
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4086

The Performance Measurement of Containerized

Applications based on Micro Services Architecture

Dr. Kamlendu Kumar Pandey

Veer Narmad South Gujarat University

 Surat, Gujarat

Abstract

Micro Services Architecture I.e “MSA” are the the new paradigm of software engineering and development. This is complete deviation

from current client-server and monolithic architecture and emphasises on small and smart containerised business resources which can e

effortlessly deployed on cloud. Many such small resources running on cloud or group of clouds comminicate with each other to create an

entire organisational business application. This paper is effort to measure the performance of such applications in a scalable and orchestrated

environment. All current industry trends and tools are being followed in the application development. The measurement of performance is

done in a controlled simulated environment. The strategy of performance measurement is worked out theoretically and is mesured practically

in a controlled environment.

Keywords : Micro Services, containers, cloud, performance testing

1. Introduction

 The current client server applications or applications deployed on monolithic architectures are facing acute problems

of service latency, sacleability, manageability and requirment change hells. The applications designed with best

programming languages and platforms fail to perform as per the requirement standards. The major issues are related to

change in technology, deprecated apis, under perfornce of platforms, change of experienced development team with the

new one. As almost all applications now a days are web or enterprise applications, they starting attractiving load in

exponential proportions as the popularity of application grows. The current applications require more power to scale and

perform which involves a very complex resource procurement and management strategies along with techbological

complexity. A failure in achieving the task may result in downgraded performance, customer dissatisfaction and ultimately

the business loss.

 To deal with all these issues the technology of Service Oriented Architecture was introduced which used SOAP

based webservices. SOA abstracts the complexities implementation of language based business logic and protocol based

communications and gives a very easy to use plug and play end points to work within the application. Using the loos

coupling and a Decomposed Business model it solves many teething problems of current enterprise applications. The best

thing is that that this architecture is well standardized by W3C and is a part of reference implementation in almost all

major players of software industry. The standardization solves the compatibility issues with in the vendors and standards so

developers have to focus mainly on the the orchestration part rather than peeking into the code and fine tuning it as per

new standards. The orchestration tools and the Business Process Execution Language for Web Services (BPEL4WS)

makes it most attractive option to work with. It facilitate point to point, multi point communication with sufficient flags

and fault handlers creating a composite application involving services abstracting the business logic written in various

languages. Almost all the vendors are providing the XML interface or GUI based wizards . Not only business logic but

even system based events like signals, messaging, authentication and authorization repositories can also be abstracted as a

service. Although SOA was promising and many efforts were done in this direction to implement SOA but it could not give

the results as expected. There were several resaons for thar. First the developers have to learn some new languages like

BPEL4WS for service linking and compositions, secondly most of the implementation as proprietry. The addition of

Enterprise Service Bus was so difficult and complex to configure that most of the software companies preferd to stick with

the old trends as safe bet and non distruptive. ESB was implemented as additional layer on the existing web servers and

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4087

that made the webservers bulky and comples to configure and to work with. You need to build an entire SOA organisation

to implement it effectively.

Microservices came as a complete alternative solution to tackle all the above mentioed issues. Rather tah building huge

applications, the emphasis is now on bulding small or micro applications[1] for a specific need in the business

organisation. The philosophy is to decompose the entire business domain tree into small sub domains and leflets (services).

Instead of entire team working on a big project, small teams are assigned to these micro services. This team is responsible

for its behavious and correctness in the service. A complete connectivity or a pipeline architecture is evolved where all

these micro service will communicate with each other effectively using the light weight protocols like http and all the

resources being accesed by HTTP methods[1][12] . These resources are called REST resourcces which are the end points

to communicate with users or other services. The REST end points collect all the information and results from the models,

entities and resources behind the scene. Apart from the structure and communications microservices architecture comes

with additional features like Tracing, Health Checkup, Fault Tolerance, Scheduling, Data grids etc [2]. The development to

production issues and gaps are solved by containerization technologies like Docker[7]. The scaling and availability issues

are solved by new independent container orchestration technologies like Swarm and Kubernetes. The software

development practice is also evolved with current trends as service repositories like GIT and piplining with application like

Jenkins which are finally giving a complete Continuous Integration / Continous Delivery (CI/CD) based design

pattern[11].Micro services come up as self manageable light weight component[6][8].

