**ISSN: 2320-2882** 

## IJCRT.ORG



## **INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

# **ON FUZZY SOFT STRONGLY BAIRE SPACES**

E.Poongothai\*<sup>1</sup>,S. Divyapriya\*<sup>2</sup>

<sup>1</sup>Department of Mathematics ,Shanmuga industries Arts & science college, Tiruvannamalai.,India.

<sup>2</sup> Research Scholar, Department of Mathematics ,Shanmuga industries Arts & science college, Tiruvannamalai , India.

## Abstract

In this present paper ,we have introduced and studied the concept of FSSNWDS, FSSFCS, FSSSCS, FSSRS, in FSTS. The notion of FSSBS is defined and sundry characterizations and properties are probe in this work. Finally we give an some related examples in this paper.

## **Keywords:**

Fuzzy soft dense sets[FSDS], Fuzzy soft strongly nowhere dense sets[FSSNWDS], Fuzzy soft simply open sets[FSSOPS], FSSBS.

#### 1.Introduction

The concept of fuzzy topological space was introduced by **C.L. Chang** [4] in 1968. The paper of Chang paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts. Several Mathematicians have tried all the pivotal concepts of general topology for extension to the fuzzy setting. In 1965, **Lotfi A.Zadeh** introduced the concept of fuzzy sets as a new approach for modeling uncertainties[19]. In 1899, **Rene Louis Baire** [2] introduced the concepts of first and second category sets in his doctoral thesis. In classical topology, Baire space, named in honor of Rene Louis Baire, was first introduced in **Bourbaki's** [3] Topologie generale Chapter IX. The concepts of Baire spaces have been studied extensively in classical topology in [5,12,20,21]. The concept of Baire spaces in fuzzy setting was introduced and studied by **G.Thangaraj and S.Anjalmose** in [15]. **Maji,P.K.Roy**,[10] further studied the theory of soft sets and used this theory to solve some decision making problems. The concept of fuzzy soft set is introduced and studied [6-9,12] a more generalized concept which is a combination of fuzzy set and fuzzy soft set. The notion of fuzzy simply open sets by means of fuzzy nowhere denseness of fuzzy boundary sets in fuzzy topological spaces is introduced and studied by **G.Thangaraj and K.Dinakaran** in [16]. In this paper the concept of fuzzy soft strongly Baire spaces in FSTS are introduced and studied.

## 2.Preliminaries

In section 2 we have given some basic definitions and notion are self-contained.

## **Definition 2.1[6]:**

The fuzzy soft set  $F_{\phi} \in FS(U, E)$  is said to be null fuzzy soft set and it is denoted by  $\phi$ , if for all  $e \in E$ , F(e) is the null fuzzy soft set  $\overline{0}$  of U, where  $\overline{0}(x) = 0$  for all  $x \in U$ .

## Definition 2.2 [6]:

Let  $FE \in FS(U, E)$  and  $FE(e) = \overline{1}$  all  $e \in E$ , where  $\overline{1}(x) = 1$  for all  $x \in U$ . Then  $F_E$  is called absolute fuzzy soft set. It is denoted by  $\overline{E}$ .

## Definition 2.3 [6]:

A fuzzy soft set  $F_A$  is said to be a fuzzy soft subset of a fuzzy soft set  $G_B$  over a common universe U if  $A \subseteq B$  and  $F_A(e)$ 

 $\subseteq G_B$  (e) for all  $e \in A$ , *i.e.*, if  $\mu^e F_A(x) \leq \mu^e G_B(x)$  for all  $x \in U$  and for all  $e \in E$  and denoted by  $F_A \subseteq G_B$ .

## **Definition 2.4[6]:**

Two fuzzy soft sets  $F_A$  and  $G_B$  over a common universe U are said to be fuzzy soft equal if  $F_A$  is a fuzzy soft subset of  $G_B$  of  $G_B$  is a fuzzy soft subset of  $F_A$ .

## Definition 2.5[10]:

The union of two fuzzy soft sets  $F_A$  and  $G_B$  over the common universe U is the fuzzy soft set *HC*, defined by $H_c(e) = \mu_{H_C}^e = \mu_{F_A}^e \cup \mu_{G_B}^e$  for all  $e \in E$ , where  $C = A \cup B$ . Here we write  $H_c = F_A \lor G_B$ 

## **Definition 2.6[6]:**

Let  $F_A$  and  $G_B$  be two fuzzy soft set, then the intersection of  $F_A$  and  $G_B$  is a fuzzy soft set  $H_c$ , defined by  $H(e) = \mu_{F_C}^e = \mu_{F_A}^e \cap \mu_{G_B}^e$  for all

 $e \in E$ , where  $C = A \cap B$ . Here we write  $H_C = F_A \breve{\Lambda} G_B$ .

## Lemma 2.1[1]:

For a family  $A = \{\lambda_{\alpha}\}$  of fuzzy sets of a fuzzy space X,  $V(cl(\lambda_{\alpha})) \leq cl(V(\{\lambda_{\alpha}))$ . In case A is a finite set,  $V(cl(\lambda_{\alpha})) = cl(V((\lambda_{\alpha}))$ . Also  $V(int(\lambda_{\alpha})) \leq int(V(\lambda_{\alpha}))$ .

