ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ANALYSIS AND DESIGN OF JACKWELL STRUCTURE

¹Vaishnavi S. Sarode,²Prof. Ms. A. A. Yadav,³Er. Minal V. Dehadrai,⁴Alpesh A. Adekar

¹M.Tech. student Department of Civil Eng. Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India,²Asst. Professor Department of Civil Eng. Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India,³Director of Aquades Structural consultants (P) Ltd. Nagpur Maharashtra India,⁴Lecturer, Civil Engineering Department, Shri. Datta Meghe Polytechnic, Nagpur, Maharashtra India

¹ Department of Civil Enginerring,

¹ Yeshwantrao Chavan College of Engineering Nagpur, India

Abstract: Intake structure's are used for collecting water from the sources like river, lake, and reservoir and transfer it further to the water treatment plant. The paper highlights the work administered on construction of Jackwell with Overhead Pump House. The main reason for that is rising in demand for water and poor distribution of water. The Paper includes the provision of Design of a water treatment scheme for the area in order to supply the treated water to the houses. Jackwell and Pump House has been analyzed by using STAAD PRO vi8 software under seismic condition.

Index Terms - Analysis and Design of Jackwell Structure, Pump House, Intake Well, Staad Pro Vi8, Seismic Condition.

I. INTRODUCTION

Intake structures are hydraulic structures used for collecting water from the sources like river, lake and reservoir and transfer it further to the water treatment plant. Intake structures are masonary or concrete structures and it provides relatively clean water, free from pollution, sand and objectionable floating material. There are two kinds of intake structure a) Wet intake structure b) Dry intake structure. Jackwell Structure or Intake Structure is underwater structure, proper design is essential. Re-construction of the structure become un-economical.

1.1Wet Intake Structure:

It is a type of intake tower within which the water level is practically similar to the level of the sources of supply. It is known as Jackwell and is most commonly used. Jackwell structures are used for accumulating water from the surface sources like a river, lake, and reservoir. It is then further transferred to the water treatment plant. These Jackwell Designs and Constructions are masonry or concrete structures. It provides clean water.

1.2Dry Intake Structure:

In case of dry intake, there is no water within the reservoir. Water enters through the entry port directly into the transferring pipes. It's simply used for the operation of valves etc.

Intakes are hydraulic structures used to extract water from the surface sources like rivers, man-made reservoirs or lakes. Intake structures on channels are intended to divert a particular amount of water from the channel for diverse purposes of use like irrigation, industrial plant cooling, potable water supply and hydroelectric power. It must be possible for both the diverted water and therefore the remaining supply to be evacuated without damage being caused to the environment or the Intake system.

In this present study, jackwell and pump house for Jhagarpur and adjoining villages (Mining Affected) under Rajgangpur, Dist-Sundargarh, Odisha is considered. Jackwell having a height of 13.2 m with concrete masonary of 300 mm thick and height of pump house is 6.5 m with brick masonary of 230 mm thick. Roof slab of 150 mm is proposed to accommodate two pumps and gantry. Load of each pump is 25 kN and load of gantry 81.25 kN (with 25 % of impact). And is analyzed in standard software Staad pro Vi8 using various conditions.

www.ijcrt.org

Objective of Study:

The objectives of this project study are often shortening as follows:

- To study the various forces acting on Jackwell Structure.
- To study Traditional analysis of the Jackwell Structure.
- 3D analysis of Jackwell Structure by using standard software Staad Pro Vi8
- Design of Jackwell Structure.
- To Study Criteria for Earthquake Resistant Design of Structures. (Liquid Retaining Tanks –Part 2) IS 1893 -2014 (Part- 2).
- To study the Data for Analysis & Design of Circular Shell Structures: I using Arya's Paper.