The emphasis of the paper is to come out with a model to test such applications for their performance. The factors which

influence the performance are execution environment, intercommunication overhead, encryption and decryption of tokens

and content, container scheduling, orchestration bottlenecks, instance preservation, failure and autocreation and

accesibility. The paper is arranged as follows: section 2 deals with the functioning of the Micro Services

Architecture, Section 3 depicts a real world Finance Companying problem which can be tested on Micro Services,

Section 4 is about the assessment of the problem and working out an analytical solution of the load / stress on the

system and thereby its performance under various constraints, Section 5 is real world stress testing of the application

using popular web testing tools and thereby validating the developed model, Section 6 is about discussion and future

work while Section 7 is the conclusion of the paper.

2. ABOUT MICRO SERVICES ARCHITECTURE

As the paper is dealing with performance testing model of Micro Services Architecure it is imperative to know its

structure , components, functioning , interaction, events and transactional aspects so that all the factors are wisely

considers in the underlying example application. Letus what the transformation from a traditional Monolithic

Application to Micro service application look like.

Fig.1 A monolithic Application (courtesy www.microservice.io[14])

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4088

Fig.2 Monolith decomposed into micro services (courtesy www.microservices.io [3][14])

Looking to the fig.1 and 2 one can clearly make out the difference between a monolith and micro services

architecture. In monolithic all the applications and layers are deployed into one application conta iner. The major

risk is if server containers fail or underform the entire application will go down which is not affordable. In fig.2

every service which is part of bigger application is running in its owner container system . If one service fails it is

no way going to affect other services which are not connected with it. The next question comes that if a service fails

then the application which is using this service will also fails. The solution is given by an active load balancer and a

container node orchestrator which will create the container instance on its own if it fails. The Microservices

architecture comes with following components.

1. Application

1. UI/UX (User Interface (optional)

2. Business Logic

3. REST Resouce and End Points

4. SSL based Authentication and Authorization with JWT (Json Web Tokens)

5. Config

6. Fault Tolerance

7. Health

2. Micro Servers where applications can be deployed

3. Containers

4. Container Orchestrators

5. REST Orchestrators and Registry

6. API Gateways

Using all above we can develop complete spplication in microservices architecture. The steps to build are as under.

1. Decomposition of Domain into subdomains and utimately to leaflets called services

2. Code for the Application with entities, model , services and REST End points.

3. Build using a smart builder like MAVEN . The outputs are not conventional war files but jar, uber jars or

hollow jar files which are extremely light weight.

4. Choose a server with minimal foot print and deploy your application with the server into a container.

5. Arrange all the services to execute in the predefined pattern using a pipelining application like Jenkins /

Consul

6. Containerize the application using applications like Docker

7. Deploy containers into a container orchestrator like Kubernetes/ Swarm

8. Chooss an API gateway like Ingress / Kong and give urls

9. Deploy entire arrangement on clouds like Amazon / Google / Azure

to the client to browse the application and iteract with it.

http://www.ijcrt.org/
http://www.microservices.io/
http://www.microservices.io/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4089

Fig .3 A schematic model of Micro Services

1. Application : The code must be written in a language and platorm which supports micro services like

Jakarat EE ‘s Micro Profile or Spring boot.

2. Package Builders : Thin builders like Maven create an optimized build / packaging of the applications

resulting in uber jars or hollow jars

3. Pipe Liners : Pipeliners like Jenkins arrange builds in a predefined manner to greate the whole application.

The pipeliners are important part of Continuous Integration and Continuous Delivery (CI/CD) way

automated software engineering.

4. Containers : The containers like Docker create complete virtualized environment with server and

application ready for production and can run on any Operating System without having to install a virtual

machine. This decreases a lot of load on the Underlying OS or bare metal server. The containers can talk to

each other with underlying bridge networks or overlay networks.

5. Container Orchestrators : , they are required for manay management tasks like load balancing, dynamic

instance creation or destruction based on load . Kubernetes is one such orchestrator.

6. API Gateways: API gateways are used to redirect the request of customers based on the content of URL. API

gateways like Ingress from Nginx are popular.

7. Cloud : All these services are also created by popular clouds like AWS or Azure and one who subscribes the

cloud can all the above things in built in the for example Amazon has got services like Elastic Compute,

Elastic Container System (like Docker repositories), Elastic Kubernetes Services (EKS) which allow us to

create a kubernetes cluster. Amazon Load Balancer (ALB) is the API gateway. S3 services are to store all

your data and files.

8. Performance Monitor : Specia tools like Prometheous are used to monitor the health of the application and

constantly monitor the performance of communication channels. They have a dashboard system to show the

graphical charts showing the performance. A comprehensive reporting tool has been developed to take the

trace and event incase of failures.

