ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Uniform spaces

Dr. Ranjan Kumar Singh

Dept. of Mathematics. R.R.M. Campus Janakpur, (T.U) Nepal.

Abstract :-

This paper deals with the concepts in the theory of uniform spaces. We also observe that the neighbourhood system of X for each U in the uniformity and consequently the family of all sets U[X] for U in v is the base for the neighbourhood. Since again we conclude that the uniformity in inherited by subsets of a uniform space by restriction.

Key-words: - Uniform Structure, Subbase, Uniform Space, Interior, diagonal.

Introduction :-

In the mathematical field of topology a uniform space in a set with a uniform structure. A uniform structure on a non-empty set X was first defined by A. Weil (1937) in terms of subsets of $X \times X$. J.W. Tukey (1940) later provided as alternative description of a uniform structure using covers of X.

Basic concepts in the theory of uniform spaces:

Let X be a non-empty set. For arbitrary subsets U and V of $X \times X$, we write $V^{-1} = \{(y,x): (x,y) \in V\}$ and $U \circ V = \{(x,y): \exists Z \in X\}$ such that $(x,z) \in V$ and $(z,y) \in U\}$. It follows easily that $U \circ (V \circ W) = (U \circ V) \circ W$ and $(U \circ V)^{-1} = V^{-1} \circ U^{-1}$. We shall write U^2 for $U \circ U$. The diagonal of $X \times X$ which is denoted by $\Delta(x)$ or simply Δ defined as the set $\{(x,x): x \in X\}$. For each subsets A of X the set U[A] is defined to be $\{y: (x,y) \in U$ for some x in A

}. We write U[x] tor $U[\{x\}]$ if x is a point in X. For each U and V and each A it is true that $(U \circ V) [A] = U[V[A]]$. Clearly $(U^{-1})^{-1} = U$, U is said to be symmetric if $U^{-1} = U$.

Definition:

A uniformity or uniform structure for a set X is a non-empty family \mathcal{U} of subsets of $X \times X$ which satisfy the following conditions:

- (i) Each member of \mathcal{U} contains the diagonal \varDelta ;
- (ii) if $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$;
- (iii) If $U \in \mathcal{U}$, then $\exists V \in \mathcal{U}$ such that $V^2 \subseteq U$;
- (iv) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq X \times X$, then $V \in \mathcal{U}$ and

(v) If U and V are members of U, then $\bigcup \cap V \in U$; Elements of U are said to be vicinities. A uniform space is a set together with a uniformity for it. Thus the pair (X, \mathcal{U}) is a uniform space.

Definition:

- (i) A subfamily \mathcal{B} for a uniformity \mathcal{U} is a base for , iff each member of \mathcal{U} contains a member of \mathcal{B} .
- (ii) If \mathcal{B} is a base for \mathcal{U} ; then \mathcal{B} determines \mathcal{U} entirely, for a subsets U of $X \times X$ belongs to \mathcal{U} if U contains a member of \mathcal{B} .

Definition:

- (i) A subfamily \mathcal{B} is a subbase for \mathcal{U} if the family of finite intersections
- (ii) of members of \mathcal{B} is a base for \mathcal{U} .
- (iii) We now state the following theorem, the proof of which is simple.

Theorem:

A non-empty family \mathcal{B} of subsets of $X \times X$ is a base for some uniformity for X if and only if

- (i) Each member of \mathcal{B} contains the diagonal \varDelta ;
- (ii) If $U \in \mathcal{B}$, then $\exists V \in \mathcal{B}$ such that $V \subset U^{-1}$;
- (iii) If $U \in \mathcal{B}$, then $\exists V \in \mathcal{B}$ such that $V^2 \subset U$;
- (iv) If $U, V \in \mathcal{B}$ then $\exists W \in \mathcal{B}$ such that $W \subset \bigcup \cap V$.

Theorem:

A family \mathcal{V} of subsets of X × X is a subbase for some uniformity for X if JCR

- (i) each member of \mathcal{B} contains the diagonal Δ ;
- (ii) for each $U \in \mathcal{B}$, $\exists V \in \mathcal{B}$ such that $V^2 \subset U^{-1}$.

(iii) for each $U \in \mathcal{B}$, $\exists V \in \mathcal{B}$ such that $V^2 \subseteq U$.

In particular, the union of any collection of uniformities for X is the subbase for a uniformity for X.