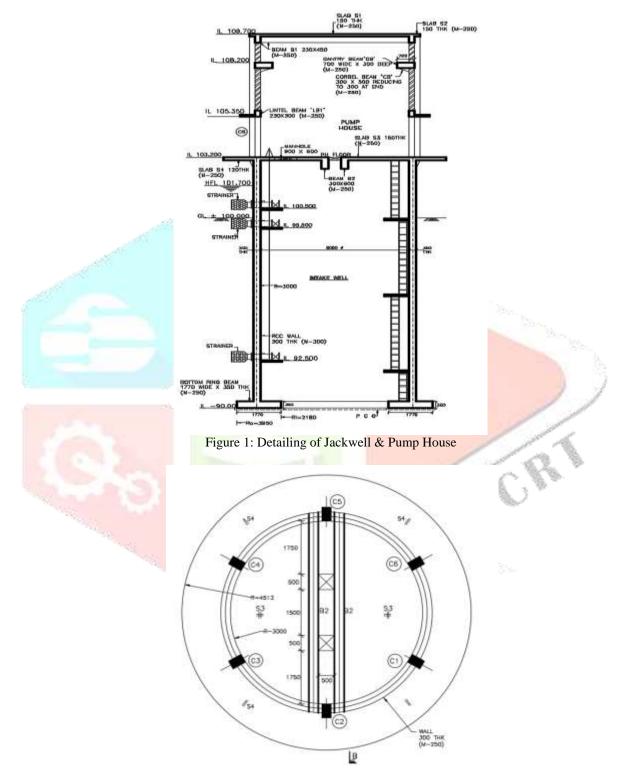
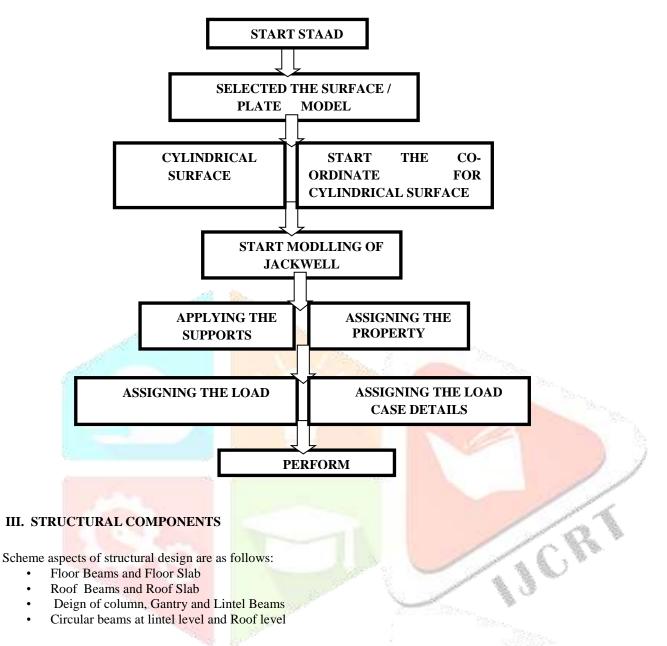


Figure 2: Plan at Pump House Floor Level

II. METHODOLOGY


Generally working stress method (WSM) is employed for hydraulic design. For designing of Jackwell structure and pump house working stress method is used.

In working stress method design is based on elastic theory. Under the design loads material concrete and steel are assumed to be stressed below their elastic limits. Working stresses (permissible stresses) for the materials are determined by dividing the ultimate or yield stress by a suitable factor of safety values.

٠

Various types of loads are acted on Jackwell Structure which includes Water pressure, Earth pressure, Surcharge and Saturated soil pressure.

Flowchart showing procedure of modeling of Jackwell:

-d

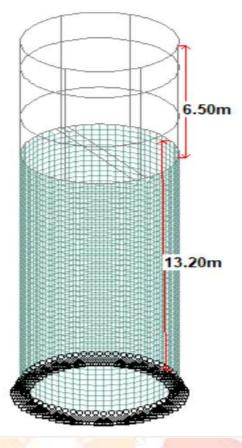


Figure 3: Jackwell & Pump House Model

IV. DESIGN CONSIDERATIONS

Table 4.1: Preliminary Data considered for the Analysis:

Sr. No	Parameters	Data	Sr. No	Parameters	Data
1.	Jackwell	6 m Dia	13.	Roof Beam	230 x 450 mm
2.	Jackwell	13.2 m Ht	14.	Gantry Beam	700 x 300 mm
3.	Wall	300 mm thick	15.	Corbel Beam	300 x 500/300 mm
4.	Pump House	6 m Dia	16.	Lintel Beam	230 x 300 mm
5.	Pump House	6.5 m Ht	17.	Floor Beam	300 x 600 mm
6.	Bottom IL	90.0	18.	Column	300 x 450 mm
7.	Bed Level	92.88/100	19.	Roof Slab	150 mm thick
8.	HFL/FSL	101.70	20.	Cant. Roof Slab	150 mm thick
9.	Roof slab level	109.7	21.	Floor Slab	150 mm thick
10.	Floor Level	103.2	22.	Cant. Floor Slab	120 mm thick
11.	SBC	30 t/m ²	23.	Steel	Fe 415
12.	Seismic Zone	III	24.	Concrete	M 25

Loading Consideration:

Jackwell structure subjected to many types of loads like water pressure, earth pressure, surcharge, saturated soil pressure. These loads are classified as dead load and live load. The two primary design load combinations tank full condition and tank empty condition are considered.

