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Abstract:  The present study was undertaken to investigate the impact of effective COVID-19 vaccines in controlling or eradicating the 

disease. The proposed model was shown to be well-posed by establishing the biologically feasible regions. The qualitative analyses of the 

model  showed that there exist both disease-free and endemic equilibria, which are globally asymptotically stable if the threshold value R0 

< 1 and R0 > 1 respectively, and unstable otherwise. 

Sensitivity analysis and numerical simulations were carried out, and the results showed that the rates of recruitment and vaccination are 

very sensitive to the reproduction number; and the contact rates of the exposed individuals and environmental virus increase the infection 

in the population while increased rates of vaccination and recovery slow down the infection. 

It was therefore concluded that the influx of people into the population be reduced by placing restrictions on immigration, in order to 

eliminate the negative effect of the recruitment rate. Also, very effective COVID-19 vaccines and antiviral cures should be developed as 

these will respectively provide protection against the disease and increase recovery of any infected individual. 
 

Index Terms – SARS-CoV-2, COVID-19, Vaccination, Saturated Incidence, Reproduction number, Sensitivity, Stability 

I. INTRODUCTION 

The novel Severe Acute Respiratory Coronavirus 2 (SAR-CoV-2) that causes coronavirus disease (COVID-19) has spread rapidly since 

emerging in late 2019 leading World Health Organization (WHO) to declare the disease a global Pandemic. It is likely that the virus has a 

zoonotic origin as it is believed to have originated from bats [1], based on evidence it is spread from person to person through droplet 

expelled by an infected person, contact with contaminated surfaces [2] and faces of infected persons [3] which may also contaminate the 

environment. The incubation period ranges from 1-14 days, symptoms which could be mild, moderate or severe depending on individuals 

underlying medical conditions could develop 4-6 days after exposure. [4, 5] and asymptomatic and symptomatic transmission have been 

reported [6]. Symptoms include fever, coughing, shortness of breath, tiredness, aches, runny nose, sore throat, headaches, diarrhea, 

vomiting and some may experience loss of smell or taste [7].There is currently no specific antiviral treatment approved to cure COVID-19, 

but treatment focuses on managing symptoms as the virus runs its course. 

The implementation of non-pharmaceutical intervention such as case isolation, the closure of schools and universities, banning of mass 

gatherings or public event, mostly recently wide scale social distancing including local, national and worldwide lockdown, as much as the 

adoption of proven public health measures including testing, isolation of cases and wider social distancing to prevent onward transmission 

are critical in curbing the impact of the pandemic [8, 9]. If individuals who have recovered eventually become exposed to the virus again it 

is likely to be endemic. Therefore the development of effective vaccine will may free the entire globe from the threat of COVID-19 [10]. 

Ferguson et al also reported that while assessing the potential role of a number of public health measures aimed at reducing contact rates 

in the population as a consequence also reducing transmission of the virus, that in the absence of COVID-19 vaccine, the effectiveness of 

any one of the intervention in isolation is likely to be limited requiring multiple interventions to be combined to have a substantial impact 

on transmission. In a case where vaccines are available population immunity builds up through the epidemic, leading to an eventual rapid 

decline in case numbers and transmission dropping to low levels. Thus many infectious diseases can be prevented by vaccination of the 

susceptible population [11]. 

Additionally, Vaccines help immune system to recognize and fight pathogens such as bacteria or virus that can cause disease. Vaccines 

help prepare a person‘s body to fight potential future exposure to these pathogens by getting their immune system ready. It is well known 

that the higher the basic reproduction number the higher the proportion of the population will have to be vaccinated over time to achieve 

herd immunity [12]. Herd immunity is a form of immunity that occurs when the vaccination of a significant proportion of a population 

provides a measure of protection for individuals who have not developed immunity [13]. Immunity can be acquired naturally after an 

individual has successfully recovered from an infection, in some cases through maternal antibody in a new born baby and can also be 

induced through vaccine. Furthermore, some infections confers recovered persons with short or long immunity against re-infection [14], in 
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the case of COVID-19 whether the infection confers permanent or temporal immunity in recovered patients is not certain [10, 15]. 