Proof:

We have to show that the family \mathcal{B} of finite intersections of member of \mathcal{B} satisfies the condition of theorem (5.1).

If
$$U_1, U_2, \dots, U_n$$
 and V_1, V_2, \dots, V_n are subsets of $X \times X$ all belonging to \mathcal{B} and if $U = \bigcap_{i=1}^{n} U_i$ and

$$V = \bigcap_{i=1}^{n} V_i \text{ then } V \subseteq U^{-1} \left(or V^2 \subseteq U \right) \text{ whenever } V_i \subseteq U_i^{-1} (\text{respectively}, V_i^2 \subseteq U_i) \text{ for each i. From this}$$

observation the proof of this theorem follows.

Definition:

If (X, \mathcal{U}) is a uniform space the topology J of the uniformity \mathcal{U} , or the uniform topology is the family of all subsets T of X such that for each $X \in T$ there is $U \in U$ such that $U[x] \subseteq T$.

To verify that J is a topology is simple. In fact the union of members of J is surely a member of J. If T and S are members of J and $x \in T \cap S$, there are U and V in U such that $U[x] \subseteq T$ and $V[X] \subseteq S$, and hence $U \cap V[X] \subseteq T \cap S$ consequently $T \cap S \in J$ and J is a topology.

Theorem:

The interior of a subset *A* of *X* relative to the uniform topology is the set of all points *X* such that $U[X] \subseteq A$ for some *U* in *U*.

Proof:

To prove the theorem it is sufficient to prove that the set $B = \{X : U[X] \subseteq A \text{ for some } U \text{ in }\}$ is open relative to the uniform topology, for *B* surely contains every open subset of *A* and, if *B* is open, then $\exists U \in \mathcal{U}$ such that $U[X] \subseteq A$ and again $\exists V \in \mathcal{U}$ such that $V^2 \subseteq U$. If $y \in V[X]$ then $V[y] \subseteq V^2[X] \subseteq U[X] \subseteq A$ and $y \in B$. hence $V[X] \subseteq B$ and *B* is open.

This completes the proof.

Remark:

It follows immediately that $U[X]_{i}$ is a neighbourhood system of x for each U in the uniformity U, and consequently the family of all sets U[X] for U in U is a base for the neighbourhood system of x (the family is actually identical with the neighbourhood system). The following theorem is then clear.

Theor<mark>em</mark>:

If \mathcal{B} is a base (or subbase) for the uniformity \mathcal{U} , then for each x the family of sets U[X] for U in \mathcal{B} is a base (subbase respectively) for the neighbourhood system of x.

Remark (2) :

A uniformity is inherited by subsets of a uniform space by restriction.

If X is a uniform space for a uniformity \mathcal{U} , and Y is a subset of X, then Y is a uniform space (called subspace) under the induced (relative) uniformity

$$Y_u = \{YxY \bigcup U : U \in \mathcal{U} \text{ for } Y.$$

If \mathcal{B} is a base for , then $Y_B = \{YxY \cup U : U \in B\}$ is a base for *Y*. It can be verified that the topology of the relative uniformity \mathcal{G} is the relativized topology for.

Conclusion: Hence, the interior of a subset A of X relative to the uniform topology is the set of all points X such that $U[X] \subseteq A$ for some U in \mathcal{U} and also a uniformity is inherited by subsets of uniform space by restriction.

Reference:

www.ijcrt.org			© 2020 IJCRT Volume 8, Issue 6 June 2020 ISSN: 2320-2882	
[1]	Isbll, J. R.	:	'Uniform Space', Amer. Math. Soc. Survey, Providence, 1964.	
[2]	James, I. M.	:	'Topological and Uniform spaces', Springer verlag, Berlin, 1987. 'Topology and Uniform spaces', Springer, Science & Business media New-York, 2012.	
[3]	Janich, Klaus	:	'Topology', Springer Verlag, Berlin, 1987.	
[4]	Joshi, K. D.	:	'Introduction of general Topology', Wiley, 1983.	
[5]	Kelley, J. L.	:	'General Topology', Van Nostrand, New York, 1955.	
[6]	Kelley, J. L.	:	'General Topology', Springer verlag, 1975. 'General Topology', Dover Publications, 2017.	
[7]	Kothe, G.		'Topological vector spaces I', Springer Verlag, 1969.	