- In tank full condition combination generally water pressure is considered and
- In tank empty condition combination generally earth pressure, surcharge and saturated soil pressure are considered.

V. PREPARATION FOR ANALYSIS AND DESIGN CALCULATION

Table 5.1: Calculation for Pump House:

1.	Roof Slab S1	Level = 109.7	150 mm thick d = 120 mm	M 25	Fe 415
	$\frac{DL}{kN/m^2} = 3.75$	$LL = 0.75$ kN/m^2	$FF = 1 \text{ kN/m}^2$	$Total = 5.5 \text{ kN/m}^2$	
	BM = 6.67 kNm	A = 268.51 mm ²	Spacing = 175 mm	Provide 8 tor @ 175 c/c in square mesh all bras to be brought back upto L/4. Provide near support 2 x 10 tor at top & bottom hoop bars.	
2.	Slab S2 (cantilever = 220 mm)	Level = 190.7	150 mm thick d = 120 mm	M 25	Fe 415
			Spacing = 175 mm	Provide at top & bottom 8 tor @ 175 c/c straight bars by continuing steel of slab S1. Provide 2 x 10 tor at top & bottom as distribution steel.	
3.	Roof Beam	Level = 109.7	230 x 450 mm	M 25	Fe 415
5.	B1 Slab = 10.51	Self wt = 1.73	d = 410 mm Total = 12.24	$WR^{2}(2a) = 124.35 \text{ kNm}$	10 113
	kN/m	kN/m	kN/m	$V(X(2a)) = 12 \pm .55$ kivin	
	-Ve BM = 11.07 kNm	+ Ve BM = 5.60 kNm	Twisting moment = 1.12 kNm		
	SF at Support = 19.96 kN	SF at contraflexure = 11.49 kN	Torsional SF = 19.28 kN	A = 130.41 mm ²	/
	6			Provide 3 x 12 tor straight at top & bottom.	k
	X	3		Stirrups: Support to 900, 8 tor @ 100 mm c/c. 900 to centre 8 tor @ 150 mm c/c.	
	$\begin{array}{c} \tau_v {=} 0.211 \\ N/mm^2 \end{array}$	Pt % = 0.359	$\tau_c = 0.264$ N/mm ²	ОК	
4.	Gantry Level (curved span = 3.246 m)	Level = 108.20	700 x 300 mm d = 260 mm	M 25	Fe 415
	Lifted wt = 50 kN	Wt. of gantry = 15 kN	Total = 65 kN	With 25 % impact = 81.25 kN	
	Nearest dist from wall = 1 m	Dist between wheel = 1.5 m	Max reaction = 61.45 kN	Load on 1 wheel = 30.75 kNm	
	Max SF = 47.29 kN	SF = 23.36 kN	Total SF = 70.65 kN	Self wt = 5.25 kN/m	
	Brick wall = 8.91 kN/m	BM = 32.25 kNm	$A = 590.43$ mm^2	Provide 8 x 12 tor straight at top & bottom.	
	$\begin{aligned} \tau_v &= 0.285 \\ N/mm^2 \end{aligned}$	Pt % = 0.497	$\begin{aligned} \tau_c &= 0.310 \\ N/mm^2 \end{aligned}$	ОК	
	Net SF = 14.23 kN			Stirrups : 8 tor @ 120 mm c/c.	
5.	Corbel Beam	Level = 108.20	300 x 500 mm d = 460 mm	Reducing to 300 mm at end	
	Cantilever span = 0.5 m	Load at 0.4 m	Max Load = 30.75 kN conc at end	UDL =46.72 kN	