Immunity acquired from vaccines requires boosting after some period of time, as vaccine effectiveness wanes with time [16]. 

Many attempts have been made to develop realistic mathematical models to investigate the transmission dynamics of COVID-19 and to 

predict the spread over the time [17, 18, 19]. As a result various control measures have also been developed to ensure that those that are most 

vulnerable are protected [20, 21, 22]. As treatment and effective vaccine are currently under study, the proposed model is formulated to 

determine the ideal vaccine coverage needed to control or eradicate the SARS-COV-2 and to analyze the effect of having an effective 

vaccines in the control or eradication of the disease. The rest of this work is organized as follows: we give the formulation of the model and 

a full description of the model’s variables and parameters in Section 2; Section 3 provides the model’s qualitative analyses, including a 

domain where the model is biologically feasible and mathematically wellposed, the existence of equilibria, a derivation of the basic 

reproduction number and stability analysis of the equilibria. We perform sensitivity analysis and numerical simulations of the model with 

graphical illustrations in Section 4. And in Section 5, the discussion and concluding remark were given. 

II. MODIFICATION/MODEL FORMULATION 

Yang and Wang [19] investigated the current outbreak of COVID-19 taking into account the role of environment in the transmission of 

virus. The model is represented with the following differential equation: 

 
 

 

 

 

 

               

 

 

 

 

 
 

Modifying the Yang and Wang model in [19] to include a vaccination class and changing the bilinear incidence to saturated incidence 

rate, together with the following additional assumptions: 

i. Once exposed to COVID-19 individual can transmit infection; 

ii. Recovered individuals can become susceptible (i.e. re-infection can occur); 

iii. Vaccinated individuals cannot be infected unless the vaccine wanes; 

iv. Based on the fact that the soil samples of the Huanan sea food wholesale market where the coronavirus broke out tested positive for 

the virus, Virus population, P, in the environment, is considered, 
 

the proposed model becomes: 
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Table 1: Description of the Model’s Variables and Parameters 

Variables and Parameters Description  

S The susceptible class 
E The exposed class 
I The infected class 
R The recovered class 
V The vaccinated class  
P The coronavirus concentration in the environmental reservoir 
  Recruitment rate of susceptible individuals (by birth or immigration) 

E  
Transmission rate between exposed and susceptible 

I  
Transmission rate between infected and susceptible 

V  
Transmission rate of indirect environment to susceptible 

3,2,1, kk  
The saturation factor that measures the inhibitory effect 


 

The period between exposure and the onset of symptoms 

  The natural mortality rate of individuals in all the classes 

w  The disease induced death 

 c  The rate of vaccination 

  Tate at which vaccinated individuals become susceptible 
  The rate of recovery 
  The rate at which recovered individual become susceptible 

1  The rate of the exposed individual contributing the coronavirus to the 

environmental reservoir 

2  The rate of the infected individual contributing the coronavirus to the 

environment reservoir 


 The rate of removal of the coronavirus from the environment 

  

III. MODEL ANALYSIS 

3.1  Positivity and Boundedness of Solutions 

It is vital to show that the solution of the model (2.2) with non-negative initial conditions are non-negative at any time, 0t . 

Lemma 1: The solutions )(),(),(),(),(),( tPtVtRtItEtS of the model (2.2) are non-negative for all 0t , with nonnegative initial 

conditions. 

