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Abstract: The study considers the construction of two mathematical models namely Random Staircase model and 

Snakes and ladders model. The Random Stair case model gives the minimum number of hops required to climb a 

staircase with N steps if one can hop 1 step, 2 steps, …,or k steps forward or backward at a time with equal 

probability. This is a generalization of Gambler’s Ruin problem with fortune probability equal to ½. Also a 

mathematical model for the Snakes and ladders game is constructed which is a special case of Upward Random 

Staircase model. This model can be utilized to evaluate the probability to finish the game for various movements.  

 
Index Terms–Random Staircase model, Upward Staircase model , Snakes and Ladders model 

1.INTRODUCTION 

 Staircase model comes into play when a person is moving up a staircase having N steps and can hop either 1 step, 2 

steps … or k steps  forward or backward at a time with equal probability, assuming that the person is initially at one of 

the intermediate points between ‘0’ and ‘N’. Upward staircase model is a special case of the staircase modelwhich 

consider forward hops only.Here we HAVE formulated the minimum number of hops required to reach ‘N’ assuming 

that one is at step 0. From literature review we have seen that considerable efforts have been made  for the 

development of mathematical theory of snakes and ladders game.[1],[2],[3] Here we present a more general approach for 

the snakes and ladders which  can be applied to  real life situations. 

 

2.RANDOM STAIRCASE MODEL 

 

Consider the movement of a person on a staircase between the points ‘0’ and ‘N’ (0<N). Assume that the person is 

initially at one of the intermediate points between ‘0’ and ‘N’ can climb 1 step or 2steps … or k steps, (0<k<N), forward 

or backward with equal probability, i.e. 
1

2𝑘
. 

When the person reaches the point ‘0’ or ‘N’ the motion stops and person remains there. So the states ‘0’ and ‘N’ 

act as an absorbing barrier. Suppose the person is at one of the intermediate points between ‘0’ and ‘k’ say ‘r’, and the 

person has now only the chance to take k more steps forward or backward provided that this k step in the backwards 

will not make the person go beyond ‘0’. If it happens the person will be reflected back to the original position ‘r’.Here 

the states x=-1,-2,...,-(k-1) act as  reflecting barriers. Similarly, consider that the person reaches one of the intermediate 

points between ‘N-k’ and ‘N’, say ‘s’, and the person has now only the chance to take k more steps provided that this k 

step will not make the person go beyond ‘N’. If it happens, the person will be reflected back to the original position 

‘s’. Hence N+1, N+2, …, N+k-1 states will also act as reflecting barriers.So we can view Random Staircase model as 

generalization of Gambler ruin problem, fortune probability p=1/2, when k=1. 

Let Xn denotes the position of the person at time t=n. Obviously Xnis a markov chain with state space Ω =
{0,1,2,3, … ,𝑁}and is defined as  
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𝑋𝑛 =

{
 
 

 
 
𝑋𝑛−1 + 𝑍𝑛, 𝑘 ≤ 𝑋𝑛−1 ≤ 𝑁 − 𝑘,                

    𝑋𝑛−1 + 𝑍
′, 0 < 𝑋𝑛−1 = 𝑟 < 𝑘

𝑋𝑛−1 + 𝑍
′′, 𝑁 − 𝑘 < 𝑋𝑛−1 = 𝑠 < 𝑁  
0, 𝑋𝑛−1 = 0                 
𝑁, 𝑋𝑛−1 = 𝑁  

 

 

where 𝑍′ is random variable such that it can take values j= -r,-(r-1),…,-1,1,2,…,k with probability 
1

2k
 and 0 with 

probability 
𝑘−𝑟

2𝑘
 ,𝑍′′ takes values j= -k,…-1,1,…,N-s with probability 

1

2k
  and 0 with probability 

𝑘−(𝑁−𝑠)

2𝑘
. 𝑍𝑖  ′𝑠 are i.i.d. 

random variable with p.d.f 

 

𝑃(𝑍𝑖 = 𝑗) = {
1

2k
, 𝑗 = −𝑘,… ,−1,1, … , 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The transition probability matrix P is defined as 

 

𝑝𝑖,𝑗 = 
1

 2k
 ,   0 < 𝑖 < 𝑁 , 𝑘 ≤ 𝑗 ≤ 𝑁 − 𝑘 and 0 < |𝑖 − 𝑗| ≤ 𝑘 

𝑝𝑖,𝑖 = {

𝑘 − 𝑖

2𝑘
, 0 < 𝑖 < 𝑘

𝑘 − (𝑁 − 𝑖)