www.ijcrt.org

© 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

www.	.ijcrt.org		© 2020) IJCRT Volume 8, Issue 4 April 2020) ISSN: 23
	SF = 77.47	BM = 23.98	A = 251.83	Provide 3 x 16 tor straight at top	
	kN	kNm	mm ²	& bottom.	
	$\tau_v =$	Pt % = 0.437	$\tau_{\rm c} = 0.3026$		
	0.561N/mm ²		N/mm ²		
	Net $SF =$			Provide 2 L 8 tor @ 100 mm c/c	
	35.711 kN			str.	
				Provide 1 x 12 tor horizontal link.	
6.	Lintel Level	Level =	230 x 300 mm	M 25	Fe 415
0.	Linter Lever	105.34	d = 260 mm	WI 23	ге 415
	Circular beam	105.54	u = 200 mm		
	on 6 column $R =$				
	3.115 m				
	Brick Load =	Self wt = 1.73	Chajja = 1.95	Total = 18.35 kN/m	
	14.67 kN/m	kN/m	kN/m		
	$WR^{2}(2a) =$	-Ve BM =	+ Ve BM =	Twisting moment $= 1.68$ kNm	
	186.37 kNm	16.59 kNm	8.39 kNm	C	
	SF = 29.92	A = 308.435		Provide 4 x 12 tor straight at top	
	kN	mm ²		& bottom.	
				Stirrups: Support to 600, 8 tor @	
				100 mm c/c.	
		10 m		600 to centre, 8 tor @ 150 mm	
				c/c.	
		19	There		
7.	Floor Slab S3	Level =	150 mm thick	M 25	Fe 415
		103.30	d = 120 mm		
	DL = 3.75	LL = 10	FF = 0.50	$Total = 14.25 \text{ kN/m}^2$	
	kN/m ²	kN/m ²	kN/m ²		
	BM = 7.13	A = 346.97	Spacing = 200	Provide at top & bottom 10 tor @	
	kN.m	mm ²	mm	200 mm c/c bothways in square mesh.	·
					200 A
8.	Slab S4	Level =	120 mm thick	M 25	Fe 415
	(cantilever span = 1.2 m)	103.30	d = 90 mm		and the second s
	= 1.2 m) DL = 3 kN/m ²	$LL = 3 \text{ kN/m}^2$	FF = 0.50	$Total = 6.5 \text{ kN/m}^2$	
	DL = 5 kin/ill	LL = 5 kin/iii	kN/m^2		
	BM = 4.68	A = 251.20	Spacing = 200	Provide at top 10 tor @ 200 mm	5
	kN.m	mm^2	mm	c/c radial bars every 4 th rod chimta.	
				Dist: 8 tor @ 200 mm c/c str.	
			324		
9.	Floor Beam	Level =	300 x 600 mm	Span = 6.3 m	
1.		103.30	d = 555 mm	- Span – 0.5 m	
	Slab = 53.86	Load of Pump	Conc load of	Self wt = 4.5 kN/m	
	kN (Triangular	= 40 kN	each Pump = 25		
	load)		kN		
	SF = 66.42	BM due to	BM = 44.25	Total BM = 78.628 kNm	
	kN	pumps = 34.378	kNm		
		kNm			
	A = 836.02			Provide 4 x 20 tor straight at top	
	mm ²			& bottom.	
	$\tau_v = 0.402$	Pt % = 0.761	$\tau_{c} = 0.361$		
	N/mm ²		N/mm ²		
	Net SF =			Stirrups: Support to 1200, 8 tor @	
	6.855 kN			150 mm c/c.	
				1200 to center, 8 tor @ 200 mm	

© 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

1.	C1 to C6	300 x 450	Starting IL =	Last IL = 527.5	M 25
		mm	521.0		
	Axial Load =	L/d = 13.44 >	Design Load =	$A = 281.95 \text{ mm}^2$	Provide 8 x 12 tor main
	177.23 kN	12,	182.71 kN		bars.
		Long			8 tor @ 150 c/c.
		Column			
	Ash = 0.49 S				Hence 8 tor links @
					50.3/0.49 = 100 mm c/c near
					joint for height of 6500-
					450/6 =1008 mm.

