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Abstract 

   First we will study convex sets and some propositions and theorems related with it in a vector space. When a topology is 

defined on the vector space in which vector compositions are continuous, then it becomes a topological vector 

space(TVS). Our aim is to observe the convex behavior of topological terms in TVS.  

Introduction 

    In a general set A, considering its elements as points, said to be a convex set if a line joining any two points of the set A 

is completely belong to the set A. The name convex is quite similar to the convex surface i.e. a geometrical figure is convex 

if any part of its edge surface is convex. as..  

 

 

 

First three figures are convex whereas last four figures are not convex also in last four figures are collection of points in 

which a line joining two points of the set does not belong to the set, hence not convex sets. 

Definition-1       Let E is a vector space and A is a set in E. The set A is said to be a convex set in E if for every pair  ,x y  in 

E x y A    whenever 0, 0    satisfying 1    . 

Example-1         The set A={(x,y) : 5x 2  +3y 2 ≤9 } is a convex set in the vector space 2R  .      

Solution:      let    1 1 2 2, & ,x y x y  are any two points in set A then we can write 

2 2 2 2

1 1 2 25 3 9............(1),&5 3 ............(2)x y x y    now for  0, 0    satisfying 1    i.e. 1    then consider 
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the point        1 1 2 2 1 2 1 2 1 2 1 2, , , (1 ) , (1 )x y x y x x y y x x y y                   then 

2 2

1 2 1 2

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

2 2 2 2 2 2

1 1 2 2 1 2 1 2

2 2

1 2 1 2

5[ (1 ) ] 3[ (1 ) ]

5 5(1 ) 10 (1 ) 3 3(1 ) 6 (1 )

(5 3 ) (1 ) (5 3 ) 2 (1 )(5 3 )

9 9(1 ) (1 )(10 6 )........ (1) & (2)

9 18

x x y y

x x x x y y y y

x y x y x x y y

x x y y by

   

       

   

   

    

         

       

     

  2 2 2 2 2 2

1 2 1 2 1 1 2 2

2 2

1 2 1 2

2 2

1 2 1 2 1 1 2 2

(1 ) (1 )[5( ) 3( ) (5 3 ) (5 3 )]

9 18 (1 ) (1 )[5( ) 3( ) 18]

9 (1 )[5( ) 3( ) ] 9 ( , ) ( , )

x x y y x y x y

x x y y

x x y y x y x y A

   

   

   

         

        

         

   

  Which implies that A is a convex set. 

 

 

 

Theorem-1        Intersection of convex sets is convex. 

          Let 1 2&S S  are convex sets and consider two points in the intersection 1 2S S .Then they are contained in the 

individual sets 1 2&S S both . So the line segment connecting them is contained in both the sets 1 2&S S  and  

hence in the set 1 2S S . Implies that 1 2S S is a convex set. The same argument can be extended to intersection of finite 

number of sets and even infinite number of sets too. Since a polytope is an intersection of halfspaces and hyperplanes 

(linear inequalities and linear equalities), it gives an easier proof that a polytope is convex. But the same property does 

not hold true for unions. In general, union of two convex sets is not convex. A very simple example is that in the vector 

space R, intervals [1,2] and [3,4] are convex sets but their union [1,2]U[3,4] is not a convex set. 

Definition-2       Let A is a set in vector space E. The convex hull of set A, denoted by conv(A) or convA  is the intersection 

of all convex sets containing set A. Since intersection of a family of convex sets is convex therefore convA is the smallest 

convex set containing set A. If A is a finite set in vector space E i.e. { :1 }iA x i n    for n is finite, then  convA is given as 

the combinations..      convA =
1 1

{ : 0, 1,1 }
n n

i i i i

i i

x i n  
 

      . 

Definition-3       An affine set M in a vector space E is defined as the translation of a subspace S of E by an element 𝛂∈E, 

where the subspace S is unique for the affine set M and hence we can say that the subspace S is uniquely determined by M 

and then we say that S is parallel to M. Thus M is an affine set if M=𝛂+S for S being a subspace of E determined by M and 

for some 𝛂∈E. 