## Definition 2.7[18]:

Let  $F_A \in FS(U, E)$  be a fuzzy soft set. Then the complement of  $F_A$ , denoted by  $F_A^C$ , defined by

$$F_A^C(e) = \begin{cases} \overline{1} - \mu_F^e A, & \text{if } e \in A \\ \overline{1}, & \text{if } e \notin A \end{cases}$$

## Definition 2.8[14]:

Let  $\psi$  be the collection of fuzzy soft sets over U. Then  $\psi$  is called a fuzzy soft topology on U if  $\psi$  satisfies the following axioms:

(i) $\phi, \overline{E}$  belong to  $\psi$ .

(ii) The union of any number of fuzzy soft sets in  $\psi$  belongs to  $\psi$ .

(iii) The intersection of any two fuzzy soft sets  $\psi$  belongs to  $\psi$ . The triplet ( $U, E, \psi$ ) is called a fuzzy soft topological space over U. The members of  $\psi$  are called fuzzy soft open sets in U and complements of them are called fuzzy soft closed sets in U.

## Definition 2.9[14]:

The union of all fuzzy soft open subsets of  $F_A$  over  $(U, E, \psi)$  is called the interior of  $F_A$  and is denoted by  $int^{f_s}(F_A)$ .

## Proposition 2.1[14]:

 $int^{fs}(F_A \bigwedge G_B) = int^{fS}(F_A) \bigwedge int^{fs}(G_B).$ 

## **Definition** 2.10 [14]:

Let  $F_A \in FS(U, E)$  be a fuzzy soft set. Then the intersection of all closed sets, each containing  $F_A$ , is called the closure of  $F_A$  and is denoted by  $cl^{f_S}(F_A)$ .

## Remarks 2.11 [14]:

(1)For any fuzzy soft set  $F_A$  in a fuzzy soft topological space  $(U, E, \psi)$ , it is easy to see that  $((F_A))^c = int^{f_s}(F_A^c)$  and  $(int^{f_s}(F_A))^c = cl^{f_s}(F_A^c)$ .

(2) For any fuzzy soft  $F_A$  subset of a fuzzy soft topological space  $(U, E, \psi)$  we define the fuzzy soft subspace topology on  $F_A$  by  $K_D \in \psi_{F_A} \text{if } K_D = F_A \check{\wedge} G_B$  for some  $G_B \in \psi$ .

(3)For any fuzzy soft  $H_c$  in  $F_A$  fuzzy soft subspace of a fuzzy soft topological space, we denote to the interior and closure of  $H_c$  in  $F_A$  by  $int_{F_A}^{fs}(H_c)$  and  $cl_{F_A}^{fs}(H_c)$ , respectively.

## Definition2.12[13]:

A fuzzy soft set  $F_A$  in a FSTS ( $U, E, \psi$ ) is called a FSNWD set if there exist no non-zero fuzzy soft open set  $G_B$  in (U,E,  $\psi$ ) such that  $G_B < cl^{fs}(F_A)$ . ie), int<sup>fs</sup> cl<sup>fs</sup>( $F_A$ )=0.

## Definition 2.13[ 13 ]

A fuzzy soft set  $F_A$  in a FSTS  $(U, E, \psi)$  is called fuzzy soft dense if there exist no fuzzy soft closed set  $G_B$  in  $(U, E, \psi)$  such that  $F_A < G_B < 1$ . ie)  $cl^{f_s}(F_A) = 1$ .

## Definition 2.14[ 13 ]:

Let  $(U, E, \psi)$  be a fuzzy soft topology. A fuzzy soft set  $F_A$  in  $(U, E, \psi)$  is called fuzzy soft first category. If  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$  where  $(F_{A_i})$ 's are fuzzy soft nowhere dense sets in  $(U, E, \psi)$ . Any other fuzzy soft set in  $(U, E, \psi)$  is said to be of fuzzy soft second category.

## **3. FUZZY SOFT STRONGLY NOWHERE DENSE SETS**

## Definition3.1:

A FSS  $F_A$  defined on U is called a FSSNWDS in FSTS (U, E, $\psi$ ). If  $F_A\Lambda(1-F_A)$  is a FSNWDS in (U,E, $\psi$ ). ie)  $F_A$  is a FSSNWDS in (U,E, $\psi$ ). If int<sup>fs</sup>cl<sup>fs</sup> [ $F_A\Lambda(1-F_A)$ ] = 0 in (U,E, $\psi$ ).

## Example3.1:

Let  $U = \{a,b,c\}$ . The fuzzy soft sets  $F_A, G_B \& H_C$  are defined on U as follows:

 $F_A: U \rightarrow [0,1]$  is defined as  $F_A(a) = 0.4$ ,  $F_B(b) = 0.5$ ,  $F_B(c) = 0.3$ 

 $G_B: U \rightarrow [0,1]$  is defined as  $G_B$  (a) = 0.5,  $G_B$  (b) = 0.5,  $G_B$  (C) =0.3

 $H_C: U \rightarrow [0,1]$  is defined as  $H_C(a) = 0.4$ ,  $H_C(b) = 0.4$ ,  $H_C(c) = 0.4$ 

Clearly  $\psi = \{0, F_A, G_B, H_C, G_B \lor H_C, H_C \lor F_A, G_B \land H_C, 1\}$  is a FST on U

Hence  $int^{fs}cl^{fs}(F_A) = int^{fs}(1-G_B \vee H_C)=0$  in  $(U,E,\psi)$  and hence  $(U,E,\psi)$  is a FSSNWDS.