Proof: We have 
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Therefore,  6
( ) ( ) 0 and , , , , ,D D t S E I R V P   R , and ( ) , , , , ,D t S E I R V P . Thus, based on Lemma 2 in [23], any 

solution of the system (2.2) is such that
6

( ), ( ), ( ), ( ), ( ), ( )S t E t I t R t V t P t R  for all 0t . 
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Theorem 1: Let )(),(),(),(),(),( tVtPtRtItEtS be the solutions of the system (2.2) with initial conditions (2.3). Let the compact set 
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Proof: The system (2.2) is split into two parts the human population )(),(),(),(),( tVtRtItEtS and the pathogen population, P(t)
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3.2  Equilibrium points of the model 

In the absence of infection the Disease free equilibrium point (DFE) is given by  
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Solving by separating the variable and integrating yields 
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For the pathogen population:  
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Hence there is one and only one intersection between the curves of )(1 Ig and )(2 Ig ; that is , there is a unique solution 
*I to the equation 

)()( *
2

*
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3.3  Local Stability of the Disease Free Equilibrium Point 

Theorem 2: If R0 < 1, then the disease-free equilibrium is locally asymptotically stable. Otherwise, it is unstable. 

Proof: To investigate the local stability of the disease-free equilibrium, a Jacobian/variational matrix is constructed as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.4  Global Stability of the Disease Free Equilibrium Point 

The global asymptotic stability (GAS) of the disease free equilibrium (DFE) state of the model is proved using the theorem by Castillo-

Chavez et al [26]. The model is written as: 
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The value of )(1   , by the Routh-Hurwitz criteria if ,02 y 03 y  then 032 yy for the quadratic equation and 

if ,02 b ,03 b 04 b then 0432 bbb for the cubic equation the roots will be negative or have negative real parts. It 

follows that all the eigenvalues )( 0EJ have negative real parts. This implies that the disease free equilibrium is locally 

asymptotically stable if 10 R .  

Also from ,0)1)(2( 04  Rwb   

1

0)1(

0

0


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R
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Hence the disease free equilibrium point 0E is locally asymptotically stable if 10 R . 

),( ZWY
dt

dW         (3.20) 

*
( , ), ( ,0) 0,dZ G W Z G W

dt
       (3.21) 

where 
3),,(  RRVSW denotes the number of uninfected individual 

3),,(  RPIEZ denotes the number of infected individual including latent, infected and the pathogen in the environment. 

The DFE of the system is denoted )0( *
0 WE  .  

The conditions below must be met to guarantee the global stability  

1H :
*),0,( WWY

dt

dW  is globally asymptotically stable (GAS) 

2H : ),,(ˆ),( ZWGAZZWG
dt

dZ  0),(ˆ ZWG for ,),( ZW  

where )0,( *WGDA z is an M-matrix (the off diagonal elements of A are non-negative) and is the region where the 

model makes biological sense. If the system (2.2) satisfies the two conditions then the following theorem holds. 
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Proof: Breaking the system into subsystems ),( VSW  and ),,( PIEZ  to have two vector valued functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.5  Local Stability of the Endemic Equilibrium Point 

Theorem 4: If for each  i = 0,1,2…5,  Ai > 0, where Ai  are defined constants, then the endemic equilibrium is locally asymptotically stable. 

Otherwise, it is unstable. 

Proof: To investigate the local stability of the endemic equilibrium, a Jacobian/variational matrix is constructed as follows: 
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Considering the reduced system )0,(WY
dt

dW  from condition 1H  
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is a GAS equilibrium point for the reduced system (3.24) to show this, the 

second equation in (3.24) is solved to obtain e tRtR )()( 0
  ; it approaches zero as t .  

Similarly the solution of the last equation gives e
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The asymptotic dynamics is dependent of the initial condition in . Thus the convergence of the solution of the reduced system 

in (3.24) is global in . To compute ),,(ˆ),( ZWGAZZWG
dt

dZ   and show 0),(ˆ ZWG  
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Hence DFE is globally asymptotically stable when 10 R . 
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Now, from the polynomial equation (3.28), if the constants Ai (i = 0,1,2…5) are all positive, then by Descartes’ rule of sign, there is no 

sign change in the polynomial equation (3.28). This implies that all the roots will be negative or complex having negative real parts. 

Hence, the endemic equilibrium is locally asymptotically stable. 

3.6  Global Stability of the Endemic Equilibrium Point 

Theorem 5: The endemic equilibrium *E of the system (2.2) is globally asymptotically stable in  , if 10 R . 

