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Abstract 

The naive Bayes classifier greatly simplify learning by 

assuming that features are independent given class. Although 

independence is generally a poor assumption, in practice naive 

Bayes often competes well with more sophisticated classifiers. 

Our broad goal is to understand the data characteristics 

which affect the performance of naive Bayes. Our 

approach uses Monte Carlo simulations that allow a 

systematic study of classification accuracy for several 

classes of randomly generated problems. We analyze the 

impact of the distribution entropy on the classification 

error, showing that low-entropy feature distributions yield 

good performance of naive Bayes. We also demonstrate 

that naive Bayes works well for certain nearlyfunctional 

feature dependencies, thus reaching its best performance in 

two opposite cases: completely independent features (as 

expected) and functionally dependent features (which is 

surprising). Another surprising result is that the accuracy of 

naive Bayes is not directly correlated with the degree of 

feature dependencies measured as the classconditional 

mutual information between the features. Instead, a better 

predictor of naive Bayes accuracy is the amount of 

information about the class that is lost because of the 

independence assumption. 

1Introduction 

Bayesian classifiers assign the most likely class to a given 

example described by its feature vector. Learning such 

classifiers can be greatly simplified by assuming that features 

are independent given class, that is, , where is a feature vector 

and is a class. 

Despite this unrealistic assumption, the resulting classifier 

known as naive Bayes is remarkably successful in practice, 

often competing with much more sophisticated techniques [6; 8; 

4; 2]. Naive Bayes has proven effective in many practical 

applications, including text classification, medical diagnosis, 

and systems performance management [2; 9; 5]. 
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The success of naive Bayes in the presence of feature 

dependencies can be explained as follows: optimality in terms of 

zero-one loss (classification error) is not necessarily related to 

the quality of the fit to a probability distribution (i.e., the 

appropriateness of the independence assumption). Rather, an 

optimal classifier is obtained as long as both the actual and 

estimated distributions agree on the most-probable class [2]. For 

example, [2] provenaive Bayes optimality for some problems 

classes that have a high degree of feature dependencies, such as 

disjunctive and conjunctive concepts. 

However, this explanation is too general and therefore not 

very informative. Ultimately, we would like to understand the 

data characteristics which affect the performance of naive 

Bayes. While most of the work on naive Bayes compares its 

performance to other classifiers on particular benchmark 

problems (e.g., UCI benchmarks), our approach uses Monte 

Carlo simulations that allow a more systematic study of 

classification accuracy on parametric families of randomly 

generated problems. Also, our current analysis is focused only 

on the bias of naive Bayes classifier, not on its variance. 

Namely, we assume an infinite amount of data (i.e., a perfect 

knowledge of data distribution) which allows us to separate the 

approximation error (bias) of naive Bayes from the error 

induced by training sample set size (variance). 

 

2 Definitions and Background 

Let be a vector of observed random variables, called features, 

where each feature takes values from its domain . The set of all 

feature vectors (examples, or states), is denoted . Let be an 

unobserved random variable denoting the class of an example, 

where can take one of values Capital letters, such as , will 

denote variables, while lower-case letters, such as , will denote 

their values; boldface letters will denote vectors. 

A function , where , denotes a concept to be learned. 

Deterministic corresponds to a concept without noise, which 

always assigns the same class to a given example (e.g., 

disjunctive and conjunctive concepts are deterministic). In 
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general, however, a concept can be noisy, yielding a random 

function . 

A classifier is defined by a (deterministic) function 

(a hypothesis) that assigns a class to any 

given example. A common approach is to associate each class 

with a discriminant function , 

, and let the classifier select the class with maximum 

discriminant function on a given example: 

. 

The Bayes classifier (that we also call Bayes-optimal 

classifier and denote ), uses as discriminant functions the class 

posterior probabilities given a feature vector, i.e. 