## **Proposition 3.1:**

If  $F_A$  is a FSNWDS in a FSTS (U,E, $\psi$ ), after that  $F_A$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FSNWDS in  $(U,E,\psi)$ . Subsequently int<sup>fs</sup>cl<sup>fs</sup> $(F_A) = 0$ , in  $(U,E,\psi)$ . since  $[F_A \Lambda (1-F_A)] \leq F_A$ , in  $(U,E,\psi)$ , int<sup>fs</sup>cl<sup>fs</sup> $[F_A \Lambda (1-F_A)] \leq int^{fs}cl^{fs}(F_A)$  and hence int<sup>fs</sup>cl<sup>fs</sup> $[F_A \Lambda (1-F_A)] \leq 0$ . Hence  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## Remark 3.1:

A FSSNWDS in a FSTS (U,E, $\psi$ ) be a not required FSNWDS in (U,E, $\psi$ ). For in example 3.1, H<sub>c</sub> is a FSSNWDS, but not a FSNWDS in (U,E, $\psi$ ).

## **Proposition 3.2:**

If int<sup>fs</sup>cl<sup>fs</sup>( $F_A$ ) is a fuzzy soft dense set, for a fuzzy soft set  $F_A$  defined on U, in a FSTS (U,E, $\psi$ ), then  $F_A$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Suppose that  $\inf^{f_s}(F_A)$  is a fuzzy soft dense set in  $(U, E, \psi)$ . Then  $\operatorname{cl}^{f_s}[\operatorname{int}^{f_s}(F_A)] = 1$  in  $(U, E, \psi)$  and  $1 - \operatorname{cl}^{f_s}[\operatorname{int}^{f_s}(F_A)] = 0$ .  $\Rightarrow \operatorname{int}^{f_s}\operatorname{cl}^{f_s}(1 - F_A) = 0$  in  $(U, E, \psi)$ . since  $F_A \wedge (1 - F_A) \leq (1 - F_A)$ ,  $\operatorname{int}^{f_s}\operatorname{cl}^{f_s}[F_A \wedge (1 - F_A)] \leq \operatorname{int}^{f_s}\operatorname{cl}^{f_s}(1 - F_A)$  and hence  $\operatorname{int}^{f_s}\operatorname{cl}^{f_s}[F_A \wedge (1 - F_A)] \leq 0$ . i.e)  $\operatorname{int}^{f_s}\operatorname{cl}^{f_s}[F_A \wedge (1 - F_A)] = 0$ . Hence  $F_A$  is a FSSNWDS in  $(U, E, \psi)$ .

## **Proposition 3.3:**

If  $1-F_A$  is a FSNWDS in a FSTS (U,E, $\psi$ ), then  $F_A$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proof**:

Suppose that  $1-F_A$  is a FSNWDS in  $(U,E,\psi)$ . Then,  $int^{f_s}[cl^{f_s}(1-F_A)] = 0$  in  $(U,E,\psi)$ . Since  $F_A \wedge (1-F_A) \leq 1-F_A$ ,  $int^{f_s}cl^{f_s}[F_A \wedge (1-F_A)] \leq int^{f_s}[cl^{f_s}(1-F_A)]$  and hence  $int^{f_s}cl^{f_s}[F_A \wedge (1-F_A)] \leq 0$ . ie)  $int^{f_s}cl^{f_s}[F_A \wedge (1-F_A)] = 0$  in  $(U,E,\psi)$  and hence  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Proposition 3.4:**

If  $cl^{fs}[int^{fs}(1 - F_A)] = 1$ , for a fuzzy soft set  $F_A$  defined on U in a FSTS (U,E, $\psi$ ), then  $F_A$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Suppose that  $cl^{fs}[int^{fs}(1-F_A)]=1$  in  $(U,E,\psi)$ . Then 1-  $cl^{fs}[int^{fs}(1-F_A)] = 0$  and 1-{1- $int^{fs}[cl^{fs}(F_A)]$ } = 0  $\Rightarrow$   $int^{fs}[cl^{fs}(F_A)]=0$  in  $(U,E,\psi)$ . Thus  $F_A$  is a FSNWDS in  $(U,E,\psi)$ . Then by proposition 3.1,  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Proposition 3.5:**

If  $F_A$  is a FSSNWDS in a FSTS(U,E, $\psi$ ), then 1-  $F_A$  is also a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FSSNWDS in  $(U,E,\psi)$ . Then  $int^{fs}cl^{fs}[F_A \land (1-F_A)]=0$  in  $(U,E,\psi)$ . Now  $int^{fs}cl^{fs}\{(1-F_A) \land [1-(1-F_A)]\} = int^{fs}cl^{fs}([1-F_A) \land F_A]$  and hence  $int^{fs}cl^{fs}\{(1-F_A) \land [1-(1-F_A)]\} = 0$ .  $\Rightarrow 1-F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Proposition 3.6:**

If  $F_A$  is a FSSNWDS in a FSTS(U,E, $\psi$ ), then 1-  $F_A$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FSNWDS in  $(U,E,\psi)$ . Then, by proposition 3.1,  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ . and by proposition 3.5, 1-  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Proposition 3.7:**

If  $F_A$  is a FSSNWDS in a FSTS (U,E, $\psi$ ), then  $cl^{fs}(F_A) \vee cl^{fs}(1-F_A) = 1$ , in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FSSNWDS in  $(U,E,\psi)$ . Then  $int^{f_s}cl^{f_s}[F_A\Lambda(1-F_A)] = 0$  in  $(U,E,\psi)$ . Now  $1-int^{f_s}cl^{f_s}[F_A\Lambda(1-F_A)] = 1$  and hence  $cl^{f_s}int^{f_s}[1-\{F_A\Lambda(1-F_A)\}] = 1$ , in  $(U,E,\psi)$ . But,  $cl^{f_s}int^{f_s}[1-\{F_A\Lambda(1-F_A)\}] \le cl^{f_s}[1-\{F_A\Lambda(1-F_A)\}]$  implies that  $1 \le cl^{f_s}[1-\{F_A\Lambda(1-F_A)\}]$ . Thus,  $cl^{f_s}[1-\{F_A\Lambda(1-F_A)\}] = 1$ , this implies that  $cl^{f_s}[(1-F_A) \lor F_A] = 1$  in  $(U,E,\psi)$ . But by lemma 2.1,  $cl^{f_s}[(1-F_A) \lor F_A] = cl^{f_s}(1-F_A) \lor cl^{f_s}(F_A)$ . Hence  $cl^{f_s}(F_A) \lor cl^{f_s}(1-F_A) = 1$ , in  $(U,E,\psi)$ .