Table 5.2: Design of Column:

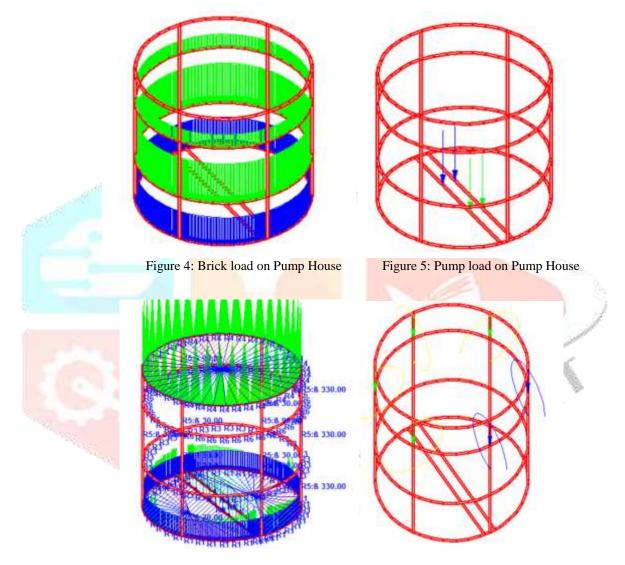


Figure 6: Slab load on Pump House Figure 7: SF and BM on gantry beam of Pump House

VI. RESULTS:

Design of Jackwell:

- \blacktriangleright Wall thickness = 300 mm
- $\Rightarrow Grade of Concrete = M 25$
- $\succ \text{ Grade of Steel} = \text{Fe } 415$
- Top Level = 103.20
 Bottom Level = 90.00
- Bottom Level = 90.00
 Bed Level = 92.88/100.00
- \rightarrow MWL = 101.70
- $\Rightarrow \text{ Cover} = 50 \text{ mm}$

IJCRT2004488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3449

www.ijcrt.org

It is designed for water pressure from inside							
Height of water = $101.70 - 90.00 = 11.7 \text{ m}$							
For water inside condition Maximum hoop tension = $10 \times 11.7 \times 3 = 351 \text{ kN/m}$							
$\sigma_0 = 351/300 = 1.17 \ll 1.3 \text{ N/mm}^2 \text{ OK}$							
• The wall is designed for critical Saturated earth pressure from outside, no water inside,							
	•	00.00 - 90.00 = 10 m					
	P at base = $10 \times 20.8/3$ = 69.33 kN/m^2						
By using Dr. Arya's paper "Data for Analysed & Design of circular shell structures – I" ICJ Aug 69							
Total Weight on Structure							
•	= 19.31 kN.m						
Total Weight of Pump	= 40 x 2 x 1.25	= 100 kN					
• •	$=\pi \times 3.45^2 \times 5.5$	= 205.66 kN					
Roof Beam	$= 0.23 \times 0.3 \times 2 \times \pi \times 3.115 \times 25$	= 33.76 kN					
Brick Wall	$= 2 \times \pi \times 3.115 \times 6.05 \times 5.76$	= 682.04 kN					
PH Floor	$=\pi \times 3^2 \times 14.25$	= 402.90 kN					
Gallery	$=\pi x (4.5^2 - 3.3^2) x 6.5$	= 191.13 kN					
Column	= 0.3 x 0.45 x 6.5 x 6 x 25	= 131.625 kN					
Total		= 1747.115 kN					
Load/m Length	$= 1747.115/2 \ge \pi \ge 3.15$	= 88.27 kN/m					
Self Weight of wall	= 0.3 x 13.2 x 25	= 99 kN/m					
Total		= 187.27 kN/m					
σ_0	= 187.27/300	$= 0.624 \text{ N/mm}^2 \ll 6 \text{ N/mm}^2$					
σ_b	$= (19.31 \times 10^3 \times 6 / 300^2)$	$= 1.287 \text{ N/mm}^2 \ll 8.5 \text{ N/mm}^2$					
(0.624/6) + (1.287/8.5)	= 0.255 < 1.0 OK						

incide

Vertical Steel:

 As
 = $19.31 \times 10^6 / 0.9 \times 130 \times 250$ = 660.170

 Min As
 = 0.35×300 = $105 \text{ mm}^2 = 52.5$ on each face

 Provide 10 tor @ 140 c/c vertical on each face
 = $105 \text{ mm}^2 = 52.5$ on each face

 10 tor @ 140 c/c extra at bottom upto IL 3.350 height on each face.

