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 Abstract: Let M be a minimal subgroup of a finite group G. The pair (A, B) of subgroups of G is called a θ-pair of M if the 

following condition hold: (a)  B ⊲ G, B < A , (b) < M, A >= G and  B ≤ M  and (c)  
A

B
  has no proper normal subgroup of 

G

B
. 

In this paper, we investigate the structure of a finite group G according to the number of its minimal subgroups and   θ-pairs. 
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                                                            I. INTRODUCTION  

In this paper all groups considered are assumed to be finite groups, For convenience we denote M < 𝐺. to indicate that M is  minimal 

subgroup of a group G. Also, 𝑀𝐺 denotes the core of M in G and 𝜑(𝐺) is the frattini subgroup of the group G.  

In [7], Mukherjee and Bhattacharya introduced the concept of 𝜃-pairs  associated to minimal subgroups of a group, and used this concept 

to investigate the structure of some groups. Then Beidlemen and Smith [3], generalized the concept to the universe of infinite groups. 

The investigtion on 𝜃-pairs are continued in [2,8] and [11-15]. Let us recall the definition of 𝜃-pairs which is introduced by Mukherjee 

and Bhattacharya.   

                                                            II.PRELIMINARIES 

Definition 1.1. Given a minimal subgroup M of a group G, a θ-pair of M is any pair (A, B) of subgroups satisfying the following 

conditions: 

  (a) B ⊲ 𝐺, 𝐵 < 𝐴 

  (b) < 𝑀, 𝐴 >= 𝐺 𝑎𝑛𝑑  𝐵 ≤ M   

(c) (c)  
𝐴

𝐵
  has no proper normal subgroup of  

𝐺

𝐵
. 

In addition, if A ⊴ G, then (A,B) is called a normal 𝜃-pair. A  𝜃-pairs (A,B) is said to be minimal if there is no 𝜃-pair (C,D) such 

that A <C. The nonempty set of all 𝜃-pairs of M in G is denoted by 𝜃(M) and 𝜃(G) = ⋃ 𝜃(𝑀)𝑀<𝐺 . 
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The aim of this paper is to investigate the problem of existence of finite groups with a given number of theta pairs. From the 

definition of 𝜃(G), one can see that the number of θ−pairs in a finite group is related to the number of minimal subgroups of the 

group under consideration. So it is natural to investigate the same problem for minimal subgroups. 

It is well known that if a finite group G has exactly one minimal subgroup, then |𝐺| is divisible by exactly one prime number and 

G is cyclic. In this connection one might ask about the structure of G, if G has exactly two or three minimal subgroups. 

A group G has exactly two minimal subgroups then |𝐺| is indeed divisible by two primes and G is  cyclic, and if G has exactly 

three minimal subgroups then neither G needs to be cyclic nor it is required for |𝐺| to be divisible by three primes. In fact, in this 

case G is a 2-group or a cyclic group with exactly three prime factors, see for details [6]. 

Definition 1.2. Let 𝑛 be a natural number. By ℒ(n) we denote the set of all non-isomorphic finite groups with exactly 𝑛 minimal 

subgroups. We define a binary relation ≾ on  ℒ(n)  as follows: 

             H ≾ G ⟺ ∃ 𝑁 ⊴ 𝐺     𝑠. 𝑡  
𝐺

𝑁
  ≅ H. 

 

                                                     III. Main Result 

 

Corollary 2.1. Let M be a minimal subgroup of the group tt. Then, for all  g ∈ 𝐺, |𝜃(𝑀)| = |𝜃(𝑀𝑔)| 

Proof.  The map 𝜏: 𝜃(𝑀) → 𝜃(𝑀𝑔) that sends (C,D) to (𝐶𝑔,D) is well-defined. Now, it is easy to see that the map 𝜏 is a one-to-

one correspondence. 