2𝑘
, 𝑁 − 𝑘 < 𝑖 < 𝑁

 

𝑝0,0 = 1 

𝑝𝑁,𝑁 = 1 

 

It is clear that the random staircase model is an irregular finite Markov Chain with all states transient but not ‘0’ and 

‘N’ 

3.UPWARD RANDOM STAIRCASE MODEL  

 

In this case  we consider forward jumps only. Assume that the person initially at ‘0’, can jump either 1 step or 2 

steps … or k steps (0<k<N) with equal probability 1/k at a time. When the person reaches the point ‘N’ the motion of 

the person stops. Consider that the person reaches one of the intermediate points between ‘N-k’ and ‘N’, say ‘s’, and 

the person has now only the chance to take k more steps provided that this k step will not make the person go beyond 

‘N’. If it happens the person will be reflected back to the original position ‘s’. 

If Xn denote the position of the person at time t=n, the sequence of random variables can be characterized as 

𝑋𝑛 = {

𝑋𝑛−1 + 𝑍𝑛, 0 ≤ 𝑋𝑛−1 ≤ 𝑁 − 𝑘

𝑋𝑛−1 + 𝑍
′, 𝑁 − 𝑘 < 𝑋𝑛−1 = 𝑠 < 𝑁  
𝑁, 𝑋𝑛−1 = 𝑁

 

 

where 𝑍′takes the value j=1,2,…,N-s with probability 
1

 k
 and 0 with probability 

𝑘−(𝑁−𝑠)

𝑘
 and𝑍𝑖′𝑠 are i.i.d. random 

variable following  discrete uniform distribution with p.d.f 

 

𝑃(𝑍𝑖 = 𝑥) = {
1

k
, 𝑥 = 1,2, … , 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Obviously, the stochastic process is a Markov Chain with transition probabilities, 

 

 𝑝𝑖,𝑗 = 
1

 k
, 0 ≤ 𝑖 < 𝑁 , 0 < 𝑗 ≤ 𝑁, 0 < 𝑗 − 𝑖 ≤ 𝑘, 𝑖 < 𝑗 

𝑝𝑖,𝑖 = 
𝑘 − (𝑁 − 𝑠)

𝑘
 , 𝑁 − 𝑘 < 𝑖 < 𝑁 

𝑝𝑁,𝑁 = 1 
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In this Markov Chain the state ‘N’ act as an absorbing barrier so that ‘N’ is persistent and remaining all states are 

transient. The state space is Ω = {0,1,2,3, … ,𝑁}.Here N+1, N+2,…,, N+k-1 states act as reflecting barriers.  

 

3.1Minimum number of movements to cover the game length 

 

Our interest is to find the probability to reach N and minimum number of movements to reach N. The game length 

is defined as the number of movements to reach N starting from the initial point. To calculate the minimum game 

length, it is enough to compute min {𝑛: 𝑝𝑁,0
𝑛 > 0}. Let 𝑣𝑛 be the probability vector at the 𝑛𝑡ℎ stage, i.e. 𝑣𝑛 =

(𝑣𝑛 [𝑖])1×(𝑁+1) where 𝑣𝑛 [𝑖]=𝑝𝑖,0
𝑛 ,i=0,1,2,3,…N. It is obvious that 𝑣𝑛 = 𝑣𝑛−1 × 𝑃, n=1,2,3,… assuming 𝑣0 =

(1,0,0, … ,0)𝑇, P is the t.p.m. Figure 1 shows the probability to reach the game length for N=100 and for k=3,4,5,6 and 

table 3.1 gives the minimum game length. 

 
Table 3.1 

                             N=100 

k Minimum game length 

1 100 

2 50 

3 34 

4 26 

5 20 

6 17 

 

 

 

 

4.SNAKES AND LADDERS MODEL 

 

Snakes and ladders game  also known as chutes and ladders  consists of 100 squares. The rules of the game and 

the standard board are displayed in the appendix. In the absence of snakes and ladders, the game can be viewed as 

an upward staircase model with N=100 and k=6. Here head of the snakes and ladders bottom positions act as 

reflecting barriers, i.e. whenever the pawn reaches the square which is either head of a snake or bottom of a ladder 

it will be reflected to the tail position of that snake or top position of the ladder. So the set consists of squares 

which is either head of a snake or the bottom of the ladder is not in the sample space since the pawn never visited 

such squares. It is to be noted that suppose the pawn is in 98, if the die shows 4 the pawn stays at 98itself, similar 

in the case of upward staircase model. Our main objective is to find the minimum number of movements to finish 

the game, i.e. minimum game length. 
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4.1Preliminaries 

 

The snakes and ladders board can be mathematically represented as𝒮[𝑝, 𝑞], where p and q are the number of 

ladders and snakes respectively in the board. Consider the following spaces. 