## **Proposition3.8:**

If  $F_A$  is a FSS[fuzzy soft set FSS] defined on U such that  $int^{fs}[fsbd(F_A)] = 0$  in a FSTS (U,E, $\psi$ ), then  $F_A$  is a FSSNWDS in(U,E, $\psi$ ). **Proof:** 

Let  $F_A$  be a FSS defined on U .such that  $int^{fs}[fsbd(F_A)] = 0$  in  $(U,E,\psi)$ . since  $fsbd(F_A) = cl^{fs}(F_A) \wedge cl^{fs}(1-F_A)$  and  $cl^{fs}(F_A) \wedge cl^{fs}(1-F_A)$ , we have  $fsbd(F_A) \ge cl^{fs}[F_A \wedge (1-F_A)]$  and hence  $int^{fs}cl^{fs}[F_A \wedge (1-F_A)] \le int^{fs}[fsbd(F_A)]$  in  $(U,E,\psi)$ . then  $int^{fs}cl^{fs}[F_A \wedge (1-F_A)] \le 0$  ie)  $int^{fs}cl^{fs}[F_A \wedge (1-F_A)] = 0$  and hence  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Proposition 3.9:**

If  $F_A$  is a FS simply open set in a FSTS (U,E, $\psi$ ), then  $F_A$  is a FSSNWDS in(U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FS simply open set in  $(U,E,\psi)$ . Then  $int^{fs}cl^{fs}[fsbd(F_A)] = 0$ , in  $(U,E,\psi)$ . But  $int^{fs}[fsbd(F_A)] \le int^{fs}cl^{fs}[fsbd(F_A)] \Rightarrow int^{fs}[fsbd(F_A)] = 0$  in  $(U,E,\psi)$ . Then, by proposition 3.8,  $F_A$  is a FSSNWDS in $(U,E,\psi)$ .

## Proposition 3.10:

If  $F_A$  is a FSCS with int<sup>fs</sup>( $F_A$ ) = 0 in a FSTS (U,E, $\psi$ ), then  $F_A$  is aFSSNWDS in(U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FS closed set with  $int^{f_s}(F_A) = 0$  in  $(U, E, \psi)$ . Then,  $int^{f_s}cl^{f_s}[cl^{f_s}(F_A) \land cl^{f_s}(1-F_A)] = int^{f_s}cl^{f_s}[F_A \land (1-int^{f_s} F_A)] = int^{f_s}cl^{f_s}[F_A \land 1] = int^{f_s}cl^{f_s}(F_A) = int^{f_s}(F_A) = 0$ , and hence  $F_A$  is a fuzzy soft simply open set in  $(U, E, \psi)$ . By prop 3.9,  $F_A$  is a FSNWDS in  $(U, E, \psi)$ .

## **Proposition 3.11:**

If  $F_A$  is a FS open and fuzzy soft dense set in a FSTS (U,E, $\psi$ ), then  $F_A$  is a is a FSSNWDS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a fuzzy soft open and fuzzy soft dense set in  $(U,E,\psi)$ . Then 1- $F_A$  is a fuzzy soft closed set with  $int^{fs}(1-F_A) = 1-cl^{fs}(F_A) = 1-1 = 0$ in  $(U,E,\psi)$ . Then ,by proposition 3.10, 1- $F_A$  is a FSSNWDS in  $(U,E,\psi)$  and by proposition 3.5,1-(1- $F_A$ ) is a FSSNWDS in  $(U,E,\psi)$  and thus  $F_A$  is a FSSNWDS in  $(U,E,\psi)$ .

## Theorem 3.1[17]:

If  $F_A$  is a FSNWDS in a FSTS (U,E, $\psi$ ) after that  $cl^{fs}(F_A)$  is a FSSNWDS in (U,E, $\psi$ ).

## **Proposition 3.12:**

If  $F_A$  is a FSNWDS in a FSTS (U,E, $\psi$ ), then  $cl^{fs}(F_A)$  is a FSSOPS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FSNWDS in  $(U,E,\psi)$ . Then by theorem 3.1,  $cl^{f_8}(F_A)$  is a fuzzy soft simply open set in  $(U,E,\psi)$  and then proposition 3.9,  $cl^{f_8}(F_A)$  is a FSSNWDS in  $(U,E,\psi)$ .

## **Definition 3.2:**

A FSS  $F_{Ain}$  a FSTS  $(U, E, \psi)$  is called a FSS first category set if  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSSNWDS in  $(U, E, \psi)$ . Any other FSS in  $(U, E, \psi)$  is said to be a FSS second category set in  $(U, E, \psi)$ .

## **Definition 3.3:**

If  $F_A$  is a FSS first category set in a FSTS (U,E, $\psi$ ), then 1- $F_A$  is a fuzzy soft strongly residual set in (U,E, $\psi$ ).