Proof: when 10 R and there exist endemic equilibrium points for the system of equation in (2.2), considering the Lyapunov function of 

the Goh-Volterra type [27]. 
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The characteristic equation associated with )( *EJ is  
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Taking the time derivative of (3.27) 
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IV. SENSITIVITY ANALYSIS AND NUMERICAL SIMULATIONS 

4.1  Sensitivity Analysis of R0 

Sensitivity Analysis is a crucial notion in epidemiology that determines the strength of each parameter in the transmission of diseases. It 

is used to determine the responsiveness of model prediction to parameter values. It is used to determine the parameters, which have high 
impact on the R0 and which intervention strategies should target. Following the approach of [22, 29], the normalized forward sensitivity 

index of R0 that depends differentially on a parameter p is defined as: 

 

  

Substituting the derivative of ),,( PIE in equation (2.2) into (3.30) 


































**3
**

3**
3

**

3

**
2

**

2
**

1

**
**

1

)
21

()
21

(

)
~~~

()
~~~

(

)
~~~

()()
~~~

(

P
P

IKP
P

IK
BIK

I

EIIKEA

EKPIES
E

EEKPIESSK

PIESVR
S

SSKPIESVR
dt

dF

PIEPIE

PIEPIE















          (3.31) 

At steady state the first equation of system (2.2) is 
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Substituting (3.30) into (3.29) and simplifying to have 
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Separating the infected terms without the double star to have 
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Obtaining the expression for A and B also the expression at steady states to have 
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With the expression in (3.34) substituted into the remaining expressions in (3.33), after some algebraic simplification gives 
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Factorizing the expression (3.36) 
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Since the arithmetic mean exceeds the geometric mean, it implies that  
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Thus 0
dt
dF for 10 R , by LaSalle’s invariance principle [28], *E

 
is globally asymptotically stable in   since 0
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Given this explicit formula for R0, we can easily derive an analytical expression for the sensitivity of R0 with respect to each parameter 

that comprises it. For example, the sensitivity index of R0 with respect to the rate of vaccination, c, is obtained as: 

 

 

 

Similarly, the obtained values for the sensitivity index of R0 with respect to other parameters, for the given base line parameter values are 

given in Table 2 below. 

Table 2: Sensitivity Indices of R0 

Parameters Baseline Values Sensitivity Indices 

  273.23 day–1  + 1.0000000000 

E  
3.11 x 10–8 person–1 day–1 + 0.4707090842 

I  
0.62 x 10–8 person–1 day–1 + 0.1748486199 

V  
1.01 x 10–8 person–1 day–1 + 0.3544422960 


 

1/7 day–1 – 0.8222819698 

 
  3.01 x 10–5 day–1 – 0.9997873333 

w  0.01 day–1 – 0.0231769544 

c  0.04 day–1 – 0.7999518430 

  0.01 day–1 + 0.7997111279 

  1/15 day–1 – 0.1545130296 

1  2.3 day–1 + 0.3515939558 

2  0.1 day–1 + 0.0028483404 


 1.0 day–1 – 0.3544422960 

From the above index table, it was revealed that the most sensitive parameter is the rates of recruitment (). Other parameters like rate of 

vaccination coverage (c) and rate of vaccine waning (), among others, are also sensitive to the reproduction number.  As a way of 

illustration, 00000.10 

R means that increasing (or decreasing)  by 10% increases (or decreases) R0 by 10%; while 

79995.00 
R
c  means that increasing (or decreasing) c by 10% decreases (or increases) R0 by 7.9995%. The interpretation of the 

sensitivity indices of other parameters follows as of that of  and c. 
 

4.2  Numerical Simulations and Results 

The numerical simulation for the COVID-19 model was carried out by Maple 18.0 software using direct substitution method to show 

solution of the model equation, the global stability of the equilibria and the effects of various transmission parameters and the rates of 

vaccination and recovery.  