 A={a1,a2,a3,…,ap} is the set consists of ladders’ bottom positions. 

 B={b1,b2,b3,…,bp} is the set consists of ladders’ top positions corresponds to A. 

 C={c1,c2,c3,…,cp} is the set consists of snakes’ tail positions. 

 D={d1,d2,d3,…,dp} is the set of all snakes’ head positions corresponds to C 

 L={𝑙𝑖, 𝑖 = 1,2, … 𝑝: 𝑙𝑖 = 𝑏𝑖 − 𝑎𝑖}is the set of all ladders’ length. 

 S={𝑠𝑖, 𝑖 = 1,2, … 𝑞: 𝑠𝑖 = 𝑑𝑖 − 𝑐𝑖}is the set of all snakes’ length. 

 𝒰 = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷.It is obvious that A,B,C and D are disjoint sets. 

 Ω = {0,1,2,3, … , 100} − (𝐴 ∪ 𝐷) 
 

 
4.2 The Model 

 

Let us consider the movement of a pawn on the snakes and ladders board. Let 𝑋𝑛 denote the position of the 

particle at the 𝑛𝑡ℎ stage, assuming 𝑋0 = 0, and is defined as 

 

𝑋𝑛 = 

{
 
 

 
 

𝑋𝑛−1 + 𝑍𝑛 , 𝑖𝑓 0 ≤ 𝑋𝑛−1 ≤ 94,  𝑋𝑛−1 + 𝑍𝑛 ∈ 𝒰
𝐶

𝑋𝑛−1 + 𝑍
′, 𝑖𝑓 94 < 𝑋𝑛−1 = 𝑠 < 100, 𝑋𝑛−1 + 𝑍𝑛 ∈ 𝒰

𝐶

𝑋𝑛−1 + 𝑌, 𝑖𝑓 (𝑋𝑛−1 + 𝑍𝑛 ) ∈ 𝐵 ∪ 𝐶

𝑋𝑛−1 + 𝑌
′, 𝑖𝑓 (𝑋𝑛−1 + 𝑍𝑛 ) ∈ 𝐴 ∪ 𝐷
100, 𝑖𝑓 𝑋𝑛−1 = 100

 

 

where𝑍𝑖′𝑠 are i.i.d. random variables and P(𝑍𝑖 = 𝑘) =
1

6
, 𝑘 = 1,2,3…6 and 𝑍′ is a random variable takes 

values j=1,2,…,100-s with probability 
1

6
, 0 with probability 

6−(100−𝑠)

6
.  Let 𝑋𝑛−1 + 𝑍𝑛 =bk(ck) ∈ B(C), then there exists 

ak(dk) ∈ A(D). Y is a random variable and probability that Y takes the value  𝑍𝑛  : 

P[𝑌 = 𝑍𝑛 ] = {

1

3
 ,   𝑋𝑛−1 <   𝑎𝑘(  𝑑𝑘) < (≤)  𝑋𝑛−1 + 6 

1

6
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑌′ is a random variable defined as : 

𝑌′ = {
𝑍𝑛 + 𝑙𝑛  , (𝑋𝑛−1 + 𝑍𝑛 ) ∈ 𝐴

𝑍𝑛 − 𝑠𝑛 , (𝑋𝑛−1 + 𝑍𝑛 ) ∈ 𝐷
 

where:  

P[𝑌′ = 𝑍𝑛 + 𝑙𝑛 ] = {

1

3
 , 𝑍𝑛 ≥ 𝑙𝑛 

1

6
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

P[𝑌′ = 𝑍𝑛 − 𝑠𝑛 ] =

{
 
 

 
 

1

6
 , 𝑠𝑘 > 𝑍𝑛 

1

6
, 𝑠𝑘 = 𝑍𝑛 , 𝑋𝑛−1 < 94

7−(100−𝑋𝑛−1)

6
, 𝑠𝑘 = 𝑍𝑛 , 𝑋𝑛−1 ≥ 94

1

3
, 𝑠𝑘 < 𝑍𝑛 

 