#### **Definition 3.4:**

A FSTS (U,E, $\psi$ ) is called a FSS first category set, if the FSS 1<sub>x</sub> is a FSS first category set in (U,E, $\psi$ ). ie), 1<sub>x</sub> =  $\bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSSNWDS in (U,E, $\psi$ ). otherwise (U,E, $\psi$ ) will be called a FSS second category set.

#### **Proposition 3.13**

If  $F_A$  is a fuzzy soft first category set in a FSTS (U,E, $\psi$ ). Then  $F_A$  is a FSS first category set in (U,E, $\psi$ ).

#### **Proof:**

Let  $F_A$  be a fuzzy soft first category set in  $(U,E,\psi)$ . Then  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSNWDS in  $(U,E,\psi)$ . By proposition 3.1, the FSNWDS. Where  $(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$  and hence  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$ .  $\Rightarrow F_A$  is a FSS first category set in  $(U,E,\psi)$ .

## **Proposition 3.14**

If  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft closed set with  $\inf^{f_s}(F_{A_i}) = 0$  in  $(U, E, \psi)$ , then  $F_A$  is a FSS first category set in  $(U, E, \psi)$ . **Proof:** 

Suppose that  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $1 - F_{A_i} \in T$  and  $\inf^{f_s}(F_{A_i}) = 0$  in  $(U, E, \psi)$ . Now by proposition 3.10, the fuzzy soft closed sets  $(F_{A_i})$ 's with  $\inf^{f_s}(F_{A_i}) = 0$ , are FSSNWDS in  $(U, E, \psi)$  and hence  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSSNWDS in  $(U, E, \psi)$ ,  $\Rightarrow F_A$  is a FSS first category set in  $(U, E, \psi)$ .

#### **Proposition 3.15**

If  $F_A$  is a fuzzy soft  $F_{\sigma}$  set such that  $int^{fs}(F_A) = 0$  in  $(U, E, \psi)$ , then  $F_A$  is a FSSFCS in  $(U, E, \psi)$ .

## **Proof:**

Let  $F_A$  be a fuzzy soft  $F_\sigma$  set in  $(U, E, \psi)$ . Then  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_A)$ 's are FSCS in  $(U, E, \psi)$ . By lemma 2.2,  $\bigvee_{i=1}^{\infty} int^{f_s}(F_{A_i}) \leq int^{f_s}\{\bigvee_{i=1}^{\infty}(F_{A_i})\}$ , in  $(U, E, \psi)$ .  $\Rightarrow \bigvee_{i=1}^{\infty} int^{f_s}(F_{A_i}) \leq int^{f_s}\{\bigvee_{i=1}^{\infty}(F_{A_i})\} = int^{f_s}(F_A)$ . since  $int^{f_s}(F_A) = 0$ ,  $\bigvee_{i=1}^{\infty} int^{f_s}(F_{A_i}) = 0$  in  $(U, E, \psi)$ .  $\Rightarrow int^{f_s}(F_{A_i})$ = 0, thus  $(F_{A_i})$ 's are FSCS with  $int^{f_s}(F_{A_i}) = 0$ , in  $(U, E, \psi)$ . Then by prop 3.10,  $(F_{A_i})$ 's are FSSNWDS in  $(U, E, \psi)$ . Hence  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_A)$ 's are FSSNWDS in  $(U, E, \psi)$ .  $\Rightarrow F_A$  is a FSSFCS in  $(U, E, \psi)$ .

## **Proposition 3.16:**

If  $F_A$  is a FS $\sigma$  –NWDS in a FSTS (U,E, $\psi$ ) then  $F_A$  is a FSSFCS in (U,E, $\psi$ ).

## **Proof:**

Let  $F_A$  be a FS  $\sigma$  –NWDS in (U,E, $\psi$ ). Then  $F_A$  is a fuzzy soft  $F_{\sigma_-}$  set in (U,E, $\psi$ ). such that int<sup>fs</sup>( $F_A$ ) = 0. Then by proposition 3.15,  $F_A$  is a FSSFCS in (U,E, $\psi$ ).

## **Proposition 3.17:**

If  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft simply open sets in a FSTS  $(U, E, \psi)$ , then  $F_A$  is a FSSFCS in  $(U, E, \psi)$ .

#### **Proof:**

Suppose that  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft simply open sets in  $(U, E, \psi)$ . By proposition 3.9, the fuzzy soft simply open set  $(F_{A_i})$ 's are FSSNWDS in  $(U, E, \psi)$  and hence  $F_A$  is a FSSFCS in  $(U, E, \psi)$ .

## **Proposition 3.18:**

If  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $\operatorname{int}^{f_S}[\operatorname{fsbd}(F_{A_i})] = 0$  in  $(U, E, \psi)$ , then  $F_A$  is a FSSFCS in  $(U, E, \psi)$ .

## **Proof:**

The proof follows from proposition 3.8.

## **Proposition 3.19:**

If  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft open and fuzzy soft dense set in a FSTS  $(U, E, \psi)$ , then  $F_A$  is a FSSFCS in  $(U, E, \psi)$ .

## **Proof:**

The proof follows from proposition 3.11.

## **Proposition 3.20:**

If  $F_A$  is FSFCS in a FSTS  $(U,E,\psi)$ , then there exist a FSSFCS  $G_B$  in  $(U,E,\psi)$  such that  $cl^{f_s}(F_A) \ge G_B$ .