 Applying Bayes rule gives , whereis identical 

for all classes, and therefore can be ignored. This yields Bayes 

discriminant functions 

(1) 

where is called the class-conditional probability distribution 

(CPD). Thus, the Bayes classifier 

3 When does naive Bayes work well? Effects of some nearly-

deterministic dependencies 

In this section, we discuss known limitations of naive Bayes and 

then some conditions of its optimality and nearoptimality, that 

include low-entropy feature distributions and nearly-functional 

feature dependencies. 

3.1 Concepts without noise 

We focus first on concepts with or for any and (i.e. no noise), 

which therefore have zero Bayes risk. The features are assumed 

to have finite domains ( -th feature has values), and are often 

called nominal. (A nominal feature can be transformed into a 

numeric one by imposing an order on its domain.) Our attention 

will be restricted to binary classification problems where the 

class is either 0 or 1. 

Some limitations of naive Bayes are well-known: in case of 

binary features ( for all ), it can only learn linear discriminant 

functions [3], and thus it is always suboptimal for non-linearly 

separable concepts (the classical example is XOR function; 

another one is -of- concepts [7; 2]). When for some features, 

naive Bayes is able to learn (some) polynomial discriminant 

functions [3]; thus, polynomial separability is a necessary, 

although not sufficient, condition of naive Bayes optimality for 

concepts with finite-domain features. 

Despite its limitations, naive Bayes was shown to be optimal 

for some important classes of concepts that have a high degree 

of feature dependencies, such as disjunctive and conjunctive 

concepts [2]. These results can be generalized to concepts with 

any nominal features (see [10] for details): 

Theorem 1 [10] The naive Bayes classifier is optimal for any 

two-class concept with nominal features that assigns class 0 to 

exactly one example, and class 1 to the other examples, with 

probability 1. 1 

The performance of naive Bayes degrades with increasing 

number of class-0 examples (i.e., with increasing prior 

                                                           
1 Clearly, this also holds in case of a single example of class 1. 

, also denoted ), as demonstrated in Figure 1a. This 

figure plots average naive Bayes error computed over 1000 

problem instances generated randomly for each value of . The 

problem generator, called ZeroBayesRisk, assumes features 

(here we only consider two features), each having values, and 

varies the number of class-0 examples from 1 to (so that varies 

from to 0.5; the results for are symmetric)2. As expected, larger 

(equivalently, larger ), yield a wider range of problems with 

various dependencies among features, which result into 

increased errors of Bayes; a closer look at the data shows no 

other cases of optimality besides . 

3.2 Noisy concepts 

Low-entropy feature distributions 

Generally, concepts can be noisy, i.e. can have nondeterministic 

and thus a non-zero Bayes risk. 

A natural extension of the conditions of Theorem 1 to noisy 

concepts yields low-entropy, or “extreme”, probability 

distributions, having almost all the probability mass 

concentrated in one state. Indeed, as shown in [10], the 

independence assumption becomes more accurate with 

decreasing entropy which yields an asymptotically optimal 

performance of naive Bayes. Namely, 

Theorem 2 [10] Given that one of the following conditions 

hold: 

NBerror, I(X1;X2|C), and H(P(x1|c) vs. P(0) (n=2, m=2, 

k=10, N=1000) 

 

P(0) 

(a) 

 Average errors vs. mutual information  (n=2, m=2, 

k=10) 

 

(b) 

                                                           
2 Note that in all experiments perfect knowledge of data distribution 

(i.e., infinite amount of data)is assumed in order to avoid the effect 

of finite sample size. 
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 Average error difference vs. mutual information  

(n=2, m=2, k=10) 

 

(c) 

Figure 1: (a) results for the generator ZeroBayesRisk (k=10, 

1000 instances): average naive Bayes error (NBerr), class-

conditional mutual information between features ( ), and 

entropy of marginal distribution, 

; the error bars correspond to the standard deviation 

of each measurement across 1000 problem instances; (b) Results 

for the generator EXTREME: average Bayes and naive Bayes 

errors and average ; (c) results for the generator FUNC1: 

average difference between naive Bayes error and Bayes error ( 

- constant for all ), and scaled I(X1;X2—C) (divided by 300). 

1. a joint probability distribution is such that for some 

state 

, or 

2. a set of marginal probability

 distributions is such that for each , 

for some , then . 

