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Abstract- Fuzzy random variable is a measure function from a probability space to a collection of fuzzy variables.
Based on fuzzy random theory, this paper addresses Renewal theorems for a sequence of discrete fuzzy random
variables .The relationship between the expected value of the fuzzy random renewal variable and the distribution
functions is A-pessimistic and A-optimistic values of the interarrival times is discussed. Furthermore, the fuzzy
random style of central limit theorem is provided. Finally, some limit theorems obtained in this paper can degenerate
to the corresponding classical result in stochastic renewal process.

Index terms: Probability measure, Possibility measure, fuzzy variable, fuzzy random variable, fuzzy renewal

process.

1. Introduction:

In a classical renewal process, the various variables such as interarrival times and other variables were assumed
to be inexactly and characterized to be fuzzy variables. In this context, randomness and fuzziness are merged with
each other. Consider the revised Fuzzy renewal process to deal with a type of uncertain process. Recently, a new
definition of fuzzy random variable was described in [ 6 ] and defined a measurable function from the probability
space to a collection of fuzzy variables and its expected value was defined as a scalar expected value operator.
Based on a renewal process in which the interarrival was considered as iid fuzzy random variable. Some limit

theorems obtained in this paper can degenerate to the corresponding classical result in stochastic renewal process.
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1.1. Fuzzy variables:

Let £ be a fuzzy variable on possibility space (¢,§(9),PoS),where ¢ is a universe, ,£(¢) is a power set of ¢ ,
PoS is a possibility measure on g(¢).Based on possibility measure (PoS),the necessity (Ne) and credibility (Cr) of
the fuzzy event (& > t) can be expressed by
Ne[¢>r]=1-PoS(E<r) & Crlg>r]=-[PoS(E>1) +Ne (§2r)] -w-eeee (1.1.1)

Definition:1.1.1. Let & be a fuzzy variable on possibility space (9,42(¢),PoS),and Le(0,1]. Then

a=inf(t|PosE<ry>ny AN Eiosup (elposeor>ny 0 T (11.2)
are called the A-pessimistic value and the A-optimistic value of &, respectively.

Definition: 1.1.2[ 6] Let & be a fuzzy variable on possibility space (9,2(¢),PoS).the expected value E[£] is defined

as
Eg]=fCr[g >rldr— [° Cr[E <rldr e (1.1.3)

1.2. Fuzzy random variables:

Definition: 1.2.1. A fuzzy random variable is a function &: Q —F (where F is a collection of fuzzy variable

defined on possibility space) such that for any Borel set B of R ,PoS( &(w) € B) is a measurable function of w .
Definition: 1.2.2. A fuzzy random variable & is said to be positive if and only if for any weQ,

PoS(&(w) < 0)) = 0.

Definition:1.2.3. [4 ] Let & be a fuzzy variable on the probability space (Q,cA),Pr).Then its expected value E[] is
defined by

E[¢]= fé[fooo Cr[€ = r]dr— f_ooo Cr[¢ < r]dr]Pr(dw)
provided that at least one of two integrals is finite. Especially, if & is positive fuzzy random variable, then E[&]=

fé[fooo Cr[¢ > r]dr]Pr(dw).

-

Definition:1.2.4. [4] A fuzzy random variable &1, &, & is said to be iid if and only if
{PoS( &i(w) € By), PoS( &i(w) € Ba),..., PoS( &i(w) € Bm)}, i=1,2,...,n are iid random vectors for any Borel sets By,

B2,..., Bm Oof R and any positive integer m.

2.1.Fuzzy random renewal process:

Let & denote the interarrival time between the (n-1) Mand n ™ event,n=1.2,.....respectively.
Define So=0 and Sp=¢&+ &+ . +&,vn>1 e (2.1.1)
If the interarrival times are iid fuzzy random variables on probability space (Q,-A),Pr).then the process {Sn, n > 1}
is called fuzzy random renewal process.
Let N(t) denote the total number of events that occurred by time t. Then, we have
N(t) = ryggi{nm <Sn<t} e (2.1.2)

