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Abstract- Fuzzy random variable is a measure function from a probability space to a collection of fuzzy variables. 

Based on fuzzy random theory, this paper addresses Renewal theorems for a sequence of discrete fuzzy random 

variables .The relationship between the expected value of the fuzzy random renewal variable and the distribution 

functions is λ-pessimistic and   λ-optimistic values of the interarrival times is discussed. Furthermore, the fuzzy 

random style of central limit theorem is provided. Finally, some limit theorems obtained in this paper can degenerate 

to the corresponding classical result in stochastic renewal process. 

Index terms: Probability measure, Possibility measure, fuzzy variable, fuzzy random variable, fuzzy renewal 

process. 

 

1. Introduction: 

  In a classical renewal process, the various variables such as interarrival times and other variables were assumed 

to be inexactly and characterized to be fuzzy variables. In this context, randomness and fuzziness are merged with 

each other. Consider the revised Fuzzy renewal process to deal with a type of uncertain process. Recently, a new 

definition of fuzzy random variable was described in [ 6 ] and defined a measurable function from the probability 

space to a collection of fuzzy variables and its expected value was defined as a scalar expected value operator. 

Based on a renewal process in which the interarrival was considered as iid fuzzy random variable. Some limit 

theorems obtained in this paper can degenerate to the corresponding classical result in stochastic renewal process. 
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1.1. Fuzzy variables: 

       Let ξ be a fuzzy variable on possibility space (φ,℘(φ),PoS),where φ is a universe, ,℘(φ) is a power set of φ , 

PoS is a possibility measure on ℘(φ).Based on possibility  measure (PoS),the necessity (Ne) and credibility (Cr) of 

the fuzzy event (ξ > t) can be expressed by   

Ne[ξ > r ] =1-PoS(ξ < r )  & Cr[ξ ≥ r ] = 
1

2
[PoS(ξ ≥ r ) + Ne (ξ ≥r )]                       ---------(1.1.1) 

Definition:1.1.1. Let ξ be a fuzzy variable on possibility space (φ,℘(φ),PoS),and λϵ(0,1]. Then  

                 ξ𝜆=inf {𝑡|𝑃𝑜𝑆(ξ≤r)≥λ}
′   and  ξ𝜆=sup {𝑡|𝑃𝑜𝑆(ξ≥r)≥λ}

′′                                            -------- (1.1.2) 

are called the λ-pessimistic value and the λ-optimistic value of ξ, respectively. 

Definition: 1.1.2[ 6] Let ξ be a fuzzy variable on possibility  space (φ,℘(φ),PoS).the expected value  E[ξ] is defined 

as  

             E[ξ] =∫ Cr[ξ ≥ r ]dr −  ∫ Cr[ξ ≤  r ]dr 
0

−∞

∞

0
                                            --------(1.1.3) 

1.2. Fuzzy  random variables: 

Definition: 1.2.1.    A fuzzy random variable is a function ξ: ῼ →ℱ(where ℱ is a collection of fuzzy variable 

defined on possibility space) such that for any Borel set  B of ℜ   ,PoS( ξ(𝜔) ϵ B) is a measurable function of  𝜔 .  

Definition: 1.2.2. A fuzzy random variable ξ is said to be positive if and only if for any   𝜔ϵῼ, 

PoS( ξ(𝜔) ≤ 0)) = 0. 

Definition:1.2.3. [4 ] Let ξ be a fuzzy variable on the probability space (ῼ,𝒜),Pr).Then its expected value  E[ξ]  is 

defined by  

             E[ξ]= ∫ [
.

ῼ
∫ Cr[ξ ≥  r ]dr −  ∫ Cr[ξ ≤  r ]dr 

0

−∞

∞

0
]Pr (𝑑𝜔) 

provided  that  at least one of two integrals is finite. Especially, if ξ is positive fuzzy random variable, then   E[ξ]= 

∫ [
.

ῼ
∫ Cr[ξ ≥  r ]dr

∞

0
]Pr (𝑑𝜔). 

Definition:1.2.4. [4] A fuzzy random variable ξ1, ξ2,… ξn is said to be iid  if and only if  

{PoS( ξi(𝜔) ϵ B1), PoS( ξi(𝜔) ϵ B2),…, PoS( ξi(𝜔) ϵ Bm)}, i=1,2,…,n are iid random vectors for any Borel sets B1, 

B2 ,…, Bm of ℜ  and any positive integer m. 