3. THE APPLICATION FOR PERFORMANCE EVALUATION

Scenario : For testing the performance of business application based on micro services platform , a Finance

Company mortgaging application is developed where a Finance Company classifies the customer’ s eligibility for the

application of Mortgage Loan. The Finance Company provides a client interface for applying Mortgage Loan and the

client applies by providing the data asked by the the Finance Company . The Finance Company later on classifies the

applicants. There are two criteria of classification 1) on the basis of desired interest rate and secondly on the basis of

the amount. The Finance Company have three sanctioning authorities for Mortgage Loans based on the gradation of

the customers. If the customer applies for a Mortgage Loan of an amount under a certain threshold limit and as per the

interest rate charged by the Finance Company, such customers are subjected to a Normal Mortgage Loan processing

service where decision can be taken by the Mortgage Loan officer. The customers who have demanded a lower charge

of interest rate are subjected to the approval of Manager who depends upon the past experience has the right to

approve or disapprove. If the customer applies for a larger Mortgage Loan above a threshold limit then the approval

process is complex. In that case a their party financial service is utilized to obtain the credit rating of the customer. If

the credit rating of the customer is above certain grade then the Mortgage Loan for that customer can be approved else

rejected.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4090

ALGORITHM :
Process :
1. Finance Company Threshold values :
 PIR : prevailing interest rate of Finance Company
 TLA: Threshold Mortgage Loan amount
 MCR : Minimum credit rating on Large Mortgage Loan amount
 CCR : Customer Credit Rating
 VCA : Valid Customer Application (True, False)
2. Mortgage Loan Client applies for Mortgage Loan
 var MortgageLoanRequest : properties : cname, caddress, cutomerMortgageLoanAmount, AskedIntrestRate
3. Finance Company Receives the Applications
 call ApplicationCheckLogic
 if VCA is True then
 if customerMortgageLoanAmount LESS THAN TLA
 If AskedIntrestRate LESS THAN PIR
 Call NormalMortgageLoanProcessing Service
 Else
 Call ManagerMortgageLoanProcessing Service
 Else
 Call LargeMortgageLoanProcessing Service and
 FCR = call populateFCR
 If FCR More than CCR Then
 Goto acceptMortgageLoan
 Else Go to rejectMortgageLoan
 End If
Entities :
 Customers
 MortgageLoanMaster
 MortgageLoanApplication
Business Logic :
 : ProcessNormalMortgageLoan
 : ProcessManagerMortgageLoan
 : ProcessLargeMortgageLoan
 : populateFCR
 : ValidateApplicationLogic
Messages :
 :acceptMortgageLoan : “Your MortgageLoan is approved:
 :rejectMortgageLoan : “Your MortgageLoan is rejected”

The above scenario and the algorithm clarifies the problem. This scenario gives us following services to constructed to

abstract the business logic
Rest Resources :
1. NormalMortgageLoanResource : End Point of logic of NormalMortgageLoanProcessing
2. ManagerMortgageLoanResource : End Point of the logic of ManagerMortgageLoanProcessing
3. LargeMortgageLoanResource : End Point of the logic of LargeMortgageLoanProcessing
4. CreditRatingResource : End Point of the logic of populateCCR (Third party)
5. MortgageLoanvalidationResource : End Point of the logic of ValidateApplicationLoic
Client handles
1. ValidationResource : End Point of MortgageLoanApp in the algorithm for validation
2. MortgageLoanAppResource : End Point of leading to MangerMortgageLoanService
3. LargeMortgageLoanReqResource : End Point of leading to Normal or large MortgageLoan processing

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4091

Fig. 4 : Sequence diagram of the application.

The Services are correctly identified in this model . The application was developed in Oracle Fusion Middleware and

Oracle Service Bus which developed over Weblogic Server. The IDE used for developing the microservices is

NetBeans. The console is a web based application which facillitates the developers to do all the functionalities like

transformation, routing, pipe lining, altering the message structures and service call out. The application was tested for

its functioning with test data. The input and output formats were JSON artifacts.

4. The Testing Strategy

 Now as we have already identified the crucial service and steps to test the applications we need to

find out the factors responsible for the performance of the ESB. Two types of systems exist. The close

system and the open system. The close system highly synchronous and a predicatble corelation can be

esatblished by the participating logic. Various testing tools are devised for that. The Open System has a quasi

way of execution as many request are arriving in concurrent and asysnchronous matter [15]. The our

application is a open system and thus is very difficult by predicting it through the analytics of the closed

model[15]. Several researchers have tried to use closed model for this application and compared the result

with the real testing tool. There is still no reliable analytical solutions for open system. Lets identify t he time

parameters for various services and their branches of execution.