Let G be a finite group and M be a minimal normal subgroup of G. Then (G,M) is a 𝜃- pair of M in G. So 𝜃(𝑀) ≠ ∅ .In what 

follows, we investigate the structure of finite groups with  exactly 1 and 2  𝜃 − pair 

Lemma 2.2. A group G has exactly one 𝜃 −pair if and only if G is a cyclic group of prime power order. 

Proof. Suppose G has exactly one 𝜃 −pair. Then 
𝐺

𝜑(𝐺)
 is a simple group and 𝜃(𝐺) = {(𝐺, 𝜑(𝐺))}. Suppose m(G) > 1. Then 𝜑(𝐺) 

is not minimal in G and for any minimal subgroup M of G, (M, 𝜑(𝐺)) is a 𝜃 − pair of L, in which L is a minimal subgroup of G 

distinct from M, a contradiction. This shows that 𝑚(𝐺) = 1 and so G is a cyclic group of prime power order. 

Lemma 2.3. If there exists a minimal subgroup M of G such that 𝜃(𝑀) = 𝜃(𝐺) ,then G has exactly one 𝜃- pair. 

Proof. It is obvious that G has exactly one 𝜃-minimal and so 
𝐺

𝜑(𝐺)
  is a simple group. If  m(G) > 1 then (M, 𝜑(𝐺)) ∈ 𝜃(𝐿)  and 

(L, 𝜑(𝐺)) ∈ 𝜃(𝑀), for two distinct minimal subgroups M and L of G, which is a contradiction. Therefore, 𝑚(𝐺) = 1  and by 

lemma 2.2 , G has exactly one 𝜃-pair, proving the lemma. 

Lemma 2.4. There is no 𝑛𝜃 −pair cyclic group of order 𝑝1
𝑟1 . 𝑝2

𝑟2 …..𝑝𝑛
𝑟𝑛 , 𝑝1 <  𝑝2 < ⋯ <  𝑝𝑛  , 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ   𝑛 > 1. 

Proof.  Suppose {𝑀1, 𝑀2, … . 𝑀𝑛} is the set of all minimal subgroups of G. Then  

(G, 𝑀𝑖), 1 ≤ 𝑖 ≤ 𝑛, are 𝑛minimal 𝜃-pairs for G and so G has at least 𝑛 𝜃 -pair. Assume that M is a minimal subgroup of index 

 𝑝1, A is a minimal subgroup of M of index 𝑝2 and L is a minimal subgroup of G of  𝑝2. Then (M,A) ∈ 𝜃(L) a contradiction. 

We now are ready to state one of our main results. We have: 

Theorem 2.5. There is no finite group with exactly two 𝜃-pairs. 

Proof. Let G has exactly two 𝜃-pairs. By Lemma 2.3, there is no minimal subgroup M of  G such that 𝜃(𝑀) = 𝜃(𝐺) and so G 

has exactly two minimal  𝜃-pairs. Thus |{𝑋𝐺|𝑋 <. 𝐺}| = 2 . Suppose that (C,𝐿𝐺) and (G,𝑀𝐺) are two distinct minimal 𝜃-pairs of 

G associated to minimal subgroups L and M, respectively. We claim that G has exactly two minimal subgroups. To do this, we 

assume that T is a minimal subgroup of G different from M and L. if C≠ G , then 𝜑(𝐺) = 𝐿(𝐺)  𝑎𝑛𝑑    (𝐿. 𝜑(𝐺)) ∈ 𝜃(𝑇) .which 

is a contradiction. We now assume that C = G, then 
𝐺

𝑀𝐺
  and 

𝐺

𝐿𝐺
 is a simple groups, Therefore 𝑇𝐺 = 𝐿𝐺 or 𝑇𝐺 = 𝑀𝐺 

.Suppose 𝑇𝐺 = 𝐿𝐺  Then (𝐿, 𝐿𝐺) ∈ 𝜃(𝑇), a contradiction .Also ,if 𝑇𝐺 = 𝑀𝐺   then  (𝑀, 𝑀𝐺) ∈ 𝜃(𝑇) and so 𝑀𝐺 = 𝐿𝐺  This 
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implies that 
𝐺

𝜑(𝐺)
  is a simple group. which is a contradiction. Therefore, G has exactly two minimal subgroups and so |𝐺| is 

indeed divisible by two primes. Now by Lemma 2.4, the proof is complete. 