2.1.Fuzzy random renewal process: 

       Let ξn  denote the interarrival time between the (n-1)  th and n th event,n=1.2,…..respectively. 

Define S0=0 and  Sn = ξ1+ ξ2+…+ ξn , ∀𝑛 ≥ 1                                                 ----------(2.1.1) 

If the interarrival times are iid fuzzy random variables on probability space (ῼ,𝒜),Pr).then the process {Sn, 𝑛 ≥ 1} 

is called fuzzy random renewal process. 

Let N(t) denote the total number of events that occurred by time t. Then, we have 

     N(t) =  max
𝑛≥0

{n|0 <  𝑆n ≤  t}                                                             -------------(2.1.2) 

Furthermore, for each 𝜔ϵῼ,N(t)( 𝜔) is a fuzzy variable and its membership function is 

       μN(t)( 𝜔)(n) = PoS{Sn ( 𝜔) ≤ t ≤ Sn+1 ( 𝜔)},  n=0,1,2,…                    ---------  -(2.1.3) 

We call N(t) the fuzzy random renewal variable. 

For each 𝜔ϵῼ, ξi(𝜔), Sn ( 𝜔), and N(t)( 𝜔) are fuzzy variables and their λ-pessimistic   and the λ-optimistic values  

can be expressed by 
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  ξ𝑖,λ
′ (𝜔) = inf {𝑟|𝑃𝑜𝑆[(ξi(𝜔)] ≤ r ≥ λ}                                                            ------------(2.1.4) 

  ξ𝑖,𝜆
′′ (𝜔) = 𝑠𝑢𝑝 {𝑟|𝑃𝑜𝑆[(ξi(𝜔)] ≥ r ≥ λ}                                                          ------------(2.1.5) 

  S𝑛,λ
′ (𝜔) = inf {𝑟|𝑃𝑜𝑆[(𝑆𝑛(𝜔)] ≤ r ≥ λ}                                                         ------------(2.1.6)   

 S𝑛,λ
′′ (𝜔) = 𝑠𝑢𝑝 {𝑟|𝑃𝑜𝑆[(𝑆𝑛(𝜔)] ≥ r ≥ λ}                                                        ------------(2.1.7) 

𝑁(𝑡)𝜆
′ (𝜔)= inf {𝑟|𝑃𝑜𝑆[(𝑁(𝑡)(𝜔)] ≤ n ≥ λ}                                                     ------------(2.1.8) 

𝑁(𝑡)′𝜆
′ (𝜔)= 𝑠𝑢𝑝 {𝑟|𝑃𝑜𝑆[(𝑁(𝑡)(𝜔)] ≥ n ≥ λ}, where λϵ(0,1]                         ------------(2.1.9). 

It follows [14 ]from the proposition1 that  

 S𝑛,λ
′ (𝜔) = ∑ ξ𝑖,λ

′ (𝜔)𝑛
𝑖=1                                                                                     -----------(2.1.10) 

 S𝑛,λ
′′ (𝜔) = ∑ ξ𝑖,λ

′′ (𝜔)𝑛
𝑖=1                                                                                    ----------- (2.1.11) 

Moreover,by [ 14],we have 

𝑁(𝑡)𝜆
′ (𝜔)= sup{ n | S𝑛,λ

′′ (𝜔) ≤ 𝑡}                                                                ----------- (2.1.12) 

𝑁(𝑡)𝜆
′′(𝜔)= sup{ n | S𝑛,λ

′ (𝜔) ≤ 𝑡}                                                                 ----------- (2.1.13) 

Note : If  Fλ
′ (𝑡),  F′λ

′ (𝑡) are the common distribution function of the λ-pessimistic value of  

ξ𝑖,λ
′ (𝜔) ,i=1,2,…and  λ-optimistic value of ξ𝑖,λ

′′ (𝜔),i=1,2,…..,respectively. 

Then , the following given theorems  [12]can be expressed as a degenerates to a sequence of iid non-negative fuzzy 

random interarrival times and fuzzy random renewal variable. 

 

2.2.Some limit theorems: 

A1.  The  operations  of  fuzzy  variables  are  determined  by  the  generalized  extension  principle  (4),  and 

denotes any continuous Archimedean t-norm with an additive generator f . 

A2. Π is a nonnegative real-valued function with Π(0) = 1, and Π is non-increasing on R+, non-decreasing on 

R−. 