 

4.2.1 Transition probability matrix 

 

Clearly 𝑋𝑛  depend on 𝑋𝑛−1 and hence it is a Markov Chain and the transition probability matrix P is defined 

as: 

For ∀ 𝑖, 𝑗 ∈ {0,1,2,3, … ,100} 
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𝑝𝑖,𝑗 =
1

6
 , 𝑖𝑓 0 <  𝑗 − 𝑖 ≤ 6 𝑎𝑛𝑑 ∀ 𝑖, 𝑗 ∈ 𝒰𝐶  , ∀ 𝑖 ≤ 94 

𝑝𝑖,𝑖 =
6 − (100 − 𝑖)

6
, ∀ 𝑖 > 94 𝑎𝑛𝑑 ∀ 𝑖 ∈ 𝒰𝐶 

𝑝𝑖,𝑗 =
1

3
 , 𝑖𝑓 0 <  𝑗 − 𝑖 ≤ 6, ∀ 𝑖 ∈ 𝑁(𝑗) 𝑎𝑛𝑑  ∀ 𝑗 ∈ 𝐵  

𝑝𝑖,𝑗 =
1

6
 , 𝑖𝑓  𝑗 − 𝑖 > 6, ∀ 𝑖 ∈ 𝑁(𝑗) 𝑎𝑛𝑑  ∀ 𝑗 ∈ 𝐵  

𝑝𝑖,𝑗 =
1

3
 , 𝑖𝑓 0 <  𝑗 − 𝑖 ≤ 6, ∀ 𝑖 ∈ 𝑁(𝑗) 𝑎𝑛𝑑  ∀ 𝑗 ∈ 𝐶  

𝑝𝑖,𝑖 =
1

6
 , ∀ 𝑖 ∈ 𝑁(𝑖) , ∀ 𝑖 ∈ 𝐶, ∀ 𝑖 < 94   

𝑝𝑖,𝑖 =
7 − (100 − 𝑖)

6
 , 𝑖 ∈ 𝑁(𝑖) , ∀ 𝑖 ∈ 𝐶, ∀ 𝑖 ≥ 94 

𝑝𝑖,𝑗 =
1

6
 , 𝑖𝑓  𝑖 − 𝑗 > 6, ∀ 𝑖 ∈ 𝑁(𝑗) 𝑎𝑛𝑑  ∀ 𝑗 ∈ 𝐶 

𝑝100,100 = 1                                                              

𝑝𝑖,𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

Explanations: 

1. Suppose we are in square 98, if the die shows 3,4,5,6 we are still in square 98 itself with probability
1

6
+
1

6
+

1

6
+
1

6
=

4

6
=

6−(100−98)

6
, i.e.𝑝98,98 =

6−(100−98)

6
. 

2. Suppose we are in square 67 and there is a ladder from 69 to 71. Since 69 acts as reflecting barrier, whenever 

the die shows 2, it immediately reflects to 71. So probability to reach 71 from 68 is increased by  
1

6
 ,  

i.e.𝑝67,71 =
1

6
+
1

6
=

1

3
. Again suppose we are in square 16 and there is a ladder from 19 to 24 then if die shows 

3, we will reach to square 24. So 𝑝16,24 =
1

6
. 

3. Suppose we are in square 52 there is a snake whose head is at 56 and tail is at 53. Since 56 acts as reflecting 

barrier, whenever the die shows 1, it immediately reflects to 53. So probability to reach 53 from 52 is 

increased by  
1

6
 ,  i.e.𝑝52,53 =

1

6
+
1

6
=

1

3
. Again we are in 53 if the die shows 3 it reflects to 53 itself so 𝑝53,53 =

1

6
. Suppose we are in square 95 and if there is a snake whose head is at 98 and tail is at 95 then if the die show 

3 it reflects to 95 itself, also if the die shows 6 it also reflects to 95 again. By considering these two situations 

𝑝95,95 =
1

6
+
1

6
=

1

3
=

7−(100−98)

6
. Suppose we are in 54 when die shows 2 reflects to 53 so 𝑝54,53 =

1

6
. 

So, 

 The state space is Ω = {0,1,2,3, … , 100} − (𝐴 ∪ 𝐷) 
 Reflecting Barrier states space isℛ=A ∪ 𝐷 ∪ {101,102,103,104,105} 
 Absorbing Barrier states space is𝒜={100} 

 Transient states space is𝒯={0,1,2,3,…99}−(𝐴 ∪ 𝐷) 
 Persistent states space is same as 𝒜. 