Furthermore, for each weQ,N(t)( w) is a fuzzy variable and its membership function is
N () (M) = PoS{S, (w) <t < Sy (w)}, n=0,1,2,...  -—--mmmmm- -(2.1.3)
We call N(t) the fuzzy random renewal variable.
For each weQ, &i(w), S, (w), and N(t) ( w) are fuzzy variables and their A-pessimistic and the A-optimistic values

can be expressed by
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& (@) = inf{r|PoS[Ei(w)] <r=2} e (2.1.4)
g5 (w) = supfr|PoS[Ei(@)] =r =0 e (2.15)
Spalw) = inf{r|PoS[(Sn(w)] <Tr =X} e (2.1.6)
(@) = sup{r|PoS[(Sn(x)] =T =2} e (2.1.7)
N@®)j(w)=inf{r|PoS[(N{®)(@)] <n =X} e (2.1.8)
N(t)'"y(w)= sup{r|PoS[(N(t)(w)] = n = A}, where Ae(0,1] ~ -=-------m- (2.1.9).
It follows [14 ]from the propositionl that
Sial@) =% 8@ e (2.1.10)
Sial@) =YL &h@ e (2.1.11)
Moreover,by [ 14],we have
N@®y(@)=sup{n|Sp (@<t} e (2.1.12)
NOY(@=sup{n|S (@<t} e (2.1.13)

Note : If F,(t), F',(t) are the common distribution function of the A-pessimistic value of

&ia(w) ,i=1,2,...and A-optimistic value of &, (w),i=1,2,.....,respectively.

Then , the following given theorems [12]can be expressed as a degenerates to a sequence of iid non-negative fuzzy

random interarrival times and fuzzy random renewal variable.

2.2.Some limit theorems:

Al. The operations of fuzzy variables are determined by the generalized extension principle (4), and
denotes any continuous Archimedean t-norm with an additive generator f .

A2. IT is a nonnegative real-valued function with 77(0) = 1, and 7 is non-increasing on R+, non-decreasing on
R—.

In condition AL, the generalized extension principle provides any continuous Archimedean t-norm operator for
fuzzy variables. As to condition A2, the function 77 is called a possibility function which is used to represent
the possibility distribution of a fuzzy variable. Through possibility function 77 , we can construct convex
possibility distributions such as triangular and norm distributions of fuzzy variables, where such convexity is
critical to our desired results.

Suppose that { € n} is a sequence of fuzzy variables with the same possibility distribution 77, from [14, Lemma
5] we know the possibility distribution L § 1+:--+ &ais also non-increasing on R+, and non-decreasing on R—.

Denote = as the support of possibility function IT, i.e., the closure of subset {t € R | 77(z) >0} of R. For possibility
distribution 77 and Archimedean t-norm T with additive generaterf , since f : [0, 1] — [0, o] is continuous and
strictly decreasing, we know f ¢ 7 : R — [0, o] is nonincreasing on R—, nondecreasing on R+ with f o 77(0) =
0,and f o I7(x) =f (0) for any x €%

Now, we consider the convex hull of the composition function f - 77 on =, denoted co(f  71), which is defined
as

n
cofe I(z) =inf T A ,(F° ID)(x) Z€D)..... (2.2.1)

k=1

where the infimum is taken over all representations of z as a (finite) convex combination ) "k=1 AXk0f points of
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Z . From the knowledge of convex analysis (see Tiel [8]), we know co(f /1) is the largest convex function h(x)
such that h(x) <f °Il(x), for x €Z'.

Lemma2.2.1.let &, k=1, 2, .. .be a sequence of fuzzy variables with identical possibility distribution IT, and
Sh =&1+ - -+ &n If co(fo 71)(x) >0 for any nonzero X€ E, then

_ (Lif z=0

lim ”%sn — l0,otherwise

n—oo

Proof.The proof can be divided into the following three cases:
ase 1. z=0. We have

M%sn(O) = x+ .f:l_pxn —oTM&1(xa), ..., HEn(xn))=T(II(0), ..., 11(0)) = 1.
Case 2. z£0, z €5 . Forany {X1, X2, . . ., Xn} With X1 + - - - + xp= nz, there must be two points xiand x;,
1 <i, j<n such that xi< zand x> z, which implies T(I1(xi), [1(xj)) < I1(z).
Therefore T(IT(x1), . . ., [1(xn)) < T1(z). It follows
sup
M@= by =g THE), o HEGW)S TAI), ., T X0) <TI(Z)=0.