Lemma 2.6. let  G be a finite group such that all of minimal  𝜃 −pair pairs of G are normal and {𝑀𝐺|𝑀 <. 𝐺} =

{𝐿1𝐺 , … . . 𝐿𝑟𝐺}.Then 𝜃𝑚𝑎𝑥(𝐺) = 𝜃𝑚𝑎𝑥(𝐿1) ∪ … ∪ 𝜃𝑚𝑎𝑥(𝐿𝑟). 

Proof.  Suppose (C,D) is an arbitrary minimal 𝜃 −pair of G. Then D= 𝐿𝑖𝐺  for some 1 ≤ 𝑖 ≤ 𝑟, If  C ⊆ 𝐿𝑖  𝑡ℎ𝑒𝑛 𝐶 ⊆ 𝐷, a 

contradiction. Thus (C,D) ∈ 𝜃(𝐿𝑖) Now we assume that (E,F) is a minimal 𝜃-Pair of 𝜃(𝐿𝑖)  such that  (C,D) ≤

(𝐸, 𝐹).  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 C ≤ 𝐸, 𝐷 = 𝐹,
𝐶

𝐷
≤

𝐸

𝐷
 𝑎𝑛𝑑 

𝐶

  𝐷
⊴

𝐺

𝐷
 . This shows that (C,D) is a minimal  𝜃-pair of  𝜃(𝐿𝑖)  an the proof is 

complete. 

In the following theorem, we prove that there is no also finite groups with exactly three 𝜃-pair. 

Theorem 2.7. There is no finite group with exactly three 𝜃-pairs. 

Proof. Let G be a 3𝜃-pair group. There is no minimal subgroup M of G such that 𝜃(𝑀) = 𝜃(𝐺)). Our main proof will consider 

a numbers of cases. 

Case 1. There are two minimal subgroups M and L of G such that                   |𝜃(𝑀)| = 2 𝑎𝑛𝑑 |𝜃(𝐿)| = 1    

Assume that (𝐵, 𝑀𝐺), (𝐶, 𝐷) ∈ 𝜃(𝑀) and (𝐴, 𝐿𝐺) ∈ 𝜃(𝐿)  . we can see that C ⊴ D and  G ≠ C .We claim that G has at least three 

minimal subgroups. By lemma 2.2., G has at least two minimal subgroups. Assume that G has exactly two minimal subgroups, 

say M and L. Thus, by the mentioned theorem of khazal, G is cyclic and  so    (𝐴, 𝐿𝐺) = (𝐺, 𝐿), (𝐵, 𝑀𝐺) = (𝐺, 𝑀). Since 
𝐺

𝐿
 is a 

simple group, we have (𝑀, 𝜑(𝐺)) ∈ 𝜃(𝐿) a contradiction. Therefore G has at least three minimal subgroups. We now see that 

𝑀𝐺 ≠ 𝐿𝐺. Thus, for any minimal subgroup X of G ,   𝑋𝐺 = 𝐿𝐺  𝑜𝑟 𝑋𝐺 ≤ 𝑀𝐺, Suppose A= G. If L is non-normal  and g ∈ 𝐺 −

𝑁𝐺(𝐿) then (𝐿𝑔 , 𝐿𝐺) ∈ 𝜃(𝐿)  which is impossible. So L⊴ G and we can see that (𝑀𝐺,𝐿 ∩ 𝑀𝐺) ∈ 𝜃(𝐿) , a contradiction. Thus A≠

𝐺 𝑎𝑛𝑑 𝑠𝑜 𝐴 ≤ 𝑀𝐺 . 𝐴𝑙𝑠𝑜 𝐶 ≤ 𝐿𝐺  𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝐶 ≤ 𝐿𝐺 ≤ 𝐴 ≤ 𝑀𝐺 , which is a contradiction. 