In condition A1, the generalized extension principle provides any continuous Archimedean t-norm operator for 

fuzzy variables. As to condition A2, the function Π is called a possibility function which is used to represent 

the possibility distribution of a fuzzy variable. Through possibility function Π , we can construct convex 

possibility distributions such as triangular and norm distributions of fuzzy variables, where such convexity is 

critical to our desired results. 

Suppose that { 𝛏 n} is a sequence of fuzzy variables with the same possibility distribution Π , from [14, Lemma 

5] we know the possibility distribution µ 𝛏 1+···+ 𝛏 nis also non-increasing on R+, and non-decreasing on R−. 

 

   Denote Ξ as the support of possibility function Π, i.e., the closure of subset {t ∈ R | Π(t) >0} of R. For possibility 

distribution Π and Archimedean t-norm T with additive generaterf , since f : [0, 1] → [0, ∞] is continuous and 

strictly decreasing, we know f ◦ Π : R → [0, ∞] is nonincreasing on R−, nondecreasing on R+ with f ◦ Π(0) = 

0, and f  ◦ Π(x) = f (0) for any x ∉Ξ  

   Now, we consider the convex hull of the composition function f ◦ Π on Ξ , denoted co(f ◦ Π), which is defined 

as 

                                   n 

co(f ◦ Π)(z) = inf    Σ   𝝀 𝒌(f ◦ Π)(xk)                (z ∈Ξ)…..     (2.2.1) 

                                 k=1 

 

where the infimum is taken over all representations of z as a (finite) convex combination ∑n
k=1 λkxkof points of 
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Ξ . From the knowledge of convex analysis (see Tiel [8]), we know co(f ◦Π) is the largest convex function h(x) 

such that h(x) ≤ f ◦Π(x), for x ∈Ξ . 

 

Lemma2.2.1.Let ξ k, k = 1, 2, . . .be a sequence of fuzzy variables with identical possibility distribution Π, and 

Sn  = ξ 1 +· · ·+ ξ n. If co(f◦ Π)(x) >0 for any nonzero x∈ Ξ, then 

                                  𝐥𝐢𝐦
𝒏→∞

𝝁𝟏
𝒏

𝑺𝒏
= {𝟎,𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝟏,𝒊𝒇 𝒛=𝟎
 

 

Proof.The proof can be divided into the following three cases:  

ase 1. z = 0. We have 

                     𝝁𝟏
𝒏

𝑺𝒏
(𝟎) =      

𝒔𝒖𝒑
𝒙𝟏 + ⋯ + 𝒙𝒏 = 𝟎

̇
T(µ ξ 1(x1), . . . , µ ξ n(xn))≥ T(Π(0), . . . , Π(0)) = 1.  

Case 2. z≠ 0, z ∉Ξ . For any {x1, x2, . . . , xn} with x1 + · · · + xn= nz, there must be two points xiand xj, 

            1  ≤ i, j≤ n  such that xi≤ zand xj≥ z, which implies T(Π(xi), Π(xj)) ≤ Π(z).  

           Therefore T(Π(x1), . . . , Π(xn)) ≤ Π(z). It follows 

         𝝁𝟏
𝒏

𝑺𝒏
(𝒛) =      

𝒔𝒖𝒑
𝒙𝟏 + ⋯ + 𝒙𝒏 = 𝒏𝒛

̇
T(µ ξ 1(x1), . . . , µ ξ n(xn))≤ T(Π(x1), . . . , Π x n ) ≤ Π(z)=0.   

Case 3. z≠ 0, z ∈Ξ . In this case, we note that if xk∉ Ξ for some k, then f[−1] (∑n
k=1 f ◦ Π(xk)) = 0. Therefore, by 

(2.1.4) and (2.1.10), we have 

         𝝁𝟏
𝒏

𝑺𝒏
(𝒛) = 𝒇[−𝟏](

𝒊𝒏𝒇
𝒙𝟏 + ⋯ + 𝒙𝒏 = 𝒏𝒛

̇
 ∑ 𝒇 (µ 𝛏 𝒏(𝐱𝐤)) 𝒏

𝒌=𝟏 ) 
 

                                        Inf                               Σ   f ◦ Π (xk) ≥ co(f ◦ Π)(z), 

 

or, equivalently, 

                                        inf                  Σ   f ◦ Π (xk) ≥ n . co(f ◦ Π)(z), 

 

Since      f           is  nonincreasing, we can deduce 

                                   µ (z)≤       f           (n . co (f ◦ Π) (z))  

                                                

Nothing that co(f ◦ Π)(r) >0 for any nonzero r ∈Ξ , we have 

                                    𝝁 𝑺𝒏𝒏
𝟏 ≤     f           (n . co (f ◦ Π) (z)) → 0 (n→ ∞). 