Case 3. z£ 0, z €£'. In this case, we note that if xk& = for some K, then f[—1] (3>."k=1 f ° TI(x«)) = 0. Therefore, by
(2.1.4) and (2.1.10), we have

= in
po @ = G, S (MEnea) )
Inf 1 3 foll(x) = co(f o )(2),
X *eodx=nz n k=1
XkEE,lS k<n
or, equivalently,
n
inf 2 foIl(xk)>n. co(f o )(2),
x1+---+xn=nz k=1
X €E,1< k<n

f71 s nonincreasing, we can deduce

< 0 (.coo10) (2)
nSn

Since

Nothing that co(f  I7)(r) >0 for any nonzero r €Z', we have
-1
pis,s £ (e (oI (2) — 0 (ns o).

THEOREM 2.2.1:

Assume &k is a sequence of ii.d. fuzzy random variables with
M E(w)(X) = TI(x - Uk(w))for almost every w € Q, whereUy, k=1, 2, . . ., are random variables with finite
expected values. If cof o II) (x) >0 for any nonzero X €%, then we have
I Ch
kZ:lgk SN E [U1].

THEOREM 2.2.2:
Assume {&k} is a sequence of i.i.d. fuzzy random variables with p &(w)(x) = I1(x — Uk(w)) for almost every @
€Q, where Uk, k=1, 2, . . ., are random variables with finite expected values. If co(f - 77)(x) >0 for any nonzero
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x €5, and E[£1] <o, then we have

lim ELZ@] = E [U4]

n—oo
Lemma 2.2.2: Suppose &, k=1, 2, . . .are fuzzy random interarrival times with p &(®) TI(x - Uk(w)) for almost
every €, where Uk are random variables, and N(t) is the fuzzy random renewal variable. If Uy >a almost
surely, then for any real number t, r>0, we have

Y051 }<fipos{ r}
Ch{ >r < on . (Ul(w) a) Pr dw.

The main result which we provide a fuzzy analogue of the central limit theorem can stated below:
THEOREM:2.2.3:

Let {&k} be a sequence of i.i.d.sequence of non-degenerate fuzzy random variables with on a probability
space (Q,A),Pr).Suppose that &1 () has a moment generating function, and let Q £=Q&:

For each n,let &n = % =181, and let @ 410¢\n) be the fuzzy Gaussian random variable determined by

co[Q&\n].Then for each a € (0, 1] there exists a constant A, such that for all n,

dH (La (S;n)f La (CDCO[Q€\n])) =< Aan_l/z-
Proof:

Now, consider the sequence of fuzzy random variables {&,}. Independence of the fuzzy random variables
implies the independence of fuzzy random variables exp(t¢;). By n-fold convolution,EX.EY=EX*EY

Eetén =E exp{(— t) Xie1§i } = [17=; Eexp{(1/n) t§; } = [E exp{(L/n)t &;}]", --—-------- (23.1)

where the Iatter expression denotes an n-fold product of fuzzy numbers. Thus for all ae (0, 1], and all n,
Ly (Ee®n) =TI Lo(Eexp{(1/n)t§;) }
= { z=IIL,z:2z; € Eexp((1/n)t&),i = 1,2, ,n}
={ z=11", Eexp((1/n) tU,): U; € Lo(&),i = 1,2,..,n}

Suppose that {Us, Uz,...} is one element of the Cartesian product {£,(§; ), L4(§2), .-}
Letting pi= EU., oi = VarUi, 1, = (1/n) XL, w; , and 62 = (1/n) X%, o

=1 EexVi = e~Ft i=1 Eexp((t/n) (U; — )
Also, expanding the m.g.f. in a second-order Taylor series with infinitesimal remainder term,

1y Eexp((t/V) (U; = 1) = ITa[1 + 2 (%) 02 + o(w)]