The performance of naive Bayes on low-entropy distributions 

is demonstrated using a random problem generator called 

EXTREME. This generator takes the number of classes, , 

number of features, , number of values per feature, , and the 

parameter , and creates class-conditional feature distributions, 

each satisfying the condition 

if , where the are different states 

randomly selected from possible states. For each class , the 

remaining probability mass in is randomly 

distributed among the remaining states. Class prior 

distributions are uniform. Once is generated, naive Bayes 

classifier (NB) is compared against the Bayes-optimal classifier 

(BO). 

Figure 1b shows that, as expected, the naive Bayes error 

(both the average and the maximum) converges to zero with 

(simulation performed on a set of 500 problems with 

, , ). Note that, similarly to the previous observations, the 

error of naive Bayes is not a monotone function of the strength 

of feature dependencies; namely, the average class-conditional 

mutual information plotted in Figure 1b is a concave function 

reaching its maximum between and , while the decrease of 

average naive Bayes error is monotone in . 

Almost-functional feature dependencies 

Another ”counterintuitive” example that demonstrates the non-

monotonic relation between the feature dependence and the 

naive Bayes accuracy is the case of certain functional and 

nearly-functional dependencies among features. Formally, 

Theorem 3 [10] Given equal class priors, Naive Bayes is 

optimal if for every feature , , where is a one-to-one mapping 3. 

Namely, naive Bayes can be optimal in situations just opposite 

to the class-conditional feature independence (when mutual 

information is at minimum) - namely, in cases of completely 

deterministic dependence among the features (when mutual 

information achieves its maximum). For example, Figure 1c 

plots the simulations results obtained using an ”nearly-

functional” feature distribution generator called FUNC1, which 

assumes uniform class priors, two features, each having values, 

and ”relaxes” functional dependencies between the features 

using the noise parameter conditional joint feature distributions 

satisfying the following conditions: 

and 

 

This way the states satisfying functional dependence obtain 

probability mass, so that by controlling we can get as close as 

we want to the functional dependence described before, i.e. the 

generator relaxes the conditions of Theorem 3. Note that, on the 

other hand,  gives us uniform distributions over the second 

feature 

, which makes it independent of (given class ). Thus varying 

from 0 to 1 explores the whole range from deterministic 

dependence to complete independence between the features 

given class. 

The results for 500 problems with are summarized in Figure 

1c, which plots the difference between the average naive Bayes 

error and average Bayes risk (which turned out to be , a constant 

for all ) is plotted against . We can see that naive Bayes is 

optimal when (functional dependence) and when (complete 

independence), while its maximum error is reached between the 

two extremes. On the other hand, the class-conditional mutual 

information decreases monotonically in , from its maximum at 

(functional dependencies) to its minimum at (complete 

independence)4. 

4 Conclusions 

Despite its unrealistic independence assumption, the naive 

Bayes classifier is surprisingly effective in practice since its 

classification decision may often be correct even if its 

probability estimates are inaccurate. Although some optimality 

conditions of naive Bayes have been already identified in the 

past [2], a deeper understanding of data characteristics that 

affect the performance of naive Bayes is still required. 

Our broad goal is to understand the data characteristics which 

affect the performance of naive Bayes. Our approach uses 

Monte Carlo simulations that allow a systematic study of 

classification accuracy for several classes of randomly generated 

problems. We analyze the impact of the distribution entropy on 

the classification error, showing that certain almostdeterministic, 

or low-entropy, dependencies yield good performance of naive 

                                                           
3 A similar observation was made in [11], but the important ”oneto-

one” condition on functional dependencies was not mentioned there. 

However, it easy to construct an example of a non-ne-toone functional 

dependence between the features that yields non-zero error of naive 

Bayes. 
4 Note that the mutual information in Figure 1c is scaled (divided by 

300) to fit the error range. 
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Bayes. Particularly, we demonstrate that naive Bayes works best 

in two cases: completely independent features (as expected) and 

functionally dependent features (which is surprising). Naive 

Bayes has its worst performance between these extremes. 
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