## **Proof:**

Let  $F_A$  be a FSFCS in  $(U,E,\psi)$ . Then  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft nowhere dense set in  $(U,E,\psi)$ . By proposition 3.12,  $cl^{fs}(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$ . Then  $\bigvee_{i=1}^{\infty} cl^{fs}(F_{A_i})$  is a FSSFCS in  $(U,E,\psi)$ . Let  $G_B = \bigvee_{i=1}^{\infty} cl^{fs}(F_{A_i})$ . Now  $\bigvee_{i=1}^{\infty} cl^{fs}(F_{A_i}) \leq 1$  $\operatorname{cl}^{\operatorname{fs}}[\bigvee_{i=1}^{\infty}(F_{A_i})] \Rightarrow G_B \leq \operatorname{cl}^{\operatorname{fs}}(F_A)$ , in (U,E, $\psi$ ).

## 4.FUZZY SOFT STRONGLY BAIRE SPACE

## **Definition 4.1:**

A FSTS (U,E, $\psi$ ) is called a FSSBS if  $cl^{fs}[V_{i=1}^{\infty}(F_{A_i})] = 1$  where  $(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$ .

## Example 4.1.1:

Let  $U = \{a,b,c\}$ . The fuzzy soft sets  $F_A, G_B \underset{\&}{}^{*}H_C$  are defined on U as follows:

 $F_A: U \rightarrow [0,1]$  is defined as  $F_A(a) = 0.2$ ,  $F_B(b) = 0.5$ ,  $F_B(c) = 0.4$ 

 $G_B: U \rightarrow [0,1]$  is defined as  $G_B(a) = 0.4$ ,  $G_B(b) = 0.5$ ,  $G_B(C) = 0.2$ 

 $H_{\rm C}: U \rightarrow [0,1]$  is defined as  $H_{\rm C}(a) = 0.5$ ,  $H_{\rm C}(b) = 0.3$ ,  $H_{\rm C}(c) = 0.3$ 

Then T = {0,  $F_A$ ,  $G_B$ ,  $H_C$ ,  $F_A \lor G_B$ ,  $G_B \lor H_C$ ,  $H_C \lor F_A$ ,  $F_A \land G_B$ ,  $G_B \land H_C$ ,  $H_C \land F_A$ , 1} is a fuzzy topology on U.

The fuzzy strongly nowhere dense set are in  $(U,E,\psi)$  are  $\{1 - F_A, 1 - G_B, 1 - H_C, 1 - F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A, 1 - F_A \land G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \land H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B, 1 - G_B \lor H_C, 1 - H_C \lor F_A \lor G_B \lor H_C, 1 - H_C \lor F_A \lor G_B \lor H_C, 1 - H_C \lor F_A \lor G_B \lor H_C, 1 - H_C \lor F_A \lor G_B \lor H_C, 1 - H_C \lor F_A \lor G_B \lor H_C, 1 - H_C \lor H_C$  $H_C \Lambda F_A$ . int<sup>fs</sup> cl<sup>fs</sup> (1- $H_C \Lambda F_A$ ) = intcl<sup>fs</sup> ( $\bigvee_{i=1}^{\infty}$  (1- $H_C \Lambda F_A$ ) $\vee$  ( $H_C \Lambda F_A$ ) = int<sup>fs</sup> cl<sup>fs</sup> (1- $H_C \Lambda F_A$ ) = 0. Hence (U,E, $\psi$ ) is a fuzzy soft strongly Baire JCRI space.

## **Proposition 4.1:**

Let  $(U, E, \psi)$  be a FSTS. Then, the following are equivalent.

(i)(U,E, $\psi$ ) is a FSSBS.

(ii) $cl^{fs}(F_A) = 1$ , for each FSSFCS  $F_A$  in  $(U, E, \psi)$ .

(iii) int<sup>fs</sup>( $G_B$ ) = 0, for each fuzzy soft strongly residual set  $G_B$  in (U,E, $\psi$ ).

## **Proof:**

## (i)⇒(ii)

Let  $F_A$  be a FSSFCS in  $(U,E,\psi)$ . Then  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft strongly nowhere dense set in  $(U,E,\psi)$ . since  $(U,E,\psi)$  is a FSSBS,  $cl^{fs}[V_{i=1}^{\infty}(F_{A_i})] = 1$ , and hence  $cl^{fs}(F_A) = 1$ , in  $(U,E,\psi)$ .

## (ii)⇒(iii)

Let  $G_B$  be a FSSRS in  $(U,E,\psi)$ . Then 1-  $G_B$  is a FSSFCS in  $(U,E,\psi)$ . By hypothesis,  $cl^{f_S}(1-G_B) = 1$  in  $(U,E,\psi)$ . Then 1- int<sup>f\_S</sup> $(G_B) = cl^{f_S}(1-G_B)$ .  $(G_B) = 1$  and hence  $int(G_B) = 0$  in  $(U, E, \psi)$ .

## (iii)⇒(i)

Let  $F_A$  be a FSSFCS in  $(U,E,\psi)$ . Then  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$ . Since  $F_A$  is a FSSFCS in  $(U,E,\psi)$ , 1- $F_A$  is a FSS residual set in  $(U,E,\psi)$ . By hypothesis,  $\inf^{f_s}(1-F_A) = 0$  in  $(U,E,\psi)$ . Now  $1-cl^{f_s}(F_A) = \inf^{f_s}(1-F_A) = 0$ .  $cl^{fs}[V_{i=1}^{\infty}(F_{A_i})] = 1$ , where  $(F_{A_i})$ 's are FSSNWDS in  $(U, E, \psi) \Rightarrow (U, E, \psi)$  is a FSSBS.