Time Parameters

Business Resources :
1. NormalMortgageLoanResource : TNLR
2. ManagerMortgageLoanResource : TMLR
3. LargeMortgageLoanResource : TLLR
4. CreditRatingResource : TCR
5. MortgageLoanvalidationResource : TVAR
Client Resources
1. ValidationProxyResource : TVPR
2. MortgageLoanAppProxyResource : TNPR
3. LargeMortgageLoanProxyResource : TLP
Any additional time in sending request and receiving response : Ta

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4092

Table 1 : Branch Time Equations

No

.
Process Time Estimate

1 MortgageLoan Application with validation failure TVPR = TVAR + Ta

2 MortgageLoan Application with validation success and IR> 6 TVPR = TVAR+ TMLR+Ta

3 MortgageLoan Application with validation success and IR> 6

and Amount less than TA
TVPR = TVAR+ TNR+Ta

4 MortgageLoan Application with validation success and IR> 6

and Amount less than TA
TVPR = TVAR+ TLLR+ TCR

+Ta

In all the above equations the uncertainty is in the value of Ta which may vary as per the location of

requester. The test results can be put into the equation and iteratively we can work out the load account on

various services under various conditions of the request. This will give a reliable estimate for preparing a

reasonable analytical solution for an open ended system.

The test results can be compared with the estimated demand from the literature

Table 2. Estimated demand for the services from literature (for the closed system) chapter 9 [6]
Service name Service type Load (ms)

TVPR Client 2.41
TLNR Client 3.28
TLPR Client 5.91
TMLR Resource 97.28
TVLR Resource 68.44
TNLR Resource 110.35
TLLR Resource 156.80

The test was done on the application with varied parameters and no of concurrent request by increasing the

number of clients. The throughput of the test are recovered from the logs and compared with the analytical

throughput.

5.0 RESULTS AND DISCUSSION

5.1 The Test Experimental Setup

 To conduct the testing of various services and branch operation the application was developed on the

following platform

Fig. 5 : Setup of the Experiment for test in consideration.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4093

Table 3 : Test Setup

Hardware Dell Server with 8 GB RAM quad core CPU 1.2 GHz, 1 Work

station client on LAN

Software Development Minikube Kubernetes Cluster, Docker, Ingress API gateway,

Prometheus, Payara Micro Java EE Server

Programming language Java Enterprise Edition 8

Testing Tool Apache Jmeter – A open source tool

Apache JMeter ise used to judge performance both kind of

resources (dynamic and static), Web dynamic applications. It can

be used to simulate a heavy load on a server, group of servers,

network or object to test its strength or to analyze overall

performance under different load

The test was done on the application with varied parameters and no of concurrent request by increasing the

number of clients. The throughput of the test are recovered from the logs and compared with the analytical

throughput.

Table 3. Error of performance modeling

Above are the results obtained by running the test over various branches which seems to be quite in

agreement with the analytical modeled results. The error is ranging between 1 to 10 % . Interesting results

are obtained from the error matrix. We can see the error is under control when no of users are 50 but

increasing the load somewhat deteriorates the performance and error goes up to 10% in case of Validation

Service. The Normal Mortgage Loan Service are quite in control between the range of 4 to 5% while manage

Mortgage Loan Service is ranging between 3 to 6%. These results can be used for creating a solution for

open end system. We see that the time is not predictably in the proxy services as they are not executed in

system environment but depends on lot many external factor. Substituting the time consumed by various

branch outs and no of clients the analytical equations can be iteratively solved to obtain the right solution for

open ended systems.

 Several other factors are not considered here and can be done in the future work, The factors are

Authorization and Authentication load . This is typical because now a days we have several ways of security

mechanism from login-password to json web tokens or OAuth and OpenId connect. Such aspects are not yet

covered in the analytical models. The other factor is the network firewall and devices like routers which

carry your request to the target service or proxy services.

6. CONCLUSION

 Container based Micro Service Architecture is current trend of development and a part of Service

Oriented Architecturein the inductry. A model was developed for the micro services based on

Representational State Transfer (REST), containerization done in docker plateform and its load balancing

and orchestration done by Kubernetes. This application was developed for the purpose of testing using Jakara

EE and payara micro. This application was tested for the stress or load in the LAN based architecture and a

comparison was done to understand the analytical load calculation and the test results. The test validates the

analytical model but in case of client calls the error increases as the no of current user increases. This paper

is an effort as how to validate a open systems like Micro Services Using this one can work on developing a

reliable model for REST based and containerized applications in a CI/CD model of software development .

