : X \to Y \) be a bijection. Then the following are equivalent:

1. \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-open,
2. \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-closed,
3. \(f_1^{-1} \) is \(\tau_1 \tau_2 \#rg\)-irresolute.

Proof Suppose \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-open. Let \(F \) be \(\tau_1 \tau_2 \#rg\)-closed in \(X \). Then \(X \setminus F \) is \(\tau_1 \tau_2 \#rg\)-open. By Definition 4.8, \(f(X \setminus F) \) is \(\tau_1 \tau_2 \#rg\)-open. Since \(f \) is a bijection, \(Y \setminus f(F) \) is \(\tau_1 \tau_2 \#rg\)-open in \(Y \). Therefore \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-closed.

This proves (1) \(\Rightarrow \) (2).

Let \(g = f_1^{-1} \). Suppose \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-closed. Let \(V \) be \(\tau_1 \tau_2 \#rg\)-open in \(X \). Then \(X \setminus V \) is \(\tau_1 \tau_2 \#rg\)-closed in \(X \).

Since \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-closed, \(f(X \setminus V) \) is \(\tau_1 \tau_2 \#rg\)-closed. Since \(f \) is a bijection, \(Y \setminus f(V) \) is \(\tau_1 \tau_2 \#rg\)-closed that implies \(f(V) \) is \(\tau_1 \tau_2 \#rg\)-open in \(Y \). Since \(g = f_1^{-1} \) and since \(g \) and \(f \) are bijection \(g^{-1}(V) = f(V) \) so that \(g^{-1}(V) \) is \(\tau_1 \tau_2 \#rg\)-open in \(Y \). Therefore \(f_1^{-1} \) is \(\tau_1 \tau_2 \#rg\)-irresolute. This proves (2) \(\Rightarrow \) (3).

Suppose \(f_1^{-1} \) is \(\tau_1 \tau_2 \#rg\)-irresolute. Let \(V \) be \(\tau_1 \tau_2 \#rg\)-open in \(X \). Since \(f_1^{-1} \) is \(\tau_1 \tau_2 \#rg\)-irresolute and \(f^{-1}(X \setminus V) = f(X \setminus V) = Y \setminus f(V) \) is \(\tau_1 \tau_2 \#rg\)-closed in \(Y \) that implies \(f(V) \) is \(\tau_1 \tau_2 \#rg\)-open in \(Y \). Therefore \(f_1 \) is \(\tau_1 \tau_2 \#rg\)-open.

This proves (3) \(\Rightarrow \) (1).

Theorem 4.10 Let \(f : X \to Y \) and \(g : Y \to Z \) be two functions. Suppose \(f \) and \(g \) are \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open). Then \(g \circ f \) is \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open).

Proof Let \(U \) be any \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open) set in \(X \). Since \(f \) is \(\tau_1 \tau_2 \#rg\)-closed, using Definition 4.8, \(f(U) \) is \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open) in \(Y \). Again since \(g \) is \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open), using Definition 4.8, \(g(f(U)) \) is \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open) in \(Z \). This shows that \(g \circ f \) is \(\tau_1 \tau_2 \#rg\)-closed (resp. \(\tau_1 \tau_2 \#rg\)-open).

References