## **Proposition 4.2:**

If  $(U,E,\psi)$  is a FSSBS, then

(i)cl<sup>fs</sup>[ $\bigvee_{i=1}^{\infty}(F_{A_i})$ ] =1, where 1-  $F_{A_i} \in T$  and  $\operatorname{int}^{fs}(F_{A_i}) = 0$  in (U,E, $\psi$ ).

(ii)cl<sup>fs</sup>[ $\bigvee_{i=1}^{\infty}(F_{A_i})$ ] =1,where (F<sub>Ai</sub>)'s are fuzzy soft simply open sets in (U,E, $\psi$ ).

(iii)cl<sup>fs</sup>[ $\bigvee_{i=1}^{\infty}(F_{A_i}]=1$ , where int<sup>fs</sup>[fsbd(F<sub>Ai</sub>)] = 0 in (U,E, $\psi$ ).

## **Proof:**

(i)Let  $F_{A} = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft closed sets with  $\inf^{f_s}(F_{A_i}) = 0$ . Then, by proposition 3.14,  $F_A$  is a FSSFCS in  $(U, E, \psi)$ . Since  $(U, E, \psi)$  is a FSSBS, by proposition 4.1,  $cl^{f_s}(F_A) = 1$  in  $(U, E, \psi)$ . Thus  $cl^{f_s}[\bigvee_{i=1}^{\infty}(F_{A_i})] = 1$ , where  $1 - F_{A_i} \in T$  and  $\inf^{f_s}(F_{A_i}) = 0$ .

(ii) Let  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft simply open sets in  $(U, E, \psi)$ . Then, by prop 3.17,  $F_A$  is a FSSFCS in  $(U, E, \psi)$ . since  $(U, E, \psi)$  is a FSSBS, by proposition 4.1,  $cl^{f_s}(F_A) = 1$  in  $(U, E, \psi)$ . Thus  $cl^{f_s}[\bigvee_{i=1}^{\infty} (F_{A_i})] = 1$ , where  $(F_{A_i})$ 's are fuzzy soft simply open sets in a FSSBS  $(U, E, \psi)$ .

(iii)Let  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ , where  $(F_{A_i})$ 's are fuzzy soft sets on (U) with  $int^{f_s}[fsbd(F_{A_i})] = 0$  in  $(U,E,\psi)$ . Then by prop 3.18,  $F_A$  is a FSSFCS in  $(U,E,\psi)$ . Since  $(U,E,\psi)$  is a FSSBS, by prop 4.1,  $cl^{f_s}(F_A) = 1$  in  $(U,E,\psi)$ . Thus  $cl^{f_s}[\bigvee_{i=1}^{\infty} (F_{A_i})] = 1$ , where  $int^{f_s}[fsbd(F_{A_i})] = 0$  in  $(U,E,\psi)$ .

## **Proposition 4.3:**

If each fuzzy soft open sets is a FSDS in a FSTS  $(U,E,\psi)$ , then  $(U,E,\psi)$  is a FSSBS.

## **Proof:**

Let  $(F_{A_i})$ 's are fuzzy soft open sets in  $(U,E,\psi)$ . By hypothesis  $(F_{A_i})$ 's are fuzzy soft dense sets in  $(U,E,\psi)$ . Then  $(F_{A_i})$ 's are fuzzy soft open and fuzzy soft dense sets in  $(U,E,\psi)$ . Then by prop 3.11,  $(F_{A_i})$ 's are FSSNWDS in  $(U,E,\psi)$ . Let  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ . Then  $F_A$  is a FSSFCS in  $(U,E,\psi)$ . Now  $cl^{f_s}(F_A) = cl^{f_s}[\bigvee_{i=1}^{\infty} cl^{f_s}(F_{A_i})] \ge \bigvee_{i=1}^{\infty} cl^{f_s}(F_{A_i}) = \bigvee_{i=1}^{\infty} cl^{f_s}(F_A) = 1$  in  $(U,E,\psi)$ . Then, by prop 4.1,  $(U,E,\psi)$  is a FSSBS.

## **Proposition 4.4:**

If  $F_A$  is a FSFCS in a FSSBS, then  $F_A$  is a FSDS in  $(U, E, \psi)$ .

## **Proof:**

Let  $F_A$  be a FSFCS in  $(U,E,\psi)$ . By prop 3.17, there exist a FSSFCS  $G_B$  in  $(U,E,\psi)$ . such that  $cl^{f_8}(F_A) \ge G_B$ . Then  $cl^{f_8}[cl^{f_8}(F_A)] \ge cl^{f_8}(G_B)$ . Since  $(U,E,\psi)$  is a FSSBS by prop 4.1, for the FSSFCS  $G_B$  in  $(U,E,\psi)$ ,  $cl^{f_8}(G_B) = 1$ . Then  $cl^{f_8}(F_A) \ge 1$ . Hence  $F_A$  is a FSDS in  $(U,E,\psi)$ .

## Proposition 4.5:

If  $(F_{A_i})$ 's (i=1to $\infty$ ) are fuzzy soft simply open sets in a FSSBS, then  $(F_{A_i})$ 's are not FSDS in  $(U, E, \psi)$ .