 

THEOREM 2.2.1:  

Assume ξk is a sequence of i.i.d. fuzzy random variables with  

µ ξk(ω)(x) = Π(x - Uk(ω))for almost every ω ∈ Ω, whereUk, k=1, 2, . . ., are random variables with finite 

expected values.  If  co(f ◦ Π) (x) >0  for  any nonzero x ∈Ξ, then we have 

 

                                      Σξk            --→             E [U1]. 

THEOREM 2.2.2: 

   Assume {ξk} is a sequence of i.i.d. fuzzy random variables with µ ξk(ω)(x) = Π(x − Uk(ω)) for almost every ω 

∈Ω, where Uk, k= 1, 2, . . ., are random variables with finite expected values. If co(f ◦ Π)(x) >0 for any nonzero 

 
   

 

 

                 

 
 

 

x
1

 + · · · + x
n

= nz 

x
k
∈Ξ,1≤ k≤n 

1          

n k=1 

x
1

 + · · · + x
n

= nz 

x
k
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k=1 
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n 
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x ∈Ξ, and  E[ξ1] <∞, then we have  

                                                   lim    E [   Σξk]   =  E [U1] 

Lemma 2.2.2:  Suppose ξk, k =1, 2, . . .are fuzzy random interarrival times with µ ξk(ω)  Π(x -    Uk(ω)) for almost 

every ω  Ω, where Uk are random variables, and N(t) is the fuzzy random renewal variable. If   Uk ≥ a  almost 

surely, then for any real number t, r>0, we have 

    Ch {𝑵(𝒕)

𝒕
 ≥ r } ≤ ∫ 𝒑𝒐𝒔

.

ῼ
 { 𝟏

𝛏𝟏(𝝎)− (𝐔𝟏(𝝎)−𝐚)
≥ 𝒓   }Pr d𝝎. 

   

      The main result which we provide a fuzzy analogue of the central limit theorem can  stated below: 

THEOREM:2.2.3: 

      Let {ξk} be a sequence of i.i.d.sequence of non-degenerate  fuzzy random variables with on  a probability 

space (ῼ,𝓐),Pr).Suppose that ξ1 (x) has a  moment generating function, and let  Q ξ=Qξ1 

       For each n,let  ξ𝑛̅̅ ̅ = 
1

𝑛
∑ ξi𝑛

𝑖=1  , and let Φ𝑐𝑜[𝑄𝜉\𝑛] be the fuzzy Gaussian random variable determined by 

       𝑐𝑜[𝑄𝜉\𝑛].Then for each α ϵ (0, 1] there exists a constant   Aα such that for all n,  

            𝑑𝐻(ℒ𝛼(𝜉𝑛), ℒ𝛼(Φ𝑐𝑜[𝑄𝜉\𝑛])) ≤ 𝐴𝛼𝑛−1/2. 

Proof: 

      Now, consider the sequence of fuzzy random variables {𝜉𝑛
̅̅ ̅}. Independence of the fuzzy random variables 

implies the independence of fuzzy random variables exp(t𝜉𝑖). By n-fold convolution,EX.EY=EX*EY 

E𝑒𝑡𝜉𝑛
̅̅̅̅

 = E exp{(
1

𝑛
𝑡) ∑ 𝜉𝑖

𝑛
𝑖=1  } = ∏ Eexp{(1/n)𝑛

𝑖=1 t𝜉𝑖 } = [E exp{(1/n)t 𝜉1}]n, -----------(2.3.1.) 

 where the latter expression denotes an n-fold product of fuzzy numbers. Thus for all αϵ  (0, 1], and all n, 

     ℒ𝛼 (E𝑒𝑡𝜉𝑛
̅̅̅̅

 ) = ∏ ℒ𝛼(Eexp{(1/n)𝑛
𝑖=1 t𝜉𝑖 ) } 

                          = { z = ∏ zi: zi ∈ Eexp((1/n)𝑛
𝑖=1 t𝜉𝑖), 𝑖 = 1,2, … , 𝑛} 

                  = { z = ∏ Eexp((1/n)𝑛
𝑖=1 t𝑈𝑖): Ui ∈ ℒ𝛼(𝜉𝑖 ), 𝑖 = 1,2, … , 𝑛} 

   

Suppose that {U1, U2 ,…} is one element of the Cartesian product {ℒ𝛼(𝜉1 ), ℒ𝛼(𝜉2 ), … } 

Letting µi= EUi, σi = VarUi, µn̅̅ ̅ = (1/n) ∑ µ𝑖
𝑛
𝑖=1   , and 𝜎𝑖

2
.