Definition-4       Let A is a set in vector space E then affine hull of set A is defined as the intersection of all affine sets 

containing the set A. Affine hull of  a set A is denoted by aff(A) or aff A  . The intersection of a family of affine sets is an 

affine set therefore aff(A) is a smallest affine set containing set A. Affine hull and convex hull of a set A is related with a 

relation given by aff(A) = aff( convA ) = aff( A  ).  

Definition-5      Let A is a non-empty set in a vector space E and α∈A, then the point α is called a relative interior point of 

convex set A if there exists an open sphere S centered at point α such that S∩aff(A)⊂A  i.e. α is an interior point of set A 

relative to aff(A).  The set of all relative interior points of set A is called relative interior of set A and denoted by ri(A). The 

set A is called relative open if relative interior of set A is A itself i.e. ri(A) = A.   
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Theorem-2          When A is convex then ri(A) is non-empty. 

                  Now, when A is convex , then for two points α,β ∈ A then the line joining these two points is completely 

contained in an open sphere contained in the set A and the lines α+0 and β+0 lie in aff(A) , then we observe that the line 

α+β ∈ S∩aff(A) then the set ri(A) is non-empty. 

Theorem-3         A subset A of vector space nR  is convex iff convex combination of points of set A is again in set A.  

 The convex combination of two points 1 2,x x A  is written as 1 1 2 2 1 2; 1x x       where 1 2, 0    . when A is convex 

then 1 1 2 2x x A    and after generalizing this concept for n elements we will find the convex combination of n elements 

of set A is again in set A. Conversely, if convex combination of n elements of set A belongs to the set A then by putting n=2, 

we find the convex combination of any two elements  1 2,x x A , 1 1 2 2x x A    then A is a convex set. Which proves the 

theorem. 

Proposition-1     The translation α+A and magnification αA for ∈E of a convex set A in vector space E is a convex set. 

 Generalizing this concept, we will find that the sum of two convex sets A and B in vector space E defined as 

{ : , }A B        is a convex set in E and the product AB={ : , }A B     is a convex set. 

Definition-5      Let E is a vector space over a field K(real or complex) and a topology τ is defined on it. The set E is called a 

topological vector space if the maps  (I) ( , )x y x y   from E E E     and (II) ( , ) .x x   from K E E    are 

continuous and then it is abbreviated by TVS. The topology defined on E E  is the product  

 

topology    and the topology defined on K E  is the product topology    where μ is the usual topology defined on 

the field K. 

Proposition-2       If E is a TVS , then for convex subset A of E, if  
0

&x A y A   then the open line segment joining &x y  is 

interior to A. i.e. 
0

&x A y A   then for a scalar 0 1   , 
0

(1 )x y A     .  

Proposition-3       If A is a convex set in a TVS E such that 
0

A   , then the closure A  of A is equal to the closure of 
0

A  and 

the interior 
0

A of A is equal to the interior of A  i.e. 
0

( )A A   and 
00

( )A A  . 

Theorem-4        Let E is a TVS and A is a convex set in E, then 
0

&A A  are also convex sets in E. 

Proof:          We know that 
0

A A  therefore, for any 
0 0 0

, &x y A x A y A      which implies that 
0

&x A y A  , then by 

using proposition-2, for a scalar 0 1   , 
0

(1 )x y A     which implies that 
0

A  is convex. 

Now to show that A  is convex, let ,x y A  and α,β>0 such that α+β=1. Let N be a neighborhood of x y  . By the 

definition-5, the mapping (u,v)→αu+βv is continuous from E×E→E, therefore, there exist a neighborhood U of x  and a 

neighborhood V of y such that U V N   . Now, since U∩A≠ɸ and V∩A≠ɸ therefore we can have a∈U∩A and b∈V∩A 

such that αa+βb∈N∩A⇒ αa+βb∈ A  . since x ∈U∩A  and y ∈V∩A therefore x y  ϵ A  which implies that A  is convex. 

Result  

Proposition-2, proposition-3 and theorem-4 clears that the behavior of topological terms like interior and closure of a set 

A changes when A is convex.  
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