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Abstract: This paper describes an analytical solution for solving the heat conduction equation, which determines the exact temperature 

profile along with the thickness of the simply supported laminate. The further exponential varied thermal field has considered, and 

comparison with exact variation has carried out to suggest remarkable output in this area. Heat conductivity, modulus of elasticity, and 

coefficient of thermal expansion have graded exponentially in the thickness direction of laminates. An in-depth study in this area further 

leads to a concrete solution for stress analysis 

Index Terms: FG Laminate, Semi-analytical, Exact, Heat conduction, Exponential 

I . INTRODUCTION 

Functionally graded materials (FGMs) have developed first in Japan in 1984 to cater to the requirement of enormous temperature 

difference through a width of 10mm or so. In FGM, material variation has considered along with one or multiple directions of laminates. 

These gradations in materials discussed along with power law or with exponential law give the best benefits of different single elemental 

materials. Composite materials delamination problems can overcome by considering the smooth, gradual, and continuous variation of 

material properties and volume fractions of ingredients. 

Generally, FGM has used in a thermal environment. Depend on the Euler-Bernoulli theory (EBT), Sankar [1] published an elasticity 

solution for simply supported functionally graded (FG) beams only for sinusoidal loading. Here they have assumed an exponential 

variation of elastic constants and temperature.  FG material is a combination of two elements, generally ceramic and metal. To decide its 

composition under steady temperature and thermal shock and its effect on crack propagation related study have carried out by Noda [2]. 

Giunta et al. [3][4] have used an actual temperature pattern by using a heat conduction equation with unified formulation to study thermal 

stresses in monolayer and sandwich cross-section FG beam. Here, Giunta has also carried out a similar study by using Wendland’s radial 

basis function for Isotropic and laminated orthotropic beam. Pietro et al. [5] also used a temperature profile as per the heat conduction 

equation. They used a unified formulation with the finite element method to study the FG beam with linear, quadratic, and cubic material 

gradation. The buckling behavior of the FG beam has reviewed by Kiani and Eslami [6]. They have considered uniform, linear, and 

nonlinear temperature variation with power law material gradation. 

By examining the similar kind of temperatures, Trinh et al. [7] derived an exact solution by state space approach to study buckling and 

vibration of the Functionally graded beam. EI-Ashmawy et al. [8] invented a finite element model based on the Timoshenko approach to 

observe the difference in the dynamic response of axially and transversally loaded FGB. Static analysis has carried out many of the 

researchers, Chakraborty et al. [9] developed a new beam element based on first-order shear deformation theory. To determine the location 

of neutral surface, Kadoli et al. [10] used higher-order shear deformation theory. The behavior of short FG beam under three-point bending 

has studied by Benatta et al. [11] by assuming power law variation of material along with the depth of the beam. Generally, material 

variation has considered as per either exponential law or as per power law. However, in both power-law and exponential functions, the 

stress concentrations appear in one of the interfaces in which the material is continuous with rapid change. To avoid this, Sallai et al. [12] 

have study stress intensity of cracked body by considering both variations together called sigmoid. Comparative studies between the 

number of shear deformation theories have been performed by Thai and Vo [13] to investigate the effect of the power-law index on the 

bending and free vibration responses of the FG beam. Influence of material length scale parameter, different material compositions, and 

shear deformation modes on static and free vibration analyses of FG micro-beam have investigated by Simsek and Reddy [14] by adopting 

a size-dependent unified beam theory. Here, Simsek and Reddy also studied the buckling behavior of functionally graded microbeam 

embedded in an elastic medium using the modified couple stress theory. Pendhari et al. [15]  presented semi-analytical bending solutions 

for FG narrow beam subjected to transverse loads. 
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In this paper, an attempt has taken to generate a semi-analytical formulation by using Fourier’s formulation and partial differential 

equation (PDE) of heat conduction for accurate assessment of temperature field through the depth of FG laminate. Additionally, accurate 

temperature profile and exponentially considered temperature fields have compared for various materials and different reference 

temperature ranges. From numerical studies, a remarkable conclusion is obtained and presented here. Developed mathematical models 

contain the formation of a two-point Boundary Value Problem governed by a group of coupled first-order Ordinary Differential Equations 

(Eqn. 1) within the depth of the laminate.  