 

 

4.3 Probability of finishing the game 

 

Our prime objective is to find the probability of finishing the game, i.e. probability to reach N=100  starting 

initially at ‘0’.Let 𝑣𝑛 be the probability vector at the 𝑛𝑡ℎ stage, i.e. 𝑣𝑛 = (𝑣𝑛 [𝑘])1×101 where 𝑣𝑛 [𝑘]=P[𝑋𝑛 =
𝑘],k=0,1,2,3,…100. It is obvious that 𝑣𝑛 = 𝑣𝑛−1 × 𝑃, n=1,2,3,4,…, assuming 𝑣0 = (1,0,0,… ,0)𝑇and P is the t.p.m. 

The minimum value of n to finish the game(minimum game length), i.e. to reach 100, is computed by min 

{n:𝑣𝑛 [101] > 0}. 
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4. ILLUSTRATIONS 

 

Let us consider the standard chutes and ladders board shown in the appendix as an illustration 

 

Here 𝒮[9,10],i.e, here there are 9 ladders and 10 snakes. 

A={1,4,9,21,28,36,51,71,80} 

B= {38,14,31,42,84,44,67,91,100} 

C={6,26,11,53,19,60,24,73,75,78} 

D={16,47,49,56,62,64,87,93,95,98} 

Here the minimum number of movements to finish the gamei.e the game length is7. The movements are 

0
4
→ 14

6
→20

6
→26

2
→84

6
→90

6
→96

4
→100,𝑤ℎ𝑒𝑟𝑒 

𝑛
→  𝑛 𝑠ℎ𝑜𝑤𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑤ℎ𝑒𝑛 𝑑𝑖𝑒 𝑟𝑜𝑙𝑙𝑠. 

 

Figure 2 shows the the probability to finish the game  

 
 

5.1 Special cases 

Here we have tried to compare the probability to finish the game of standard chutes and ladders board with 

following cases 

Case 1: There are no ladders 

Here the minimum number of movements to finish the game is 17 and the graph is 

 

 
 

Clearly the probability of finishing the game is decreased compared to the standard one  
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Case 2: There are no snakes 

Here the minimum number of movements to finish the game is 7 and the graph is shown below. 

 
Clearly probability of finishing the game is increased compared to standard. 

 

Case 3 

Effect of adding a ladder to the non-ladder square in standard chutes and board. Here we add a ladder from 27 to 86. 

Here the minimum number of movements to finish the game is 7 and the graph is given below. 

 
Clearly the probability of finishing the game is increased.  

 

Case 4 

Effect of adding a chute to the non-ladder square in standard chutes and board. Here we add a chute between 26 and 

92. Here the minimum number of movements to finish the game is 8 and the graph is shown below.  
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Clearly probability of finishing the game is decreased. 

 

5. Conclusion 
 

We introduce two new models , random staircase and Snakes and ladders models. We find the transition probabilities 

of snakes and ladders game and apply this result to the standard chutes and ladders model. The  graph showing the 

probabilities  to finish the game is an ‘S’ shaped curve. We have considered some special cases of the standard 

Chutes and ladder board also.  
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Appendix A 

A.1 Snakes and ladders game rule[3] 

Chutes and Ladders is played on a 100 square board game. There can be as many players as desired; however, since 

the actions of the players are independent from the actions of the other players, we shall only consider one player. 

The player begins off of the board, at a figurative square zero. The player then rolls a six-sided die, and advances the 

number of spaces shown on the die. For example, if the player is at position 8, and rolls a 5, they would advance to 

position 13. The game is finished when the player lands on square 100. There are two exceptions to the rule of 

movement. The first is that if the player, after advancing, lands on a chute (slide) or a ladder, they slide down or 

climb up them, respectively. For example, if the player, on their first turn, rolls a 4, the player advances to square 4, 

and then “climbs” to square 14, on the same turn. Thus, if the players is on square 77, and rolls a 3, the player is 

finished, as he advances to 80, and then climb to 100.The second is that the player must land exactly on square 100 to 

win. If the player rolls a die that would advance them beyond square 100, they stay at the same place. For example, a 

player at square 96 must roll exactly a 4 to win. A roll of 5 would make the player stay put at position 96. Do note 

that these rules could easily apply to a board of any size, with any size die, and with chutes and ladders in any 

position. 

A.2  Figure 7 

 

 
The Standard Chutes and Ladders Board[3] 
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