Table 3: Parameter Values Used in the Model 

Parameters Baseline Values Sources 

  273.23 day–1  [19] 

E  
3.11 x 10–8 person–1 day–1 [19] 

I  
0.62 x 10–8 person–1 day–1 [19] 

V  
1.01 x 10–8 person–1 day–1 [19] 

3,2,1, kk  
[0.585 x 10–4, 1.426 x 10–4] [19] 


 

1/7 day–1 [19] 

 
  3.01 x 10–5 day–1 [19] 

w  0.01 day–1 [19] 

c  0.04 day–1 Assumed 

  0.01 day–1 Assumed 

  1/15 day–1 [30] 


 0.03 day–1 [22] 

1  2.3 day–1 [19] 

2  0.1 day–1 Assumed  


 1.0 day–1 [19] 
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The parameter values used are given in the Table 3, with initial conditions: 

.1000)0(and,50)0(,100)0(,200)0(,150)0(,500)0(  PRIEVS The results of the numerical simulations are given in 

Figures 1 – 14 to illustrate the system’s behaviour for different values of the COVID-19 model’s parameters. 

 

 

V. DISCUSSION OF RESULTS AND CONCLUSION 

5.1  Discussion of Results 

The plots in Fig. 1 and Fig.2 illustrate the global stability of the disease-free and endemic equilibria respectively, and they agree with the 

results of the global stability analyses given in Theorem 3 and 5. These imply that irrespective of the initial value of the infective, the 

disease can be controlled or wiped out from the population when R0 < 1, since from Fig. 1, the solutions converge at the disease-free 

equilibrium points. However, whenever R0 > 1, then all solutions converge to the endemic equilibrium points, rather than zero. Thus the 

disease will persist in the population until when measures are taken to lower the reproduction number below unity. The reproduction 

number of the model is R0 = 0.189 in the presence of vaccination and symptoms management (which increases the rate of recovery). When 

these controls are absent, then the contact rates increase and the reproduction number becomes R0 = 3.589. These values of R0 are 

comparable to the ones obtained in [17, 19, 22]. 

 

 

 
Fig. 1: Plot of the global stability of the disease-free 

equilibrium with various initial conditions 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 
 

 
Fig. 2: Plot of the global stability of the endemic 

equilibrium with various initial conditions 

 
Fig. 3: Plot of the populations with time at the given 

model’s parameters 
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Fig. 4: Plot of the effect of exposed contact rate, βE, on the 

exposed population 

 

 
Fig. 6: Plot of the effect of infected contact rate, βI, on the 

exposed population 
 

 

 
Fig. 8: Plot of the effect of infected contact rate, βI, on the 

infected population 
 

 

 
 

 
Fig. 5: Plot of the effect of exposed contact rate, βE, on the 

infected population 

 

 
Fig. 7: Plot of the effect of environmental virus contact rate, βP, 

on the exposed population 
 
 

 

 
Fig. 9: Plot of the effect of environmental virus contact rate, βP, 

on the infected population 
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Fig. 12: Plot of the effect of recovery rate, γ, on the 

infected population 

 
Fig. 10: Plot of the effect of vaccination rate, c, on the 

susceptible population 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 
Fig. 13: Plot of the effect of recovery rate, γ, on the recovered 

population 
 

 

 
 

 
Fig. 11: Plot of the effect of vaccination rate, c, on the 

vaccinated population 

 

 

 
 

 

 

 
 

 

 
 

 
 
 

 
 

 

 
Fig. 14: Plot of the effect of recovery rate, γ, on the susceptible 

population 
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From Fig.3, which is the plot of all the populations against time for the given parameter values in Table 3. This plot indicates that the 

susceptible population declines as a result of the infection, but later shoots up. This shooting up is attributed to the manifestation of the 

vaccine effectiveness, which consequently increases the vaccinated population. The exposed, infected and the virus populations all reduce, 

while the recovered population increases initially, but later drops, due to loss in the acquired immunity.  

Fig. 4 – Fig. 9 are plots showing the effects of the various transmission rates on the dynamics of COVID-19. Fig. 4 and Fig. 5 show 

that increasing the rate of contact with the exposed individuals (βE) increases both the exposed and the infected populations. Similarly, Fig. 