## **Proof:**

Let  $(F_{A_i})$ 's  $(i=1t\infty)$  be fuzzy soft simply open sets in  $(U,E,\psi)$ . Suppose that  $F_A = \bigvee_{i=1}^{\infty} (F_{A_i})$ . Then by prop 3.17,  $F_A$  is a FSSFCS in  $(U,E,\psi)$ . Since  $(U,E,\psi)$  is a FSSBS, by prop 4.1,  $cl^{fs}(F_A) = 1$  in  $(U,E,\psi)$ . Then  $cl^{fs}[\bigvee_{i=1}^{\infty} (F_{A_i})] = 1$  in  $(U,E,\psi)$ . But  $\bigvee_{i=1}^{\infty} cl^{fs}(F_{A_i}) < cl^{fs}(F_{A_i}) \neq 1$  in  $(U,E,\psi)$  and hence  $cl^{fs}(F_{A_i}) \neq 1$ . Thus the fuzzy soft simply open sets  $(F_{A_i})$ 's are not FSDS in  $(U,E,\psi)$ .

## **Proposition 4.6:**

If  $F_A$  is a FSFCS in a FSSBS, then  $F_A$  is a FSDS in  $(U,E,\psi)$ .

## **Proof:**

Let  $F_A$  be a FSFCS in  $(U,E,\psi)$ . By prop 3.20, there exist a FSSFCS  $G_B$  in  $(U,E,\psi)$ . Such that  $cl^{fs}(F_A) \ge G_B$ . Then  $cl^{fs}[cl^{fs}(F_A)] \ge cl^{fs}(G_B)$ . Since  $(U,E,\psi)$  is a FSSBS by prop 4.1, for the FSSFCS  $G_B$  in  $(U,E,\psi)$ ,  $cl^{fs}(G_B)=1$ . Then  $cl^{fs}(F_A)\ge 1$ . ie)  $cl^{fs}(F_A) = 1$ . Hence  $F_A$  is a FSDS in  $(U,E,\psi)$ .

## **Proposition 4.7:**

If  $H_C$  is a FSRS in a FSSBS, then  $int^{fs}(H_E) = 0$  in  $(U, E, \psi)$ .

## **Proof:**

Let  $H_C$  be a FS residual set in  $(U,E,\psi)$ . Then  $1 - H_C$  is a FSFCS in  $(U,E,\psi)$ . since  $(U,E,\psi)$  is a FSSBS, by prop 4.6,  $cl^{fs}(1-H_C) = 1$  in  $(U,E,\psi)$ . Then  $1 - int^{fs}(H_C) = 1$  and hence  $int^{fs}(H_C) = 0$  in  $(U,E,\psi)$ .

## REFERENCE

(1) Azad K.K On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly Continuity J. Math. Anal. Appl., 82(1)(1981), 14 -32.
(2)Baire .L.R Sur les functions de variables reelles. Annali di Matematica Pura ed Applicata, 3(1)(1899), 1123.

(3)Bourbaki.N Topologie Generale. Act. Sci. Ind. no. 1045 Paris, (1948).

(4)Chang C.L., "Fuzzy topological spaces", Journal of Mathematical Analysis and Application, vol. 24, PP.182-190,(196).

(5) Gruenhage, G., Lutzer, D, 2000. Baire and Volterra spaces. Proc. Amer. Soc., 128, 3115-312.

(6)Mahmood.S(2014). Soft Regular Generalized b-Closed Sets in Soft Topological Spaces.Journal of Linear and Topological Algebra, 3(4), 195-200.

(7)Mahmood. S, 2015. On intuitionistic fuzzy soft b- closed sets in intuitionistic fuzzy soft topological spaces. Annals of Fuzzy Mathematics and Informatics, 10(2), 221-233.

(8) Mahmood. S. & Al-Batat, Z, 2016. Intuitionistic Fuzzy Soft LA-Semigroups and intuitionistic Fuzzy Soft Ideals. International Journal of Applications of Fuzzy Sets and Artificial Intelligence, 6, 119 – 132..

(9) Mahmood. S, 2016. Dissimilarity Fuzzy Soft Points and their Applications. FuzzyInformation and Engineering, 8, 281-294.

(10) Maji, P.K., Roy, A.R., Biswas, R., 2003.Soft set theory. Comput. Math.Appl. 45, 555-562.

(11) Molodtsov, D, 1999. Soft set theory-First results. Comput. Math. Appl. 37, 19-31.

(12)Neubrunn, T.K (2013). An introduction to open and closed sets on fuzzy soft topological spaces. Ann. Fuzzy Math. Inform., 6(2), 425-431.

(13)Poongothai.E and Divyapriya.s On fuzzy soft nowhere dense sets, INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH : Volume-9 | Issue-4 | April-2020

(14)Tanay, B. & Kander, M.B.(2011). topological structure of fuzzy sets. Comput. Math. Appl., 61(10), 2952-2957.

(15) Thangaraj. G & Anjalmose.S. (2013). On Fuzzy Baire Spaces, J. Fuzzy Math., 21(3), 667-676.

(16)G. Thangaraj and K.Dinakaran. On fuzzy simply continuous functions. The Journal of Fuzzy Mathematics, 25(1)(2017), 99-124.

(17)G.Thangaraj, E.Poongothai, On Fuzzyσ- Baire spaces, J.Fuzzy Math. and Sys., Vol.3(4) (2013),275-283.

(18)Roy, S. & Samanta, T.K. (2013). An Introduction to open and closed sets on fuzzy soft topological spaces. Ann. Fuzzy Math. Infrom., 6(2), 425-431.

(19)Zadeh L.A., Fuzzy sets, Information and Control, Vol. 8 (1965), 338-353.

(20)Zdenek Frolik, Baire spaces and some generalizations of complete metric spaces, Czech.Math. J. Vol. 11, No.2, pp. 237 – 247, 1961.

(21)Z denek Frolik, Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. Vol. 11, No.3, pp. 381 – 385 1961