Let eni —tz( ) + o(n).Since £, (QE) is bounded, there is some number M such that o <M for all i. Also,

since lim Qn € co[£,, (Q&)], then .. = lim [, and ¢ = lim 62 both exist, and (y., 62) € co co[£, (QE)] . Thus by
a common lemma of calculus ([2], section 7.1),
lim T, Bexp((t/Vn) (U — ) = e~o°¢°/2,
Slutsky's Theorem [10], along with the continuity theorem for moment generating functions, then implies that, as
n —oo ,(1AV/n) ¥, (U; — 1) /0. , converges in distribution to a standard normal variable. Thus for any {U1, U,
. yeL, (&), L,(&), ...} the limiting distribution of
U_n = (Un) X1, U;, suitably normalized, is Gaussian.
Let Gn be the distribution function of (T, - i, )/(G,/Vn).
Also let ®(x; W, o2) represent the distribution function of a Gaussian random variable with mean pz and variance
2. Then the Berry-Esseen Theorem [4] states that for all n,
Sup|Gn(X) - @ (x; 0, 1)| < 6r/a3.
Thus, with Hy representing the distribution function of (1/n) ».7*., U

Su
er|Hn(x)-CD(x; Wy, o2 In| < 6(r/nd)( a2 )32,

Because the &; are nondegenerate, and £, (QX) is compact, o € (0, 1], there exists a positive value oZsuch that 0
< o2 <inf{Var(U): UeL,(¢).
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Therefore for any (u,6?) € co[£, (QE)], 02 < o2
Also, as previously stated, E | U <T, forall U e £,(&). Thus, taking Ay = 6 I'o/ 63,
sup inf
o d(U, V)< A2 2.3.2

UeLy(En)VeLr(Peocr, (Qe\n)) K ) (_ )
The left-hand side of (2.3.2) is one of the component semi-metrics of dH(La(En),La(CDCO(La (Qe\n)), - Essentially
(2.3.2) states that the limiting form of £, (g) Is contained in the set of Gaussian random variables with means and
variances belonging to co[£, (Q§\n)].
Therefore, for each i ,pi = EU; and o?=Var U;. In addition, for every n, the Berry-Esseen Theorem holds for the
sequence {U, }. That is, if Hx is the distribution function of U, ,

then for all n, f;e‘g [Ha(X) - @ (G, o2/n| < Aqn2
inf

It follows automatically that — sup [F(X) - ® (x;u, o?/n| < Aqnt?, and
FeLy($n)
since (U,6°) were arbitrary choices from co[£,(Q¢ )], also
sup inf

— di(U, V)< Ay n1?
VeLy(Peo(r, (e\m)UeL,(E,) {U. V)

This completes the proof of Theorem

Remark 1:
The public opinion poll discussed by Kwakernaak [41 is one such application. In these cases it is straightforward
to verify, or in principle to disprove, the statements,

Sup * EES
a>0 max[E [ULP, E| U | 3]<o, . (2.3.3)
and
sup . . 5
a> O(ess sup U, —essinfU;*>0 L (2.3.4)

Corollary 2.2.1.: Suppose that, in addition to the assumptions of Theorem 3.1, also (2.3.3) and (2.3.4) hold.

Suppose that (p,6%) € co[Q&], and let Tn =(&,, — p)/(c/¥n).. Also let Z = (£, -u)/o. Then, Tn converges in
distribution to the fuzzy Gaussian random variable @, (qz; , in the sense that 6, (T;,, ®¢, [qz)) —0 as n—o

Moreover, there is a constant a such that for all n, 5 (T, @, [qz7) <An?2,

Remark 2: Corollary 3.1.1 is a statement for fuzzy random variables which closely resembles the conventional
central limit theorem for real random variables.

3.CONCLUSION:

In this paper , the randomness and fuzziness are merged with each other. Consider the revised Fuzzy renewal
process to deal with a type of uncertain process. Recently, a new definition of fuzzy random variable was described
and defined a measurable function from the possibility space to a collection of fuzzy variables and its expected
value was defined as a scalar expected value operator. Based on a renewal process in which the interarrival was
considered as iid fuzzy random variable. From Lemma 2.2.1, Theorems2.2 1 and 2.2.2, we see that a critical
convexity condition is that co(f of1)(x) >0 for any nonzero x. =, which is also indispensable to the main results of
the next section. This convexity condition is determined completely by the composition of the possibility function
IT and the additive function of the chosen t-norm. The main result which we provide a fuzzy analogue of the
central limit theorem can stated and proved using distribution to the fuzzy Gaussian random variable.
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