  
3 2 3 3 2 3( ) ( ) ( ) ( )

d
A x x x p x x x

dz
                                                                                                                                                (1) 

Here 
3( )y x  is an n-dimensional vector of primary variables. Number (n) equals the order of PDE. For heat conduction formulation, ‘n’ 

is equal to two. 
 3 ,

( )
n n

A x  It is a coefficient matrix (a function of material properties in the thickness direction) and 
3( )p x  is an n-

dimensional vector of non-homogenous (loading). It has to note down that loading terms include only body loads such as inertia loads, 

thermal loads, electric loads, etc. In contrast, surface loads have incorporated into the formulation in the form of boundary conditions 

during the solution procedure. 

II MATHEMATICAL FORMULATIONS 

Consider a simply supported single layer FG laminate of thickness ‘h,’ length ‘a’ in 1x direction, and width ‘b’ in 2x direction and 

subjected to thermal loading only as shown in Fig. 1. Hook’s law constant  E , thermal expansion coefficient    and coefficient of 

thermal conductivity    have varied only through the thickness of laminate accordingly to exponential law as, 
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Here, subscript 0 and t defined the respective material properties at the downside of the surface and upper side of the surface of laminates, 

respectively. Next, it has considered that the FG material is isotropic at every point, and Poisson’s ratio has considered being constant 

throughout the domain. It has to note that Kantrovich and Krylov [16] approach used in present formulations to transfer ruling partial 

differential equation (PDE) to a group of coupled first-order ordinary differential equations (ODEs) 

     2.1 Semi-Analytical Heat Conduction Formulation 
The use of FG materials is primarily in situations where large temperature fields have experienced on the structure, and hence, accurate 

determination of structural responses is of the utmost importance. In this section, the closed-form formulation for the heat conduction 

equation has discussed. A thermal load as defined in Eqn. (3) is assumed with only known temperature value at the upside and bottom 

side of the laminate surface 
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A governing steady-state heat conduction equation without internal heat generation is, 
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As per Fourier’s expression of heat conduction, heat flux in direction 1x , 2x  and 3x  has expressed as, 
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where,  iq = heat flux along 1x , 2x and 3x -axes ( i  = 1x , 2x , and 3x ) in 
2Wm

 

And, by the consideration, that total of heat remains in the element due to heat flow is zero, the balancing Equation in 3D, 
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Now, two variables viz. heat flux  
3xq  and temperature field  T  are assumed as a primary variable. By using a mathematical 

simplification of the Eqns. (5) and (6) a group of PDEs consist of only two primary variables T  and 
3xq  are gain, as shown below. 
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Substituting Eqn. (3) and it’s differential coefficient into Eqn. (7). The underline set of first-order ODE’s has achieved. 
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The above Equation (8) is valid for the three-dimensional domain. By proper eliminating the dimension, Equation (8) can be reduced to 

the two-dimensional field as, 
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Eqns. (8) and (9) shows the ruling two-point Boundary Value Problem in ODE’s in the domain 30 x h   with known temperatures at 

the upper side and the lower side surface of a laminate. The solution of Eq. (8) consists of the conversion of initial value problems (IVPs) 

from known boundary value problems (BVP), which has tabulated in Table 1. The Fourth-order Runge-Kutta algorithm is used here for 

numerical integration. Eqns. (8) and (9) shows the ruling two-point Boundary Value Problem in ODE’s in the domain 30 x h   with 

known temperatures at the upper side and the lower side surface of a laminate. The solution of Eq. (8) consists of the conversion of initial 

value problems (IVPs) from known boundary value problems (BVP), which has tabulated in Table 1. The Fourth-order Runge-Kutta 

algorithm is used here for numerical integration. 

III  NUMERICAL STUDIES  
Computer codes have generated by inserting the developed formulation to find out the exact temperature change through the depth of the 

FG structure. For the numerical investigation, four material sets have considered, which are commonly used in industry and tabulated in 

Table 2. Reference temperature at the down surface and the upper surface of laminate have regarded as, 
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Based on the convergence studies (not presented here for the sake of brevity), around 20 to 30 steps have used through the thickness of 

laminate for numerical integration. Distribution of temperature field along the thickness of FG laminate for all material sets have obtained 

by developed formulation for side to thickness ratio  s 5, 10, 20, and 50 for 2D as well as for 3D. Square and or Rectangular plates for 

various in-plane aspect ratio  1.0,1.5,  2.0,  2.5 and 3.0b
a
  has considered for numerical investigations. Similarly, the 

exponential temperature distribution for reference temperatures has obtained. Both these variations have plotted in Fig. 2 to 5 for the FG 

beam and in Fig. 6 to 9 for the FG plate. 