Modeled Measured Error (%) Modeled Measured Error (%) Modeled Measured Error (%)

TVLR (12%) 13.65 13.58 0.52 13.91 14.3 2.73 13.85 15.34 9.71

TMLR (32%) 9.72 9.63 0.93 9.65 9.33 3.43 9.7 8.99 7.9

TLLR (21%) 6.23 6.12 1.8 6.34 6.19 2.42 6.35 5.87 8.18

TNLR (35%) 8.38 8.3 0.96 8.44 8.76 3.65 8.65 8.11 6.66

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004583 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4094

References

[1] Hassan et al. 2017 Hassan, S., Ali, N., and Bahsoon, R. (2017). Microservice ambients:An architectural meta-modelling approach for
microservice granularity. In IEEE In-ternational Conference on Software Architecture (ICSA), pages 1–10

[2] Alshuqayran et al. 2016 Alshuqayran, N., Ali, N., and Evans, R. (2016). A SystematicMapping Study in Microservice Architecture. In 9th
International Conference onService-Oriented Computing and Applications (SOCA), pages 44–51.Fowler and Lewis 2017 Fowler, M. and
Lewis, J. (March 25, 2014.

[3] Klock et al. 2017 Klock, S., Werf, J. M. E. M. V. D., Guelen, J. P., and Jansen, S. (2017).Workload-based clustering of coherent feature
sets in microservice architectures. InIEEE International Conference on Software Architecture (ICSA), pages 11–20

[4] Mori et al. 2018 Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E.,Jamshidi, P., and Kastner, C. (2018). Evaluating
domain-specific metric thresholds: anempirical study. In International Conference on Technical Debt (TechDebt).Newman 2015 Newman,
S. (2015). Building Microservices. O’Reilly Media, Inc.

[5] Oliveira et al. 2018 Oliveira, J., Viggiato, M., Santos, M., Figueiredo, E., and Marques-Neto, H. (2018). An empirical study on the impact
of android code smells on resourceusage. In International Conference on Software Engineering & Knowledge Engineer-ing (SEKE).Pahl
2015 Pahl, C. (2015). Containerization and the PaaS Cloud. IEEE Cloud Computing,2(3):24–31.

[6] Aderaldo et al. 2017 Aderaldo, C. M., Mendonc¸a, N. C., Pahl, C., and Jamshidi, P. (2017).Benchmark Requirements for Microservices
Architecture Research. In 1st Interna-tional Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering (ECASE), pages 8–13.

[7] Pahl and Jamshidi 2016 Pahl, C. and Jamshidi, P. (2016). Microservices: A systematicmapping study. In 6th International Conference on
Cloud Computing and ServicesScience (CLOSER), pages 137–146.

[8] Ramos et al. 2016 Ramos, M., Valente, M. T., Terra, R., and Santos, G. (2016). Angu-larJS in the wild: A survey with 460 developers. In
7th International Workshop onEvaluation and Usability of Programming Languages and Tools, pages 9–16.

[9] Markos Viggiato1, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, Eduardo Figueiredo Microservices in Practice: A Survey Study
[10] Online; accessedApril, 2017). Microservices. https://martinfowler.com/articles/microservices.html.Guimaraes et al. 2013 Guimaraes, E.,

Garcia, A., Figueiredo, E., and Cai, Y. (2013). Pri-oritizing software anomalies with software etrics and architecture blueprints: a con-
trolled experiment. In Proceedings of the 5th International Workshop on Modeling nSoftware Engineering, pages 82–88. IEEE Press.

[11] S. Newman. Building Microservices. O’Reilly Media, Inc., 2015.
[12] M. Fowler and J. Lewis. Microservices a definition of this new architectural

term.URL:http://martinfowler.com/articles/microservices.html
[13] Chris Richardson and Floyd Smith , Microservices : From Design to development
[14] [online] http://microservices.io maintained by Chris Richardson

[15] -Bianca Schroeder, Adam Wierman and Mor Harchol- Balter. Open vs closed: a cautionary tale, Networked System Design and

Implementation NSDI,2 0 0 6 .

http://www.ijcrt.org/
http://martinfowler.com/articles/microservices.html
http://microservices.io/