6 and Fig. 7 show that increasing the rate of contact with the infected individuals (βI) increases the exposed and the infected populations, 

while increase in the rate of contact with the virus reservoir in the environment (βP) also increases both the exposed and the infected 

populations as shown in Fig. 8 and Fig. 9. Comparisons between these plots in Fig. 4, Fig. 6, Fig. 7 and Fig. 5, Fig. 8, Fig. 9 show that 

contact with exposed individuals (βE) results to more infections more than the contacts with the other two infectious populations (i.e. the 

infected and virus reservoir populations). This is due to the fact that the exposed individuals do not show symptoms, and as such may not 

be aware of their infection status, thereby multiplying the viral load in the environment and at the same time infecting the susceptible 

individuals. Contacts with the virus in the environment (βP) also contribute to the increase of infection in the population, and hence, the 

need to take measures to clear the viruses from the environment, so as to bring down the curve of the infection in the population. 

The effect of the rate of vaccination (c) was investigated and the results shown by the plots in Fig. 10 and Fig. 11. These plots depict 

that increasing the rate of vaccination (c) declines the susceptible population and increases the vaccinated population. A direct outcome of 

this is that lesser people will be prone to the disease as more people are being protected against it via vaccination, and so, there will be a 

great reduction in the infection. 

Furthermore, we investigated the effect of the rate of recovery (γ) on the infection dynamics, the results of which are given by the plots 

in Fig. 12 – Fig. 14. Fig. 12 and Fig. 13, it was shown that increase in the rate of recovery (γ) decreases the infected population, while 

increasing the recovered population. However, it was noticed that the recovered population later declined. This is as a result of the effect of 

the immunity loss rate (), since COVID-19 is not known to confer permanent immunity. This implies that recovered individuals 

eventually lose their immunity and become susceptible again to the infection. This scenario is accounted for by the increase observed in 

the susceptible population when the rate of recovery increases, as depicted by the plot in Fig. 14.  

5.2 Conclusion 

In this research paper, we formulated and analysed an epidemic model for COVID-19 with saturated incidence rates. Intervention 

strategy focuses on vaccination and supportive treatment. The model is shown to be epidemiologically feasible and mathematically well-

posed by establishing the region where the solutions set is nonnegative. The existence and stability of both disease-free and endemic 

equilibria were obtained, and these are dependent on a threshold value, called the basic reproduction number, R0. If this value R0 < 1, the 

disease, is under control, but if R0 > 1, then COVID-19 will persist in the population. 

We performed a sensitivity analysis on R0 and the result showed that the most sensitive parameter is the rates of recruitment (). Other 

parameters like rate of vaccination coverage (c) and rate of vaccine waning (), among others, are also sensitive to the reproduction 

number. Therefore, intervention strategies should be targeted towards these parameters, among others, so that the spread of the disease 

would be reduced. The negative effect of the recruitment rate () can be reversed by reducing the influx of people into the population. This 

can be achieved if restriction is placed on immigration. Movement of people from COVID-19 endemic places should be disallowed. And if 

at all such people will be allowed entry permit for one reason or the other, they should be quarantined for a minimum period of 14 days. 

The numerical simulations performed showed that parameters like rates of contact with exposed individuals (βE), contact with 

environmental virus (βP), vaccination (c) and recovery (γ) have some effects on the dynamical spread of the disease. We therefore 

recommend that the contribution of the exposed individuals to infection be controlled by conducting mass testing for everyone irrespective 

of whether or not they show symptoms; and the use of quality face masks should be generally encouraged. This (together with frequent use 

of hand and surface sanitizers, and good personal and environmental hygiene) will also prevent contracting the viruses from the 

environment and surfaces, and as such the rate at which virus reservoirs contribute to COVID-19 will be reduced. Furthermore, very 

effective COVID-19 vaccines and antiviral cures should be developed as these will respectively provide protection against the disease and 

increase recovery of any infected individual, as obtained from the analyses of the model in the present work. 
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