̅̅ ̅̅ = (1/n) ∑ 𝜎𝑖
2𝑛

𝑖=1 . 

      ∏ 𝐸𝑒
𝑡

𝑛
𝑈𝑖𝑛

𝑖=1   = 𝑒−µn̅̅̅̅ 𝑡 ∏ Eexp((t/n)𝑛
𝑖=1 (𝑈𝑖 − µ𝑖) 

Also, expanding the m.g.f. in a second-order Taylor series with infinitesimal remainder term,  

        ∏ Eexp((t/√n)𝑛
𝑖=1 (𝑈𝑖 − µ𝑖) = ∏ [1𝑛

𝑖=1 +
1

2
(

𝑡2

𝑛
) 𝜎𝑖

2 + о(𝑛)] 

  Let θ𝑛𝑖
= 

1

2
𝑡2 (

𝜎𝑖
2

𝑛
) + о(𝑛).Since ℒ𝛼 (Qξ) is bounded, there is some number M such that 𝜎𝑖

2 ≤M for all i. Also, 

since lim Qn ϵ co[ℒ𝛼 (Qξ)], then µ∗. = lim µn̅̅ ̅  and 𝜎∗
2 = lim 𝜎𝑖

2̅̅ ̅ both exist, and (µ∗, 𝜎∗
2) ϵ co co[ℒ𝛼 (Qξ)] . Thus by 

a common lemma of calculus ([2], section 7.1),  

  lim
𝑛→∞

∏ Eexp((t/√n)𝑛
𝑖=1 (𝑈𝑖 − µ𝑖) = 𝑒−𝜎2𝑡2/2. 

Slutsky's Theorem [10], along with the continuity theorem for moment generating functions, then implies that, as 

n →∞ ,(1/√n) ∑ (𝑈𝑖 − µ𝑖)/𝜎∗
𝑛
𝑖=1  , converges in distribution to a standard normal variable. Thus for any {U1, U2, 

…} ϵ ℒ𝛼(𝜉1 ), ℒ𝛼(𝜉2 ), … } the limiting distribution of  

 𝑈𝑛
̅̅̅̅  = (1/n) ∑ 𝑈𝑖

𝑛
𝑖=1 , suitably normalized, is Gaussian.  

Let Gn be the distribution function of (𝑈𝑛
̅̅̅̅  - µn̅̅ ̅)/( 𝜎n̅̅ ̅̅ /√n). 

Also let Φ(x; µ, σ2) represent the distribution function of a Gaussian random variable with mean µz and variance 

σ2. Then the Berry-Esseen Theorem [4] states that for all n,  

Sup|Gn(x) - Φ (x; 0, 1)| < 6rn/𝜎𝑛
3.  

Thus, with Hn representing the distribution function of (1/n) ∑ 𝑈𝑖
𝑛
𝑖=1   

   
𝑠𝑢𝑝
𝑥𝜖𝑅

 |Hn(x) - Φ (x; µ𝑛, 𝜎𝑛
2 /n|  < 6(rn/n

2)/( 𝜎𝑛
2 /n)3/2. 

Because the 𝜉𝑖 are nondegenerate, and  ℒ𝛼 (QX) is compact, α ϵ (0, 1], there exists a positive value  𝜎𝛼
2such that 0 

< 𝜎𝛼
2 ≤ inf{Var(U): U𝜖ℒ𝛼(𝜉 ).  

k=1 

1 

n n→∞ 
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Therefore for any (µ,σ2) ϵ co[ℒ𝛼 (Qξ)], 𝜎𝛼
2 ≤ σ2. 