From all figures, it has observed that the difference between exact temperature variation and exponential temperature variation is 

dependent on material properties, reference temperature, and heat flux at the downside of the surface and upper side of the surface of the 

laminate. However, no impact of aspect ratios  a
h

as well in-plane aspect ratios  b
a

 have noticed. When the percentage difference 

between the heat flux of FG materials is more than the percentage difference between reference temperature, the exponential temperature 

profile underestimates the exact temperature profile and vice versa. Overestimation of exact temperature over the exponential temperature 

profile observed from Fig. 2 for material set 1. Here, the percentage difference between top and bottom surface heat flux is more than all 

reference temperatures, whereas, from Fig. 5, precisely opposite behavior has noticed as this relation is different for material set 4. Further, 

it has also seen that when the percentage difference between the heat flux of FG materials equal to the percentage difference between 

reference temperature, exact temperature profile coincides with the assumed exponential temperature profile. It has also been noting down 

from Fig. 1d, 2c, 3c, and 4a, 4e, 4f, respectively. 

IV CONCLUSION 

In this produced study, exact temperature distribution through the depth of FG laminate with a semi-analytical approach has derived. 

Further, its comparison with the exponential temperature profile has carried out. For achieving the real relationship between exact and 

exponential temperature profile, various material sets and a wide range of reference temperatures considered. It has observed that material 

properties influence this relationship. Effect of aspect ratio from thin to thick laminate has not seen; simultaneously, the impact of in-

plane aspect ratio has also not observed on heat-conduction solutions. Based on this study, when the difference between heat flux and 

reference temperature are close to each other, judgment can be made to direct the use of an exponential temperature profile instead of 

finding an accurate temperature profile for thermal stress analysis. 
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Figure 1. FG laminate subjected to thermal loading 
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Fig. 2. Comparison of exact and exponential through thickness temperature variation for various aspect ratios 

 as
h

  for FG beam (Material set 1) 
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Fig. 3. Comparison of exact and exponential through thickness temperature variation for various aspect ratios 

 as
h

  for FG beam (Material set 2) 
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Fig. 4. Comparison of exact and exponential through thickness temperature variation for various aspect ratios 

 as
h

  for FG beam (Material set 3) 
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Fig. 5. Comparison of exact and exponential through thickness temperature variation for various aspect ratios 

 as
h

  for FG beam (Material set 4) 
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Fig. 6.  Comparison of exact and exponential through thickness variation for various in-plane aspect ratios  b
a

 

for FG plate (Material set 1) 
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Fig. 7. Comparison of exact and exponential through thickness variation for various in-plane aspect ratios 

 b
a

 for FG plate (Material set 2) 
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Fig. 8. Comparison of exact and exponential through thickness variation for various in-plane aspect ratios  b
a

 

for FG plate (Material set 3) 
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Fig. 9. Comparison of exact and exponential through thickness variation for various in-plane aspect ratios 

 b
a

 for FG plate (Material set 4) 
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Table 1. Conversion of Boundary Value Problem into Initial Value Problem’s for thermal analysis 

Integration 

Number 

Down side edge 

 3 0bottomx   

Upper side edge 

 3topx h  

3( )T x  
3( )zq x  3( )T x  

3( )zq x  

a) Known 
0 

(considered) 
M11 M21 

b) 
0 

(considered) 

1 

(considered) 
M12 M22 

c) 

(Final) 

(0)T
 

(known) 
K1 

( )T h
 

(considered) 3
( )xq h  

 

 

 

Table 2. Material Properties 

Set Material Properties 

1 

1 -6 1 1At bottom, 0 70                0.3         Alumini  =204um :            =23 10  mz E GPa K W K          

1 6 1 1At top,       151              0.3        :   =2.0Zirconia           9      10 1 0  mz h E GPa K W K            

2 

1 -6 1 1At bottom, 0 70               0.3          =  Alumi  n  iu  m : 204       2  = 3 10  mz E GPa K W K          

1 6 1 1At top,       380            0.326        10 0Alum 0ina .4      7.4    :  1   mz h E GPa K W K             

3 

1 -6 1 1At bottom, 0 Monel   227.24       0.3           =25 0         :  =         15 1  mz E GPa K W K          

1 6 1 1At top,      151           Zirconia        1:  0.3          =2.09          0 10     mz h E GPa K W K            

4 

1 -6 1 1At bottom, 0 70              0.3          =233            =2Aluminium 1 3.4 0 :   mz E GPa K W K          

1 6 1 1At top,       427                         0.3         =65              4: .3 10     mz h SiC E GPa K W K            

Ref. Kadoli et al. (2008) and Ji Ying et al. (2009)  
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