Horizontal Steel:

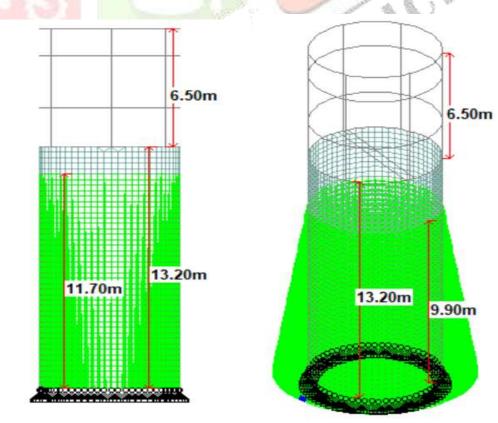


Figure 7: Water pressure inside the Jackwell

Figure 8: Earth pressure from outside of Jackwell

•

- Jackwell Structure is underground / under -water structure, hence it is necessary to design accurately.
 - As Jackwell is underground /under-water structure, reconstruction of the structure become uneconomical.
- Design of economical and efficient water supply scheme of Jhagarpur and adjoining villages (Mining Affected) under Rajgangpur Dist- Sundargarh, Odisha.
 - Improvement in supply of potable water to various sections of villages in accordance with their demand and requirement.
- Fulfill the all water demand of domestic, industrial and commercial area of Jhagarpur and adjoining villages (Mining Affected) under Rajgangpur Dist- Sundargarh, Odisha.

VIII. ACKNOWLEDGMENT

We would like to express our thanks to my guide **Prof. Ms. Amruta Arun Yadav** for her technical guidance, valuable Suggestions and constant inspiration throughout the seminar Work. We are thankful to **Dr. S. R. Khandeshwar**, Head of Civil Engineering Department for his immense support and advice in my endeavor. We would like to express our greatest appreciation to the Principal **Dr.U.P. Waghe** whom has been continuous source of encouragement and Cooperation throughout.We are also grateful to all the Faculty and staff members for their constant support and help in completing my seminar work.

REFERENCES

- [1] Ashwini Patil, Aishwarya Suryayanshil, Hemali Mahajan2, Akshay Jadhav3, Rameshwar Gore4, "Design of Water Supply Scheme of Bhugaon Village, Mulshi, Pune", "International Research Journal of Engineering and Technology (IRJET)", E-ISSN: 2395-0056 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072.
- [2] "Government of Karnataka, Karnataka urban infrastructure development and finance corporation" North Karnataka urban sector investment program, package iii (adb loan no. Ind 2638), revised short resettlement plan for basavakalyan jackwell cum pump house and break preasure tank.
- [3] Anatoliy Akulshin1, a, Nikolay Kobelev2,b, Tatyana Polivanova3,c, Valeria Kretova4,d *, Vladimir Kobelev5,e, "Designing Filtraring Equipment for water Wells of the Municipal Water Intakes in the City of Kursk", "Applied Mechanics and Materials" Vols. 725-726 (2015) pp 1344-1349.
- [4] Nubi Afolasade Tosin1*, Longe Emmanuell, Nubi Olubunmi Ayoola 2, "Evaluation of Water Intake Structures for Municipal Water Supply Scheme in Lagos, Nigeria", "Journal of Biodiversity and Environmental Sciences (JBES) "ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 2, No. 3, p. 1-7, 2012.
- [5] B.Divya Bharathi1, K.Rajeswari (M.Tech)2, "Design and Estimation of Pump House of Somasila Reservoir near Kotapadu Village in Vontimitta", "International Journal & Magazine of Engineering, Technology & Management & Research" ISSN No. 2348-4845.
 [6] Mr.V. Sanjay Gokul1, Ms. Ch.Sravani2, Dr. P. Siva Prasad3, "Design and Analysis of Jack Well Pump House in Lift Irrigation
- [6] Mr.V. Sanjay Gokull, Ms. Ch. Sravani2, Dr. P. Siva Prasad3, "Design and Analysis of Jack Well Pump House in Lift Irrigation Scheme", Department of Civil Engineering, Dhanekula Institute of Engineering & Technology, Vijayawada- 521139, Andhra Pradesh.
- [7] "RCC Design" by Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain.
- [8] Criteria for Earthquake Resistant Design of Structures. (Liquid Retaining Tanks –Part 2) IS 1893 -2014 (Part- 2).
- [9] Arya's Paper "Data for Analysed and Design of Circular shell Structures-I"ICJ Aug 69.
- [10] Jai Krishna and O.P Jain, "Plain & Reinforced Concrete, Vol -1, Nem Chand & Bros., Roorkee, 1959, pp 260-262.
- [11] Code of practice for Design Loads (other than Earthquake) for Buildings and Structures IS 875 -1987 (Part -1).
- [12] STAAD.Pro V8i (SELECT series 6), Bentley Systems, Inc.