Also, as previously stated, E | U|3 ≤ Γα  for all U ϵ ℒ𝛼(𝜉 ). Thus, taking Aα = σ Γα/ 𝜎𝛼
3,  

   
𝑠𝑢𝑝

𝑈𝜖ℒ𝛼(𝜉𝑛
̅̅ ̅)

𝑖𝑛𝑓
𝑉𝜖ℒ𝛼(Φ𝑐𝑜(ℒ𝛼 (Qξ\n))  dk(U, V)< Aα n

-1/2                           ……….. (2.3.2)  

 The left-hand side of (2.3.2) is one of the component semi-metrics of dH(ℒ𝛼(𝜉𝑛
̅̅ ̅), ℒ𝛼(Φ𝑐𝑜(ℒ𝛼 (Qξ\n)), . Essentially 

(2.3.2) states that the limiting form of ℒ𝛼(𝜉𝑛
̅̅ ̅)  is contained in the set of Gaussian random variables with means and 

variances belonging to  𝑐𝑜[ℒ𝛼 (Qξ\n )].  

 Therefore, for each i ,µi = EUi  and σ2 = Var Ui . In addition, for every n,  the Berry-Esseen Theorem holds for the 

sequence {𝑈𝑛
̅̅̅̅ }. That is, if Hn is the distribution function of 𝑈𝑛

̅̅̅̅  , 

then for all n,   
𝑠𝑢𝑝
𝑥𝜖𝑅

 |Hn(x) - Φ (x;µ, σ2/n|  < Aα n
-1/2 .           

 It follows automatically that 
𝑖𝑛𝑓

𝐹𝜖ℒ𝛼(𝜉𝑛
̅̅ ̅)

   sup |F(x) - Φ (x;µ, σ2/n|  < Aα n
-1/2 ,          and  

  since (µ,σ2) were arbitrary choices from co[ℒ𝛼(𝑄𝜉 )], also  

                       This completes the proof of Theorem      
𝑠𝑢𝑝

𝑉𝜖ℒ𝛼(Φ𝑐𝑜(ℒ𝛼 (Qξ\n))
𝑖𝑛𝑓

𝑈𝜖ℒ𝛼(𝜉𝑛
̅̅ ̅)

  dk(U, V)< Aα n
-1/2  .  

 

Remark 1: 

The public opinion poll discussed by Kwakernaak [41 is one such application. In these cases it is straightforward 

to verify, or in principle to disprove, the statements,  
𝑠𝑢𝑝

𝛼 > 0
 max[E |𝑈𝛼

∗ |3, E| 𝑈𝛼
∗∗ | 3]< ∞,                                        …………….. (2.3.3)  

      and 

  
𝑠𝑢𝑝

𝛼 > 0
(ess sup 𝑈𝛼

∗ −essinf 𝑈𝛼
∗∗ >0                                        ………………(2.3.4) 

Corollary 2.2.1.: Suppose that, in addition to the assumptions of Theorem 3.1, also (2.3.3) and (2.3.4) hold. 

Suppose that (µ,σ2) ϵ co[Qξ], and let Tn =(𝜉𝑛
̅̅ ̅ − µ)/(σ/√𝑛). . Also let Z = (𝜉𝑛

̅̅ ̅ -µ)/σ. Then, Tn  converges in 

distribution to the fuzzy Gaussian random variable Φ𝑐𝑜 [QZ] , in the sense that 𝛿𝐻(𝑇𝑛 , Φ𝑐𝑜 [QZ]) →0 as n→∞ 

 Moreover, there is a constant a such that for all n, 𝛿𝐻(𝑇𝑛 , Φ𝑐𝑜 [QZ]) <An-1/2.  

Remark 2: Corollary 3.1.1 is a statement for fuzzy random variables which closely resembles the conventional 

central limit theorem for real random variables.  

 

3.CONCLUSION:  

In this paper , the randomness and fuzziness are merged with each other. Consider the revised Fuzzy renewal 

process to deal with a type of uncertain process. Recently, a new definition of fuzzy random variable was described  

and defined a measurable function from the possibility space to a collection of fuzzy variables and its expected 

value was defined as a scalar expected value operator. Based on a renewal process in which the interarrival was 

considered as iid fuzzy random variable. From Lemma 2.2.1, Theorems2.2 1 and 2.2.2, we see that a critical 

convexity condition is that co(f оΠ)(x) >0 for any nonzero x. Ξ , which is also indispensable to the main results of 

the next section. This convexity condition is determined completely by the composition of the possibility function 

Π and the additive function of the chosen t-norm. The main result which we provide a fuzzy analogue of the 

central limit theorem can  stated  and proved using distribution to the fuzzy Gaussian random variable.   
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