Case 2. G is 3𝜃-minimal and there are minimal subgroups M, L and K of G such that 

(𝐴, 𝐿𝐺) ∈ 𝜃(𝐿)  , (𝐵, 𝐾𝐺) ∈ 𝜃(𝐾)  and (𝐶, 𝑀𝐺) ∈ 𝜃(𝑀)   by lemma 2.6 and case 1, 

|{𝑀𝐺|𝑀 <. 𝐺}| = 3. We claim that one of the subgroups A,B and C is equal to G and the other two are proper. To do this, suppose 

A = C = G. Then M , L ⊲ G and    (𝐿, 𝑀 ∩ 𝐿) ∈ 𝜃(𝑀) which is  impossible. Therefore, we can assume that A ≠G ,      B≠

𝐺 𝑎𝑛𝑑 |𝜃(
𝐺

𝐴
)| = |𝜃(

𝐺

𝐵
)| = 1. Suppose 

𝑅

𝐴
 𝑎𝑛𝑑 

𝑆

𝐵
  are the unique minimal subgroup of 

𝐺

𝐴
  and 

𝐺

𝐵
 respectively. Thus (

𝐺

𝐴
,

𝑅

𝐴
) ∈ 𝜃(

𝐺

𝐴
)  

And  (
𝐺

𝐵
,

𝑆

𝐵
) ∈ 𝜃(

𝐺

𝐵
)  . This shows that (G,R) are (G,S) are 𝜃-pairs we can assume that M ⊲ G and A,B ≤

𝑀, 𝑁𝑜𝑤 (
𝐴

𝐿𝐺
,

𝐿𝐺

𝐿𝐺
) , (

𝐺

𝐿𝐺
,

𝑀

𝐿𝐺
) ∈ 𝜃 (

𝐺

𝐿𝐺
) 𝑎𝑛𝑑 |𝜃𝑚𝑎𝑥(

𝐺

𝐿𝐺
)| ≤ 3 Therefore |𝜃𝑚𝑎𝑥(

𝐺

𝐿𝐺
)| = 3 and there exists another 𝜃-pair (

𝑅1

𝐿𝐺
,

𝑈1

𝐿𝐺
) ∈

𝜃 (
𝐺

𝐿𝐺
).It is easy to see that 𝐿𝐺 ⊆  𝐾𝐺. Using similar argument as in above , 𝐾𝐺 ⊆  𝐿𝐺  𝑎𝑛𝑑 𝑠𝑜 𝐿𝐺 =  𝐾𝐺. .  which is a contradiction.  

Theorem 2.8.There exists a group with exactly 𝑛 𝜃-pair for 𝑛 ≠2,3. 

Proof.  For 𝑛 =1, a cyclic group of prime power order has exactly one 𝜃-pair Suppose 𝑛 ≥ 4 and 𝐺 = 𝑍𝑝𝑛𝑞. Then G has exactly 

two minimal subgroups M and N of orders   𝑝𝑛 𝑎𝑛𝑑 𝑝𝑛−1𝑞 , respectively. Suppose 𝐴𝑖 𝑎𝑛𝑑 𝐵𝑖 , 0 ≤ 𝑖 ≤ 𝑛, subgroups of G order 

𝑝𝑖  𝑎𝑛𝑑 𝑝𝑖𝑞. now it is easy to see that   𝜃(𝑀) = {(𝐵𝑖 , 𝐴𝑖)|0 ≤ 𝑖 ≤ 𝑛  𝑎𝑛𝑑   𝜃(𝑁) = {(𝐴𝑛, 𝐴𝑛−1), ( 𝐵𝑛, 𝐵𝑛−1 )}.Therefore G  has 

exactly 𝑛 + 3 , proving the result. 
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